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Abstract 

Background  At present, the conventional methods for determining photosynthetic products of microalgae are usu-
ally based on a large number of cell mass to reach the measurement baseline, and the result can only reveal the aver-
age state at the population level, which is not feasible for large-scale and rapid screening of specific phenotypes from 
a large number of potential microalgae mutants. In recent years, single-cell Raman spectra (SCRS) has been proved 
to be able to rapidly and simultaneously quantify the biochemical components of microalgae. However, this method 
has not been reported to analyze the biochemical components of Cyclotella cryptica (C. cryptica). Thus, SCRS was first 
attempt to determine these four biochemical components in this diatom.

Results  The method based on SCRS was established to simultaneously quantify the contents of polysaccharide, total 
lipids, protein and Chl-a in C. cryptica, with thirteen Raman bands were found to be the main marker bands for the 
diatom components. Moreover, Partial Least Square Regression (PLSR) models based on full spectrum can reliably 
predict these four cellular components, with Pearson correlation coefficient for these components reached 0.949, 
0.904, 0.801 and 0.917, respectively. Finally, based on SCRS data of one isogenic sample, the pairwise correlation and 
dynamic transformation process of these components can be analyzed by Intra-ramanome Correlation Analysis 
(IRCA), and the results showed silicon starvation could promote the carbon in C. cryptica cells to flow from protein and 
pigment metabolism to polysaccharide and lipid metabolism.

Conclusions  First, method for the simultaneous quantification of the polysaccharide, total lipid, protein and pig-
ment in single C. cryptica cell are established. Second, the instant interconversion of intracellular components was 
constructed through IRCA, which is based on data set of one isogenic population and more precision and timeliness. 
Finally, total results indicated that silicon deficiency could promote the carbon in C. cryptica cells to flow from protein 
and pigment metabolism to polysaccharide and lipid metabolism.
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Background
Excessive anthropogenic CO2 emissions are consid-
ered to be the main cause of global warming, which has 
become a significant environmental issue [1, 2]. Pho-
tosynthetic organisms have great potential to fix CO2 
through biotransformation in vivo [3, 4]. Among photo-
synthetic organisms, microalgae, with the characteris-
tics of wide distribution, fast growth than higher plants, 
easy to cultivate and high photosynthetic efficiency, have 
been considered as one of the most environmentally 
friendly, safe and sustainable candidates to fix CO2 [3, 
5–8]. In the meanwhile, polysaccharides, lipids, proteins 
and pigments are major four intracellular energy-dense 
macromolecules produced by microalgae cells by fixing 
CO2 through photosynthesis [9–15]. However, the con-
ventional methods for the determination of these high 
energy substances within microalgae cells have some 
shortcomings: (1) the understanding of cell phenotype 
almost all comes from the analysis at the population level, 
which obscures the richness of cell-to-cell variation; (2) a 
large number of cultured cells are required to reach the 
baseline of the measurement; (3) Generally speaking, 
the determination procedure of conventional methods 
is complex and time-consuming; (4) specific organic rea-
gents need to be ordered, etc. Briefly, these approaches 
followed by tedious and time-consuming determination 
process, which was not feasible for mass screening of a 
particular phenotype from enormous number of poten-
tial mutants [16].

To tackle these challenges, researchers have developed 
Raman spectroscopy. This approach represents the col-
lective Raman spectra of molecules in one cell and pro-
vide an intrinsic chemical profile of the cell in a label-free 
and non-destructive manner [17–19]. For microalgal cell, 
the Raman spectroscopy has been used to detect their 
“product spectrum”. For example, the resonance Raman 
spectroscopy was used to probing the carotenoid con-
tent of intact Cyclotella meneghiniana cell [20], and the 
lipid composition of living Thalassiosira pseudonana cell 
was evaluated by Raman spectroscopy [16]. The single-
cell Raman spectroscopy (SCRS) also was successfully 
applied to the label-free and simultaneous quantitative 
analysis of starch, protein and triacylglycerol in individual 
cell of Chlamydomonas reinhardtii [21]. Therefore, this 
method of simultaneously measuring the cellular content 
of target molecular with high throughput and low cost is 
of great necessary and valuable to development of micro-
algae strain and synthesis mechanism research [21].

Cyclotella cryptica (C. cryptica) was considered to 
have great economic development potential due to their 
rapid growth, facultative heterotrophic ability, rich in 
high value-added products, such as polyunsaturated 
fatty acids and fucoxanthin [22]. It was also found that 

the porous hierarchical frustule of C. cryptica had good 
hemostatic potentiality [23]. However, the determination 
of biochemical components of this diatom was mainly 
based on conventional methods.

The purpose of this study was to establish a sim-
ple, noninvasive and rapid method for the determina-
tion of multiple biochemical components of C. cryptica 
based on SCRS. Thus, the changes of biochemical phe-
notypes in C. cryptica cells under Si+ (silicon-replete 
F/2 medium, control group), Si− (silica starvation F/2 
medium) and Si−+ (silica starvation F/2 medium fol-
lowed by silicon-replete F/2 medium) conditions were 
systematically characterized at the population level based 
on a variety of conventional method. Meanwhile, SCRS 
of this diatom under three silicon stress were captured 
to detect the phenotypic change. And then, Partial Least 
Square Regression (PLSR) models were constructed to 
predict the contents of polysaccharide, total lipid, pro-
tein and chlorophyll a (Chl-a) of C. cryptica. Moreover, 
the potential transformation links of these four products 
were established revealed by Intra-ramanome Correla-
tion Analysis (IRCA).

Materials and methods
Microalgal species and culture conditions
The marine microalga (C. cryptica) was provided by the 
Lab of Applied Microalgae Biology of Ocean University 
of China (LAMB, Yushan, Qingdao, China). C. cryptica 
cells were cultured in F/2 medium [24, 25], the salinity of 
the culture solution was 30 ± 1. In addition, the culture 
system was put into a light chamber in which the tem-
perature and intensity of illumination was controlled 
at 20 ± 1  °C and 80  μmol/m2/s (12  h light/12  h dark), 
respectively.

The protocol for the testing
At first, C. cryptica cells were cultured in F/2 medium, the 
silicon content added according to the standard of F/2 
medium. When the microalgal cells grew to the exponen-
tial growth period, which were centrifuged (3500  rpm, 
10 min), and the sediment were inoculated into 3 L plas-
tic bottles with 1  L different F/2 media including Si+ 
group (silicon-replete F/2 medium, control group) and 
Si− group (silicon starvation F/2 medium), respectively. 
For the Si−+ group, the microalgae cells were collected 
from the Si− group after 96 h of silicon starvation, and 
then re-cultured in the F/2 medium with the silicon-
replete (That was, the 96 h in Si− group was the 0 h in 
Si−+ group). Three independent cultures for each time-
point in per group, and the initially cell number in three 
groups was adjusted to 9.8 × 105 cells/mL. The sample of 
Si+ and Si− medium groups was collected at 0, 12, 24, 
48, 72 and 96 h. The sample of S−+ medium group was 
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collected at 0, 12, 24, 48, 72 and 96  h after 96  h silicon 
starvation in Si− group. The bottles were shaken manu-
ally three times a day during the experiment.

Content of four intracellular target products measured 
by conventional approaches
The total lipid content
Total lipid was extracted according to the previous 
method [26, 27]. The C. cryptica culture were collected 
by centrifugation (3500  rpm, 10  min) and lyophilized 
overnight by an ALPHA 1–4 LD freeze dryer (Christ, 
Osterod, Germany). 50  mg of freeze-dried microalgal 
powder were put into a 100 mL centrifuge tube. 2.5 mL 
of chloroform, 5  mL of methanol and 2  mL of 50  mM 
K2HPO4 buffer (pH 7.4) were added into the centrifuge 
tube and shook for 2  h; After 2  h, 2.5  mL of chloro-
form and 2.5 mL of 50 mM K2HPO4 buffer (pH 7.4) was 
added into the above system again, mix uniformly and 
stood still. The liquid layered in the lower layer (chloro-
form layer) was transferred to a dry glass tube which the 
weight was taken as m1, and the glass tube with the liquid 
was put into a water bath at 60 °C until the liquid volatil-
izes completely, which the dried glass tube was weighed 
and was recorded as m2. The total lipid content (LC) was 
calculated as follows:

The polysaccharide content
The extraction of microalgal cell polysaccharide was 
based on the conventional method [28]. The content of 
polysaccharide was determined by phenol sulfuric acid 
colorimetry method [4]. Specifically, the polysaccha-
ride was extracted and then hydrolyzed by the addition 
of 5% phenol and sulfuric acid in a boiling water bath. 
The optical density of the sample solution was deter-
mined by a UV-3310 spectrophotometer (Hitachi, Tokyo, 
Japan) at 490  nm. The total polysaccharide concentra-
tion was calculated based on a calibration curve using 
glucose as the standard. The glucose standard curve was 
y = 9.7445x − 0.0059 (R2 = 0.9974), which was established 
ahead. The total polysaccharide content (PC) was calcu-
lated as follows:

Here, C was the concentration of total polysaccha-
rides (mg/mL), V was the final constant volume in the 
volumetric flask (mL) and m was the used dry weight of 
freeze-dried microalgal powder (mg).

LC(µg/mgDW) =
m2 −m1

50

PC(µg/mgDW) =
C ∗ V ∗ 1000

m

The protein content
The content of protein was determined by Coomas-
sie brilliant blue assay kit (Nanjing Jiancheng, China). 
In detail, 10 mL of C. cryptica culture was centrifuged 
(3500  rpm, 15  min) at room temperature. The super-
natant was discarded and the harvested cell pellet was 
resuspended in 5  mL of double distilled water (dd-
water) and was crushed by an ultrasonic cell crusher 
under 25% power for 20 min (Ningbo Scientz Biotech-
nology CO..LTD). The concentration of soluble protein 
in the supernatant was measured by the assay kit.

The pigment content
The pigment was extracted according to the method 
described in previous studies [30–32]. In detail, 10 mL 
of C. cryptica culture was centrifuged (3500  rpm, 
15  min). The supernatant was discarded and the sedi-
ment were resuspended in 10  mL of 90% methanol, 
centrifuged after incubated in a 60  °C water bath for 
15 min. The absorbance of the centrifuged supernatant 
at 665 and 652 nm wavelengths was measured with the 
UV-2000 spectrophotometer, respectively. Chl-a con-
tent were calculated by the formulas [32] as follows:

Here, C was the Chl-a concentration (mg/L), V was 
volume of microalgal solution (mL) and M was the cell 
dry weight (g).

Simultaneous quantification of polysaccharide, total lipid, 
protein and Chl‑a at the single‑cell level via SCRS
Acquisition of SCRS
SCRS were measured using a modified Horiba Lab Ram 
HR with an excitation wavelength of 532  nm [33]. In 
detail, 1.5 mL of microalgae culture was collected at the 
timepoint and centrifuged at 3500 rpm for 10 min. The 
supernatant was discarded, the sediment was washed 
with dd-H2O for three times, and was loaded into a 
capillary tube (50  mm length × 1  mm width × 0.1  mm 
height, Camlab, UK). The Raman spectra of 30 cells and 
four background sites in each of the three biological 
replicate cultures (i.e., 30 cells per biological replicate; 
three biological replicate cultures per timepoint; a total 
of 90 cells per timepoint) were randomly recorded. In 
general, an individual cell was trapped, photo-bleached 
and measured by a 532  nm laser with about 25  mW 
output power [21]. Raman spectrum between 393.8 and 

Chl-a concentration (µg/mL) = 16.82A665 − 9.28A652

Chl − acontent(µg/mgDW) =
C ∗ V

1000 ∗M
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3341.3 cm−1 was acquired and the acquisition time was 
2 s.

PLSR model establishment for the quantification of four 
cellular products
The raw SCRS were pre-processed by background sub-
traction, baseline correction (a polynomial algorithm 
with a degree of seven) and normalization with home-
made R scripts (RamEx). Information-abundant region of 
449.499 ~ 3050.17  cm−1 were extracted and normalized 
by division based on its area. PLSR models were estab-
lished to predict the contents of four target components 
of C. cryptica. For example, a PLSR model to predict the 
polysaccharide content was constructed based on the 
averaged SCRS and polysaccharide content measured by 
conventional phenol sulfuric acid colorimetry method 
among 10 samples collected at 0, 24, 72, 96  h in Si+ 
group, collected at 12, 48 and 96 h in Si− group, and col-
lected at 12, 48 and 96 h in S−+ group. While the PLSR 
model for predicting the content of polysaccharide was 
validated by the rest 6 samples collected at 12, 48 h in Si+ 
group, collected at 24, 72 h in Si− group, and collected 
at 24, 72 h in S−+ group. Moreover, the polysaccharide 
content of individual microalgal cell was predicted by the 
SCRS based on the PLSR model. PLSR were performed 
with R (Version 4.0). Graphics were produced via the 
ggplot2 package.

Statistical analysis
Three independent cultures of per group at each time-
point were used in conventional approaches, the data 
were carried out in triplicates (n = 3) reported as the 
mean ± deviation. Meanwhile, three independent cul-
tures of per group at each timepoint were also used at 
the single cell level via SCRS, and 30 cells were sampled 
for each biological replication (90 cells per group at each 
timepoint were used to analysis). One-way ANOVAs and 
Tukey’s test was performed to evaluate the effect of sili-
con on polysaccharide, pigment, total lipid and protein of 
C. cryptica. The values were considered to be significant 
when p < 0.05 and extremely significant when p < 0.01. 
SPSS25.0 software was used for statistical analysis, and 
all figures were plotted by Origin9.0 software.

Results
Four intracellular target products change of C. cryptica 
was determined by traditional methods
To test whether the contents of polysaccharide, total 
lipid, protein and Chl-a can be simultaneously quantified 
at both the population and single-cell level via SCRS, the 
stress response process of C. cryptica under Si−, Si+ and 
Si−+ conditions was employed as a model (Fig. 1A). The 
contents of polysaccharide, total lipid, protein and Chl-a 

were measured via separately conventional approaches 
which followed the aforementioned “one procedure per 
target compound” paradigm (“Materials and methods”). 
Figure  1B shows that the content of polysaccharides in 
Si+ and Si− groups increased with the prolong of time. 
However, the content of polysaccharide in silicon starva-
tion group increased faster than that in Si+ group. For 
example, the content of polysaccharides in Si+ group at 
0, 12, 24, 48, 72 and 96 h was 71 ± 2, 73 ± 4, 87 ± 3, 91 ± 2, 
102 ± 6 and 115 ± 4  μg/mg DW (Dry Weight), respec-
tively. In addition, the content of polysaccharides in Si− 
group at the same timepoint was 71 ± 2, 69 ± 4, 92 ± 4, 
107 ± 2, 140 ± 5 and 158 ± 4 μg/mg DW. Meanwhile, the 
polysaccharide content of Si−+ group decreased first 
and then increased.

Similar to polysaccharide, the content of total lipid in 
Si− group increased gradually with the time, and their 
values were higher than those in Si+ group within 96 h 
(Fig.  1C). For example, the total lipid content in Si− 
group at 0, 12, 24, 48, 72 and 96 h was 147 ± 9, 169 ± 13, 
198 ± 10, 230 ± 13, 265 ± 13 and 281 ± 10  μg/mg DW, 
respectively, while the total lipid content in Si+ group 
at the same timepoint was 146 ± 9, 165 ± 1, 174 ± 4, 
195 ± 9, 199 ± 14 and 225 ± 6  μg/mg DW, respectively. 
Similar to the change trend of polysaccharide content 
in S−+ group, the total lipid content of Si−+ group 
also decreased first and then increased, which the value 
decreased to the lowest value at 48  h (230 ± 8  μg/mg 
DW) and then began to increase.

Differ to the change trend of polysaccharide and total 
lipid in Si− and Si+ groups, the protein content in Si− 
group increased first and then decreased with time, for 
example, the protein content in Si− group decreased 
from 195 ± 10 μg/mg DW at 24 h to 153 ± 9 μg/mg DW 
at 96  h (Fig.  1D). The protein content of Si−+ group 
increased continuously within 96  h, which increased 
slowly in the first 48 h. However, the change trend of pro-
tein content in Si+ group was similar to that of polysac-
charide and total lipid in Si+ group.

Chl-a content of Si+ group remained basically stable 
during the treatment cycle, which value ranged from 
9.5 ± 0.4 to 10.2 ± 0.3 μg/mg DW (Fig. 1E). The content of 
Chl-a in Si−+ group showed similar to that in Si+ group. 
In contrast, the content of Chl-a in Si− group decreased 
continuously from 24 to 96 h, which the value decreased 
from 9.7 ± 0.2 μg/mg DW at 24 h to 7.0 ± 0.2 μg/mg DW 
at 96 h.

Simultaneous quantification of four intracellular target 
products via SCRS
Cells of the above corresponding stress response process 
of C. cryptica under Si−, Si+ and Si−+ conditions were 
also collected at 0, 12, 24, 48, 72 and 96  h (i.e., 30 cells 
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per biological replicate; three biological replicate cultures 
per timepoint; Fig.  2). The average Raman spectrum of 
C. cryptica changed regularly along with the timepoint 

and condition (Fig. 2). Among these, based on the Pear-
son correlation coefficient (r) between intensity of the 
Raman bands derived from SCRS and the corresponding 

Fig. 1  Cell density (A), polysaccharide (B), total lipid (C), protein (D) and Chl-a content (E) of C. cryptica in Si+ (silicon-replete F/2 medium, control 
group), Si− (silicon starvation F/2 medium) and Si−+ (silicon starvation F/2 medium followed by silicon-replete F/2 medium) media. Columns with 
different letters indicate statistically significant differences between treatments (p < 0.05, Tukey’s test)
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quantitative trait, thirteen Raman bands were proposed 
as the main marker bands for the determination of these 
four intracellular target products (Table  1). Their inten-
sity, when averaged at the set timepoint, exhibits positive 
correlation with the four target contents measured via 
conventional approaches.

As the accuracy of a single Raman characteristic peak 
to label one phenotype is not high enough, we tried 
another strategy to predict cell phenotypes based on full 
spectrum modeling (i.e., PLSR model). For each time-
point, two of the triplicate cultures were used as training 

data set and the remaining one as test data set for model 
validation. For example, for polysaccharide content, the 
PLSR model was established using the averaged SCRS of 
30 cells in one biological replicate and the correspond-
ing polysaccharide content was also measured by the 
phenol sulfuric acid colorimetry method [29]. The r val-
ues of train data set, test data set and all data set were 1 
(Fig. 3A1), 0.928 (Fig. 3A2) and 0.949 (Fig. 3A3), respec-
tively. Similarly, the full spectrum-based PLSR model 
for total lipid, protein and Chl-a in single cell was also 
built and validated, achieving overall r of 0.904 (Fig. 3B), 
0.801 (Fig. 3C) and 0.917 (Fig. 3D) (p < 0.01), respectively, 
indicating PLSR model could predict the content of four 
products with high accuracy. When averaged from that 
of the 90 cells as predicted by SCRS, each of the polysac-
charide, total lipid, protein and Chl-a content, which was 
derived via the full spectrum, was highly consistent with 
those determined by conventional methods (Table  2), 
which verified again that SCRS was suitable for the deter-
mination of intracellular components of C. cryptica.

However, when the content of polysaccharide, total 
lipid, protein and Chl-a in 90 C. cryptica cells were simul-
taneously counted by SCRS to displayed the dynamic 
changes of four biochemical components in each cell, 
it could be seen from Fig. 4 that the content of four tar-
get cell components in different cells varies greatly. For 
example, in Si+ group, the content of polysaccharide at 
72 h in one cell was 33 μg/mg DW, while the content in 
another cell was 198 μg/mg DW (Fig. 4A). Meanwhile, it 
could also be seen from Table 2 that the standard devia-
tions of the data measured by the conventional method 
were far less than that measured via SCRS, which also 
revealed the difference in the component contents among 

Fig. 2  Temporal alteration of the averaged SCRS of C. cryptica with 
Si+, Si− and Si−+ treatments along the timepoint. Mean (solid 
lines) and standard error (shaded regions) from 90 individual cells are 
depicted

Table 1  Main 13 reference Raman bands that are correlated with polysaccharide, total lipid, protein and Chl-a contents in C. cryptica 
during the process of three silicon treatment

Pearson Correlation coefficient (r) between averaged intensity of the Raman bands derived from SCRS and the corresponding quantitative trait shown

Component Raman brands (cm−1) r Assignment

Polysaccharide 1082 0.750 Carbohydrate C–O–H bending

1262 0.226 Alkyl=C–H cis stretches

2936 0.332 C–H2, C–H3 asymmetric and symmetric stretches

Lipid 1061 0.416 Alkyl C–C gauche stretches

1303 0.406 Alkyl C–H2 twist

1445 0.538 Alkyl C–H2 bend

1658 0.568 Allyl C=C stretches

2856 0.600 C–H2, C–H3 asymmetric and symmetric stretches

2936 0.392 C–H2, C–H3 asymmetric and symmetric stretches

Protein 963 0.287 CH2, out-of-plane bending

1005 0.442 Phenylalanine ring breath

1610 0.362 C=O stretching of protein amide I; –NH2

Chlorophyl a 1005 0.685 Deformation of the methyl groups
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Fig. 3  Quantification of polysaccharide (A), total lipid (B), protein (C) and pigment (D) contents in C. cryptica determined by SCRS method using 
PLSR models. The contents predicted by SCRS (Y axis) was plotted versus the corresponding value measured with conventional methods at the 
population level (X axis). 1 represents Train data set, 2 represents Test data set and 3 represents All data set (training data set plus test data set)
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Fig. 4  Contents of polysaccharide (A), total lipid (B), protein (C) and Chl-a (D) in individual C. cryptica cell acquired by SCRS. SCRS sampled from 90 
cells and each data point represents one cell. The average contents of cells predicted by SCRS (yellow line) and measured by conventional methods 
are also shown (blue line)
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cells. These results indicated that conventional methods 
require a large number of cells to reach the measured 
baseline while covering the differences between cells. 
Obviously, this was the advantage of SCRS method over 
conventional methods, which could capture the infor-
mation of a single cell to screen specific phenotype cell. 

Moreover, simultaneous visualization of the polysac-
charide, total lipid, protein and Chl-a content in each of 
the 540 C. cryptica cells sampled at 6 timepoints under 
three silicon media revealed the temporal landscape for 
microalgal energy storage compounds in the population 
at single-cell resolution (Fig. 5).

Fig. 5  Temporal landscape of three biochemical components contents of individual C. cryptica cells in Si+ (A), Si− (B) and Si−+ (C) media. 1 
represents polysaccharide–protein–total lipid, 2 represents Chl-a–polysaccharide–protein, 3 represents Chl-a–polysaccharide–total lipid and 4 
represents Chl-a–protein–total lipid. Each data point represents one cell, with color indicating the timepoint
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In addition, as SCRS can provide a sensitive biochemi-
cal ‘fingerprint’ of each cell, Principal component analysis 
(PCA) was used to visually demonstrate the cell-to-cell 
variability (Fig.  6). Clear differentiations were shown 
according to their growth time by the PCA scores plots, 
especially for that under Si− (Fig.  6B) and Si−+ treat-
ment (Fig.  6C). In addition, cells under different silicon 
treatments can also be classified into different projective 
zones (Fig.  6D). These results indicated that the SCRS 
could be used to investigate the trend of cells in different 
states and different induction conditions [34].

Instant interconversions among polysaccharide, total 
lipids, protein and Chl‑a revealed by IRCA​
Interconversions among cellular components are the 
fundamental property for functioning a proper cellular 
system. To reveal these interconversions, time- or condi-
tion-series of samples is typically required. However, as 
the phenotypes of single-cell can be modeled, the meas-
urement of their degree of among-cell heterogeneity 
in a given population come true [21]. For example, the 
phenotypic frequency distribution of the four cellular 

components indicated a high degree of heterogene-
ity in four intracellular components, which was preva-
lent in the C. cryptica population regardless of its state 
(Fig.  7). Heterogeneity within the total population indi-
cates that caution should be taken in interpreting meas-
urements of variables associated with cellular responses 
cellular responses [35]. Moreover, if we treat one cell as 
an independent sample, in a given population (certain 
condition and certain timepoint), the instant intercon-
version among polysaccharide, total lipids, protein and 
Chl-a could be reconstructed using the pairwise correla-
tion among the cells of these four cellular phenotypes via 
IRCA [36].

At the population level, significant correlation was 
observed in most of six phenotype pairs among the 
18 populations under each silicon culture (Fig.  8A–F). 
For polysaccharide–total lipids, the correlation coef-
ficient value at Si+, Si− and Si−+ group was 0.922, 
0.954 and 0.561, respectively (Fig. 8A), which illustrated 
polysaccharides and total lipids were always synthesized 
simultaneously in these three silicon culture environ-
ments, and the degree of induction was Si− group > Si+ 

Fig. 6  Cells of C. cryptica under Si+ (A), Si− (B) and Si−+ (C) treatments along the timepoint were displayed with Principal component analysis 
(PCA) based on their SCRS. D All cells under Si+, Si− and Si−+ treatments. Each data point represents one cell, with color indicating the timepoint 
or treatment
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Fig. 7  Phenotypic heterogeneity within the C. cryptica populations. Distribution of single-cell polysaccharide (A), total lipid (B), protein (C) and 
Chl-a (D) contents in the population at each of the 6 timepoints under Si+, Si− and Si−+ treatments. X axis is polysaccharide, total lipid, protein or 
Chl-a content in a cell (μg/mg DW) and Y axis is the frequency (%) of such cells



Page 13 of 19Wang et al. Biotechnology for Biofuels and Bioproducts           (2023) 16:63 	

group > Si−+ group. For Chl-a–polysaccharide, the cor-
relation coefficient value at Si+, Si− and Si−+ group 
was 0.592, − 0.956 and − 0.742, respectively (Fig.  8B), 
which indicated that Chl-a and polysaccharide synthe-
sized simultaneously only at Si+ group, but Chl-a con-
verted to polysaccharides at both Si− and Si−+ groups. 
Protein–polysaccharide, Chl-a–total lipids, protein–total 
lipids showed a similar result to the Chl-a–polysac-
charide (Fig.  8C–E), these results indicated protein and 
polysaccharide, Chl-a and total lipids or protein and total 
lipids synthesized simultaneously at Si+ group while the 
conversions of protein to polysaccharide, Chl-a to total 
lipids or protein to total lipids at Si− and Si−+ groups. 
Chl-a–protein showed a similar result to that of polysac-
charide–total lipids, that was, Chl-a and protein were 
also synthesized simultaneously in three silicon culture 
environments (Fig. 8F).

At the single-cell level, correlations for the 540 cells 
collectively reached a consistent conclusion to the popu-
lation level (Fig. 8G–L). The correlation coefficient values 
of polysaccharide–total lipids and Chl-a–protein at Si+, 
Si− and Si−+ groups were strong positive correlation, 
which indicated polysaccharides and total lipids or Chl-a 
and protein were synthesized simultaneously in three sili-
con culture conditions, which were consistent with that 
at the population level. However, the correlation coeffi-
cient values of protein–polysaccharide, Chl-a–total lipids 
and protein–total lipids were also negative at Si− group 
and Si−+ group, that were also consistent with that at 
the population level. For example, the correlation coef-
ficient value of Chl-a–polysaccharide and protein–poly-
saccharide in Si+ groups at single-cell level was − 0.783 
(Fig.  8H) and − 0.052 (Fig.  8I), respectively, which were 
different from the positive correlation of 0.592 (Fig. 8B) 
or 0.94 (Fig.  8C) in Si+ group at the population level. 
These results indicated, at the single-cell level, the con-
versions of protein to polysaccharide, Chl-a to total lipids 
or protein to total lipids at Si− and Si−+ groups as well, 
thus, the results indicated the inter-phenotype corre-
lation from all cells could recapitulate that among the 

populations [35]. The explanation of these observations 
might be that the correlations among cellular compo-
nent are highly dependent on the sampling size. At the 
population level, Chl-a and polysaccharide or protein and 
polysaccharide in Si+ group was synthesized simulta-
neously, however, what happened at the single cell level 
was the conversion of Chl-a to polysaccharides or protein 
to polysaccharides in Si+ group, the result at single cell 
level could better reveal the instant interconversion pro-
cess of intracellular substance than that at the population 
level, which indicated that single cell screening was very 
necessary.

Moreover, at three silicon treatment conditions, the 
correlation between inter-phenotype could be also 
detected at the set timepoint (Fig.  8M–R). For polysac-
charide–total lipids, the positive correlation was strong 
at each of the timepoints in three silicon treatment 
cycles, for example, in Si− group, the correlation value 
of polysaccharide–total lipids at 12, 24, 48, 72 and 96 h 
was 0.864, 0.944, 0.938, 0.928 and 0.916, respectively 
(Fig. 8M, S), the correlation value of polysaccharide–total 
lipids at Si+ group and Si−+ group showed a similar 
trend to that in Si− group, which showed that the two 
components were all synthesized simultaneously at each 
timepoint in three silicon conditions. For Chl-a–poly-
saccharide, the situation was opposite to that of polysac-
charide–total lipids, there was a negative correlation at 
each timepoint, especially in the Si− situation (Fig.  8N, 
T), which showed that the Chl-a–polysaccharide conver-
sion took place at the whole phase of silicon treatments. 
For protein–polysaccharide, the result in Si+ group was 
different to that in Si− and Si−+ situations. The correla-
tion value of protein–polysaccharide was 0.94 (significant 
positive correlation, Fig. 8C) at the population level, while 
a negative correlation at each timepoint were observed, 
which indicated that more detailed and instant cellular 
metabolism information can be revealed at the single 
cell level by IRCA. Meanwhile, a negative correlation of 
protein–polysaccharide in Si− situation were observed at 
each of the timepoints after 24 h and the temporal trend 

(See figure on next page.)
Fig. 8  Interconversions among polysaccharide, total lipids, protein and Chl-a revealed by Intra-Ramanome Correlation Analysis of one isogenic 
cellular population. Pairwise correlation of polysaccharide, total lipid, protein and chlorophyll-a contents of C. cryptica at the population level 
and the single-cell level under Si+, Si− and Si−+ situations. Correlations of polysaccharide–total lipids (A), chlorophyll-a–polysaccharide (B), 
protein–polysaccharide (C), chlorophyll-a–total lipids (D), protein–total lipids (E) and chlorophyll-a–protein (F) contents at the population level were 
shown; Correlations of polysaccharide–total lipids (G), chlorophyll-a–polysaccharide (H), protein–polysaccharide (I), chlorophyll-a–total lipids (J), 
protein–total lipids (K) and chlorophyll-a–protein (L) contents at the single-cell level (H) were shown. Each dot in panels A–F represent one sample. 
Each dot in panels G–L represent one individual cell. M to X Correlation of any two biochemical components contents modeled by multiple pairs 
of singular Raman peaks among individual cells at each timepoint. Phenotypic correlation between total lipids (x) and polysaccharide (y) contents 
(M and S), between polysaccharide (x) and chlorophyll-a (y) contents (N and T), between polysaccharide (x) and protein (y) contents (O and U), 
between total lipids (x) and chlorophyll-a (y) contents (P and V), between total lipids (x) and protein (y) contents (Q and W), and between protein 
(x) and chlorophyll-a (y) contents (R and X) are also shown. *Indicates statistical significance, p < 0.05 and **Indicate statistical significance, p < 0.01. In 
the curves of temporal dynamics, ρ is the Pearson correlation coefficients of two phenotypes among single cells. There is strong correlation (ρ ≥ 0.6 
or ρ ≤ − 0.6)
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Fig. 8  (See legend on previous page.)
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were strengthening (Fig. 8U). It is possible that the pro-
tein–polysaccharide conversion mostly took place at the 
late phase in Si− group. Moreover, the correlation was 
also different in three different silicon treatment situa-
tions. For example, the correlation value of protein–poly-
saccharide in Si+ medium at 96 h was − 0.194 that was 
no significant correlation, while the correlation value of 
protein- polysaccharide in Si− and Si−+ group at 96  h 
was − 0.727 and − 0.53, respectively (Fig.  8O), which 
indicated that the effect of silicon treatment on pro-
tein–polysaccharide conversion was Si− group > Si−+ 
group > Si+ group, that was, silicon starvation could 
promote the conversion of protein to polysaccharide. 
For Chl-a–total lipids, which was similar to Chl-a–poly-
saccharide, with strong negative correlation at each of 
the timepoints in three silicon treatments (Fig.  8Q, W), 
which indicated the conversion of Chl-a to total lipids 
also took place at the whole phase of silicon treatments. 
Protein–total lipids showed a similar trend to protein–
polysaccharide, there was a strong positive correlation 
(0.876) of protein–total lipids at population level in Si+ 
situation (Fig.  8E), while a negative correlation at each 
timepoint was observed (Fig. 8Q). Therefore, the effect of 
silicon treatment on protein–total lipids conversion was 
also Si− group > Si−+ group > Si+ group. The possible 
reason for this phenomenon was the energy form origi-
nally used for protein synthesis has been transformed 

into the energy for polysaccharide and total lipid syn-
thesis. For Chl-a–protein, there was a strong positive 
correlation at both population level and single cell level. 
This reason was like polysaccharides–total lipids, two 
components have the same change trend under silicon 
treatment stress. Altogether, a choreography of interplay 
among these major cellular components were displayed 
by summarizing the findings of IRCA (Fig.  9), which 
landscape-likely showed both the contents and links of 
mainly cellular components in corresponding to the cel-
lular state and silicon treatment.

Discussion
The diatom is an important part of the primary produc-
tivity of marine ecosystem because of its wide variety 
and large quantity [37]. Previous study has been reported 
that the contribution of diatom to marine primary pro-
ductivity at global scale is estimated to be 30–40% [38], 
which played an irreplaceable role in maintaining carbon 
balance. Studies also have shown that silicon is a macro-
nutrient required by diatoms to synthesize their silicified 
cell walls during their growth, as well as to understand 
the properties of key enzymes involved in flux of car-
bon into lipid also requires the participation of silicon 
[39–42] Obviously, the silicon plays a significant role in 
the growth and metabolism of the diatom. Thus, the bio-
chemical components of C. cryptica under three silicon 

Fig. 9  Choreography of interplay among major cellular components discovered by IRCA. The dot size represents the relatively product content, 
and the dot color represents different products (Yellow dots represent polysaccharides; red dots represent lipids; purple dots represent protein and 
green dots represent Chl-a). The blue arrow indicates that there is a negative correlation between products and the width of the arrow indicates the 
strength of the negative correlation. The arrow points to the potential flow direction of product conversion
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treatment conditions were first measured by conven-
tional method. The results showed that the contents of 
polysaccharide and total lipids in Si− group increased 
rapidly, which were significantly higher than that in 
Si+ group, and the contents of protein and pigment in 
Si− group decreased after 24 h. By calculating the num-
ber of cells, it was found that the number of cells in the 
Si+ increased significantly, while the number of cells in 
Si− group stopped increasing after about 48 h (Fig. 1A), 
indicating the stagnation of cell growth and division. The 
growth condition of C. cryptica under silicon starvation 
obtained in this study was similar to that of Thalassiosira 
pseudonana in previous study described [40]. It could be 
seen from these results that silicon starvation could affect 
the division and growth of microalgae. Reasons for the 
changes might be the vigorous metabolism, rapid growth 
and strong fecundity of this diatom under the condition 
of sufficient nutrients, but the cells would not accumulate 
too much high energy storage substances, such as poly-
saccharides and lipids. When this diatom was cultured 
in the condition of silicon deficiency, the division ability 
was blocked. As this microalgal cells cannot divide nor-
mally, there is no good condition to continue to produce 
protein and pigment, leading to the decrease of their con-
tent. Meanwhile, these cells continue to fix carbon, so 
they have to do something with it. Usually, this goes to 
lipid and polysaccharide hyperaccumulation, as it is the 
least energy-expensive way to deal with the excess car-
bon coming in. Study also showed silicon deficiency may 
induce an increase in the rate of acetyl-CoA carboxy-
lase, which was an important enzyme in the process of 
lipid synthesis [42]. Meanwhile, the sequencing results 
of nuclear genome and methylome of C. cryptica showed 
that the highly methylated repetitive sequences ensured 
the nuclear genome would not change significantly in 
the absence of silicon, but the annotation of pivotal gly-
colytic, lipid metabolism, and carbohydrate degradation 
processes revealed an expanded enzyme repertoire in C. 
cryptica in the case of silicon deficiency, which would 
allow for an increased metabolic capacity toward triacylg-
lycerol production [43]. Therefore, the change of enzyme 
activity may be the main reason for the increase of total 
lipid content in C. cryptica exposed to silicon starvation 
stress. In addition, when C. cryptica were transferred 
to silicon medium after silicon starvation treatment, 
the content of total lipid and polysaccharide decreased 
gradually, which reached the minimum at 48 h and 72 h, 
respectively, and then increased, which corresponded to 
the growth of the microalgal cells. After silicon starva-
tion treatment, the growth of C. cryptica stagnated, and 
a large number of high energy storage substances such as 
lipids and polysaccharides were accumulated in the cells. 
The growth of C. cryptica gradually recovered when they 

were transferred to the silicon medium again, and these 
energy storage substances were more used for cell divi-
sion and growth, which would lead to the decrease of 
lipids and polysaccharides. Moreover, the number of cells 
increased greatly when the cells returned to the best state 
of growth, meanwhile, with the increased of cell den-
sity, intracellular energy storage substances also began 
to accumulate. Through this study, it was found that sili-
con starvation could promote the accumulation of lipids 
and polysaccharides in C. cryptica. This result in our 
study was similar to that in previous article, in which the 
researchers used flow cytometry imaging technology to 
reveal that silicon starvation would cause hyperaccumu-
lation of triacylglycerol (TAG) in cell, and the majority 
of the cell volume was comprised of lipid droplets [35]. 
Therefore, silicon deprivation could be used to improve 
the production of valuable products, such as lipids in C. 
cryptica. Obviously, it is of great significance to screen 
microalgae strain with specific phenotypes, such as high 
lipid.

However, in microalgal cultures, most analyses of cel-
lular processes are done on the entire population of cells 
and information gained from this is representative of the 
mean; however, it obscures the richness of cell-to-cell 
variation [35]. Meanwhile, the conventional methods 
also followed by tedious and time-consuming analyti-
cal procedures [21, 27, 29, 31, 32]. Thus, it is necessary 
to establish a simple and rapid method for determination 
of multicellular components in C. cryptica. SCRS is the 
superposition of molecular vibration modes of all com-
ponents in the cell, which reflects the multi-dimensional 
information of the composition and content of chemi-
cals in a specific cell [18, 19, 44]. It could characterize 
the composition and relative content of all metabolites 
in individual cell under specific condition [17, 45, 46]. 
Thus, the determination of multi-specific phenotypes of 
microalgae based on SCRS was practicable. Besides, the 
detection of SCRS was simple, noninvasive and rapid [19, 
21], so the application of SCRS would save cumbersome 
detection procedures, greatly save human and mate-
rial resources, and improve the screening efficiency of 
strains, which was in line with the rapid development of 
algae industry.

In recent years, SCRS has been used to determine the 
biochemical components of microalgae including Cyclo-
tella meneghiniana [20], Thalassiosira pseudonana cell 
[16], and Chlamydomonas reinhardtii [21] etc. These 
results showed that SCRS can be used to detect the 
biochemical components of microalgae. However, this 
method has not been reported to analyze the biochemi-
cal components of C. cryptica. Therefore, SCRS was first 
attempt to determine these four biochemical compo-
nents in this diatom. The results showed that the average 
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change trend of polysaccharide, total lipid, protein and 
Chl-a contents of 90 cells under three silicon treatment 
conditions was consistent with the results of that meas-
ured by conventional methods, and the correlation coeffi-
cients of polysaccharide, total lipid, protein and pigment 
determined by SCRS and conventional method were 
about more than 0.9, indicating that SCRS was also suit-
able for the analysis of biochemical components of C. 
cryptica.

Moreover, in addition to the accuracy of measurement 
results, SCRS could allow detailed interrogation of indi-
vidual cell and reveals cell-to-cell variation [18]. Through 
the analysis of four cell components by SCRS, we could 
also clearly and intuitively see that there were signifi-
cant differences in the response of microalgae cells to the 
same environment. For example, the intracellular compo-
nents of 90 cells at Si− group were significantly different, 
and even the maximum value in one cell was more than 
10 times higher than the minimum value in another cell 
under the same silicon treatment conditions. Meanwhile, 
on the basis of Raman spectrum, IRCA could reconstruct 
a network of potential metabolite conversions among the 
four biochemical components using the pairwise corre-
lation among the cells of the thousands of Raman peaks 
in SCRS [21]. The dynamic process of energy transforma-
tion between different cells could be seen more clearly, 
that was, the metabolite transformation reaction of cells 
in the instant state, while the transformation between 
substances observed at the population level was based on 
time- or condition-series of samples and not an instant 
cell response. Thus, SCRS could quickly reveal the trans-
formation trend between substances through the asso-
ciation between multiple cells in one sample, so that we 
could more carefully understand the instant response 
state of cells under environmental stress, which was far 
more efficient than the population level. Through the 
result of IRCA, we could see that the content of polysac-
charide and total lipid of C. cryptica at Si− treatment 
group increased followed by the decreased of protein 
and pigment, and the potential metabolic link intuitively 
showed the direction of these products metabolism with 
time at Si− condition (Fig. 9).

Briefly, the conventional methods revealed the aver-
age state at the population level, which were based on a 
large number of cell cultures to reach the baseline of the 
measurement, and SCRS could allow detailed interroga-
tion of individual cell and reveals cell-to-cell variation. 
Consequently, SCRS was more suitable and rapidly for 
screening cells with specific phenotypes than traditional 
methods. A cell or a kind of microalgal cells with specific 
characteristic such as high polysaccharide or high lipid 
could be screen out through SCRS analysis, and then 
single-cell sequencing analysis, including transcriptome 

[47], proteome [48], metabolome [49], etc., which was 
more targeted for the analysis of cell molecular mecha-
nism and could help us obtain more relevant accurate 
results.

Conclusion
In this study, SCRS was first used to analyze the changes 
of biochemical components of C. cryptica cells under 
three silicon treatment conditions. First, the methods 
based on SCRS to simultaneously quantify the polysac-
charide, total lipid, protein and pigment in single C. 
cryptica cell are established. In addition, the instant inter-
conversion process of intracellular four components were 
constructed through IRCA, which is based on data set of 
one isogenic population and more precision and timeli-
ness. Finally, total results indicated that silicon starva-
tion could promote the carbon in C. cryptica cells to flow 
from protein and pigment metabolism to polysaccharide 
and lipid metabolism.
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