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Abstract 

Rapid and effective consumption of d-xylose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic 
bioethanol production. Hence, heterologous d-xylose metabolic pathways have been introduced into S. cerevisiae. 
An effective solution is based on a xylose isomerase in combination with the overexpression of the xylulose kinase 
(Xks1) and all genes of the non-oxidative branch of the pentose phosphate pathway. Although this strain is capable of 
consuming d-xylose, growth inhibition occurs at higher d-xylose concentrations, even abolishing growth completely 
at 8% d-xylose. The decreased growth rates are accompanied by significantly decreased ATP levels. A key ATP-utilizing 
step in d-xylose metabolism is the phosphorylation of d-xylulose by Xks1. Replacement of the constitutive promoter 
of XKS1 by the galactose tunable promoter Pgal10 allowed the controlled expression of this gene over a broad range. 
By decreasing the expression levels of XKS1, growth at high d-xylose concentrations could be restored concomitantly 
with increased ATP levels and high rates of xylose metabolism. These data show that in fermentations with high 
d-xylose concentrations, too high levels of Xks1 cause a major drain on the cellular ATP levels thereby reducing the 
growth rate, ultimately causing substrate accelerated death. Hence, expression levels of XKS1 in S. cerevisiae needs to 
be tailored for the specific growth conditions and robust d-xylose metabolism.
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Introduction
In a world where energy from fossil fuels is less desired, 
the production of liquid fuels from renewable feed-
stocks has been stimulated and researched intensively. 
Bioethanol, currently mainly used as an additive to fuel, 
is produced from agricultural feedstocks like sugar cane 
and corn which are readily fermentable. This so-called 
first generation biofuel process is unfavorable because 
the production of the required feedstock’s competes, 
using large amounts of arable land, with the food sup-
ply [1]. The second generation biofuel process uses a 
more sustainable source of feedstock since the required 

lignocellulosic biomass is obtained from agricultural 
waste material [2]. However, a major drawback of lig-
nocellulosic feedstocks is the inability of Saccharomyces 
cerevisiae, the most commonly used yeast in the bioetha-
nol industry, to ferment pentose sugars, such as d-xylose. 
Lignocellulosic feedstock’s contains, next to hexose sug-
ars, a substantial fraction of d-xylose (up to ~ 30%, [3]) 
that is released upon conversion of lignocellulose [4]. 
To convert d-xylose into bioethanol two different path-
ways have been integrated and optimized in S. cerevisiae: 
(1) the XR-XDH pathway, a two-step redox pathway in 
which d-xylose is reduced to xylitol by xylose reductase 
(XR) and subsequently the xylitol is oxidized by xylitol 
dehydrogenase (XDH) to form d-xylulose [5–8] and (2) 
the XI pathway, in which d-xylose is directly converted 
into d-xylulose using either a bacterial or fungal xylose 
isomerase [9–13]. In the current study the fungal xylose 
isomerase of Piromyces sp. E2 is used which is overex-
pressed using the Tpi1 promotor [14] and is present in 
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nine genomic copies [15]. d-xylulose is subsequently 
phosphorylated by the xylulose kinase Xks1, which has 
been overexpressed in many engineered strains [12, 16, 
17] and which is overexpressed using the Tef1 promo-
tor in the currently used d-xylose-fermenting strain 
[15]. The resulting d-xylulose-5-phosphate enters the 
pentose phosphate pathway (PPP) and, via d-glyceralde-
hyde-3-phosphate and d-fructose-6-phosphate, d-xylose 
catabolism is connected to glycolysis. Various genetic 
modifications have improved d-xylose consumption 
e.g. via the deletion of GRE3 [18–20] and the deletion 
of PMR1 in IMX730 [21]. To further improve d-xylose 
consumption, numerous studies have overexpressed all 
involved genes in d-xylose metabolism (including the 
pentose phosphate pathway) at various levels, using (1) 
different promoters, and (2) increased genomic copy 
numbers. Xks1 which converts d-xylulose into d-xylu-
lose-5-phosphate at the expense of one ATP, is one of 
the proteins that generally is overexpressed at high lev-
els. Furthermore, rapid d-xylose consumption requires 
d-xylose transport into the cell which in S. cerevisiae 
is mediated via the large family of hexose transporters 
(HXT) of which eight are highly expressed depending on 
the carbon source (and concentration thereof ) [22–24]. 
Although d-xylose enters cells via the HXT transport-
ers, the affinity for d-glucose is in general 10–100 times 
higher as compared to d-xylose [25–27]. Remarkably, 
various studies have shown that the Vmax for d-xylose 
of many HXT transporters is comparable to [28–30], or 
is even higher (e.g. Hxt1 [30] or Gal2 [31]) than that of 
d-glucose. Due to the HXT redundancy and the high 
transport rates in S. cerevisiae, we assume that in a strain 
containing all HXT transporters the d-xylose transport-
ing capacity, in the absence of glucose [29, 31] and at 
higher d-xylose concentrations [32], is not a rate limiting 
step in d-xylose metabolism. The d-xylose metabolism 
rate could potentially also be determined by the xylose 
isomerase, however, the d-xylose-consuming strain used 
in the current study, and in most other studies, contains 
multiple copies of the xylose isomerase of Piromyces sp. 
E2 which is constitutively expressed via the strong Tpi1 
promoter [15]. Furthermore, previous studies have sug-
gested that the low metabolic activity of glycolysis [33] 
or more specifically, the lower part of glycolysis [34] are 
potential limiting factors in d-xylose metabolism.

Here we report that in a d-xylose metabolism engi-
neered yeast strain, growth inhibition occurs at high 
d-xylose concentrations. By studying the dependence of 
high-performance d-xylose metabolism on the d-xylu-
lose kinase Xks1, we show that d-xylose accelerated 
death can be prevented by a more balanced Xks1 gene 
expression.

Materials and methods
Yeast stains, media and culture conditions
The IMX730 xylose-fermenting S. cerevisiae strain 
(Additional file  1: Table  S1), used in this study, was 
provided by Prof. Jack T Pronk, Department of Bio-
technology, Delft University of Technology [15]. Aero-
bic shake flask and aerobic 96 wells micro-titer plates 
experiments were performed at 200  rpm in mineral 
medium (MM) supplemented with vitamin solu-
tion, urea (2.3  g/L), trace elements and d-xylose and/
or d-glucose [35]. The composition of MM is as fol-
lows: K2SO4, 6.6 g/L; KH2PO4, 3 g/L; and MgSO4·7H2O, 
0.5 g/L. The composition of trace elements is as follows: 
EDTA, 15  mg/L; ZnSO4·7H2O, 4.5  mg/L; CoCl2·6H2O, 
0.3  mg/L; MnCl2·2H2O, 0.84  mg/L; CuSO4·5H2O, 
0.3 mg/L; CaCl2·2H2O, 4.5 mg/L; FeSO4·7H2O, 3.0 mg/L; 
Na2MoO4·2H2O, 0.4  mg/L; H3BO3, 1.0  mg/L; and KI, 
0.1  mg/L. The composition of vitamin solution is as 
follows: biotin (C10H16N2O3S), 0.05  mg/L; calcium 
pantothenate (C18H32CaN2O10), 1.0  mg/L; nicotinic 
acid (C6H5NO2), 1.0  mg/L; myo-inositol (C6H12O6), 
25.0  mg/L; thiamine-HCl (C12H18Cl2N4OS.xH2O), 
1.0  mg/L; pyridoxol-HCl (C8H12ClNO3), 1.0  mg; and 
para-aminobenzoic acid (C7H7NO2), 0.2  mg/L. No sili-
cone antifoam was used in any experiments and when 
applicable 20  mg/L uracil and 20  mg/L l-histidine was 
added. In all growth and ATP experiments a starting 
OD600 of 0.1 was used which was measured by optical 
density (OD) at 600 nm using an UV–visible spectropho-
tometer (Novaspec Plus, Amersham Biosciences).

Strain construction
Strain IMX730 was used for further engineering to allow 
the controlled expression of the XKS1 gene. To use his-
tidine as autotrophic marker, the only available auto-
trophic marker, uracil, was used to delete the Sphis5 
gene, using the Cas9 system. pMel10 [36], carrying the 
uracil autotrophic marker, was linearized by PCR using 
Phusion® High-Fidelity PCR Master Mix in HF buffer 
(Thermo fisher scientific) and the Sphis5 specific tar-
get (Additional file 1: Table S2) was integrated using the 
Gibson Assembly® Master Mix (New England Biolabs) 
which yielded Pmel10-His5 (Additional file 1: Table S1). 
After transformation [37] to the IMX730 strain using 
the pMel10-His5 plasmid and the his5 repair fragment 
(Additional file 1: Table S2), colonies, obtained on plates 
without uracil but with histidine, were selected using 
colony PCR with Phire® Green Hot Start II PCR Mas-
ter Mix (Thermo fisher scientific) and the primers listed 
in Additional file  1: Table  S2. This yielded IMX730△H 
(Additional file 1: Table S1) which was confirmed by the 
absence of growth in MM without histidine. In the same 
manner, using Cas9/pMel16, the promoter of the XKS1 
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gene was replaced by the galactose inducible Gal10 pro-
motor (451  bp) however the repair fragment, contain-
ing pGAL10, was amplified from genomic DNA from 
the original IMX730 strain. The targets and primers, to 
amplify the new fusion of the Gal10 promotor and the 
XKS1 gene, are listed in Additional file 1: Table S2.

ATP analysis
Intracellular ATP levels were analyzed using the BacTi-
ter-Glo™ Microbial Cell Viability Assay (Promega) which 
allows for fast analysis without the isolation of intracel-
lular metabolites. As described in the instruction from 
Promega, the BacTiter-Glo™ reagent lyses yeast cells to 
release the intracellular ATP. Subsequently, the luciferin 
in the BacTiter-Glo™ reagent reacts with ATP and O2 
and is converted into oxyluciferin, which is detected by 
luminescence. All analyzed strains were grown for 16  h 
in MM containing 0.5% d-xylose (or otherwise as indi-
cated), harvested by centrifugation at 2250 g, 25 ℃, and 
resuspended in MM at an OD600 of 0.2 without d-xylose. 
d-xylose was added at different concentrations and the 
ATP levels were measured in time by mixing 50 μL cell 
culture with 50 μL BacTiter-Glo™ Microbial Cell Viability 
Assay-Mix.

RNA extraction, cDNA synthesis and RT‑PCR
Total RNA was isolated from the engineered S. cerevisiae 
strains by a glass-bead disruption combined with a Trizol 
(Life Technologies) extraction procedure and cDNA was 
prepared as described previously [29]. The IMX730△H 
strain and IMX730-pGAL::XKS1 were inoculated, in 
duplicate, in MM containing 0.5% d-xylose and grown 
for 16 h. Subsequently, strains were diluted in the same 
medium to an OD600 of ~ 0.2 and grown for 3 h with the 
addition of 0.00312, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 
0.5 and 1.0% galactose before RNA was isolated. The 
expression of actin (ACT1) was used to normalize the 
various samples and the expression of the GAL2 hexose 
transporter (as control for galactose inducibility) and 
XKS1 was analyzed using the primers listed in Additional 
file 1: Table S3.

Kinase activity analysis
Cells were grown, in MM complemented with 1% etha-
nol, for 16  h and subsequently diluted to an OD600 of 
0.5 in MM with 0.5% ethanol and 0, 0.025, 1% galactose. 
After 3 h of induction 5 mL of the cell culture was centri-
fuged (3 min 2250g) and cells were resuspended in 500 μL 
MM and cell free extracted (CFE) was isolated by glass-
bead disruption. Subsequently, the cell debris was centri-
fuged (2 min, 12,000g) and 2 μL of CFE was used in the 
Kinase Assay Kit (Sigma aldrich) with and without the 
addition of 6.66 mM (1 mg/mL) d-xylulose and 0.1 mM 

ATP. The CFE/D-xylulose/ATP/kinase assay mixture was 
incubated for 20 min and fluorescence was subsequently 
measured (at 590 nm) using the SynergyMx 96 wells plate 
reader (BioTek).

Results
Growth on various d‑xylose concentrations
Depending on the source, lignocellulosic biomass con-
tains considerable amounts of d-xylose [3] which should 
be converted, at high rates and yields, into ethanol to 
establish an economically feasible industrial process. 
High concentrations of d-xylose should therefore be tol-
erated which was the starting point of an aerobic growth 
experiment with the IMX730△H strain in mineral 
medium containing 0.5 up to 8% d-xylose. This histidine 
dependent strain is derived from IMX730 which contains 
an engineered d-xylose metabolic pathway based on the 
fungal xylose isomerase of Piromyces sp. E2 and the over-
expression of genes involved in the non-oxidative branch 
of the pentose phosphate pathway [15]. At d-xylose 
concentrations of 1% and below, the growth rates of 
IMX730△H were comparable but because of the lower 
d-xylose concentration, the total amount of biomass 
(OD600) decreased with the amount of d-xylose. Growth 
rates, however, deteriorated when the d-xylose concen-
tration was increased to 2 and 4% while at 8% d-xylose 
hardly any growth could be observed after 24 h (Fig. 1).

The D-xylose consuming specialist strain IMX730△H 
is a quadruple hexo(gluco/galacto)kinase deletion strain 
(△Hxk1, △Hxk2, △Glk1 and △Gal1). To exclude the 
possibility that the absence these hexo(gluco/galacto)
kinases influences the growth rates on high d-xylose 
concentrations, Hxk2 was expressed using plasmid 
pRS313-P7T7-Hxk2 [29]. Growth rates of IMX730-Hxk2 

Fig. 1  Aerobic growth of the IMX730-▲H strain in mineral medium 
containing 0.5% d-xylose (●), 1.0% d-xylose (■), 2.0% d-xylose 
(▲), 4.0% d-xylose (◆) and 8.0% d-xylose (○) complemented with 
l-histidine. Error bars were obtained from biological duplicates
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were similarly decreased at higher d-xylose concentra-
tion (Additional file  1: Figure S1A) as compared to the 
IMX730△H strain. In contrast, the growth rates of this 
strain on 8% d-glucose were not affected (Additional 
file  1: Figure S1B). Therefore, these data indicate that 
growth inhibition at high concentrations is specific for 
d-xylose and is not influenced by the presence of Hxk2.

ATP levels in d‑xylose metabolizing cells
d-glucose metabolism is, in contrast to d-xylose metab-
olism, regulated using the trehalose-6-phosphate 
negative feedback loop in which an increasing d-glucose-
6-phospate concentration overflows, via Tps1, into d-tre-
halose-6-phosphate. The latter inhibits Hxk2 [38–40], the 
main expressed hexokinase at high d-glucose concentra-
tions [41]. In d-glucose metabolism the negative feed-
back loop is essential since in the conversion of d-glucose 
to d-glucose-6-phosphate a single ATP molecule is con-
sumed. Without rate control the ATP concentration 
would rapidly decrease to lethal levels. This phenom-
enon is observed in Tps1 deletion strains that lack the 
feedback mechanism [42, 43]. Since there is no (known) 
negative feedback loop in d-xylose consumption, or more 
specifically in the conversion of d-xylulose to d-xylu-
lose-5-phosphate via Xks1, we hypothesize that, at high 
d-xylose concentrations, the ATP levels decrease signifi-
cantly causing growth inhibition. To test this hypothesis, 
the ATP levels were analyzed in the IMX730△H strain 
at various d-xylose concentrations. The IMX730△H 
strain was grown for 16  h in mineral medium contain-
ing 0.5% d-xylose and diluted to an OD600 of 0.2 where-
upon various concentrations of d-xylose (up to 8%) were 
added and ATP levels were measured in time. Compared 
to the 1% d-xylose control, ATP levels were significantly 
reduced 20 min after the addition of 4% or 8% d-xylose 
with 28.8 ± 5.2% and 50.0 ± 4.8%, respectively. Although 
after ~ 1  h, the ATP levels at high d-xylose concentra-
tion recovered to some extent they remained signifi-
cantly lower as compared to the levels in cells grown on 
low d-xylose concentrations (Fig.  2). Reduced ATP lev-
els, after the addition of high concentrations of d-xylose, 
were also observed in the IMX730-Hxk2 strain (Addi-
tional file 1: Figure S2), but did not occur when d-xylose 
was replaced by d-glucose (data not shown). The above 
observations are consistent with a substrate accelerated 
cellular death mechanism in which high concentrations 
of d-xylose cause a rapid depletion of the cellular ATP 
pool.

Controlled expression of Xks1 in d‑xylose metabolizing 
strains
A key ATP-utilizing step in d-xylose metabolism is the 
phosphorylation of d-xylulose by Xks1. The IMX730△H 

strain contains two copies of the XKS1 gene: (1) the 
native gene, on chromosome VII, which is low expressed, 
and (2) the constitutively expressed gene using the strong 
TEF1 promotor [44] which is integrated in the CAN1 
locus on chromosome V [15]. To control the conversion 
rate of d-xylulose to d-xylulose-5-phosphate via Xks1, 
the Tef1 promoter was replaced with the galactose induc-
ible Gal10 promotor [45] yielding IMX730-pGAL::XKS1. 
IMX730-pGAL::XKS1 was inoculated in mineral medium 
containing 0.5% d-xylose and grown for 16 h. Cells were 
subsequently diluted in the same medium to an OD600 
of 0.5 and incubated for 2 h with various concentrations 
of galactose ranging from 0 to 1%. Firstly, to analyze the 
galactose inducibility of the IMX730-pGAL::XKS1 strain 
in which GAL1 is replaced by CAS9, the expression of 
Gal2 upon the addition of various galactose concentra-
tion was analyzed. Although galactose inducibility is, 
in principle, only affected by deletion of Gal4 (reviewed 
by Lohr, Venkov and Zlatanova [46]), we analyzed Gal2 
expression as a marker for the galactose inducibility. The 
galactose transporter Gal2 showed a linear increasing 
expression level, up to 2400 ± 28 fold at 1% galactose as 
compared to no galactose (Additional file  1: Figure S3). 
Subsequently, the expression of XKS1 was analyzed in 
IMX730-pGAL::XKS1 and in IMX730△H as the con-
trol strain. The expression of XKS1 in the IMX730△H 
strain is, as expected, not altered upon the addition of 1% 
galactose. However, in the IMX730-pGAL::XKS1 strain 
the galactose concentration is directly proportional to 
the expression of XKS1 in which, at 1% galactose, the 
expression level is comparable with that of the overex-
pression of XKS1 in the IMX730△H strain (Fig.  3A). 
Most likely due to the low expression level of the native 

Fig. 2  Intracellular ATP analysis after adding (T0) 0.5% d-xylose (●), 
1.0% d-xylose (■), 2.0% d-xylose (▲), 4.0% d-xylose (◆) and 8.0% 
d-xylose (○) in the IMX730-△H strain. The IMX730-△H pre-culture 
was grown aerobically for 16 h in mineral medium supplemented 
with 0.5% d-xylose and l-histidine. Error bars were obtained from 
biological triplicates
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XKS1 copy, a 361 ± 9 fold change at 1% galactose was 
obtained (Fig. 3A), which is a significant range but lower 
as compared to GAL2 (Additional file 1: Figure S3). These 
data demonstrate that the expression of XKS1 in strain 
IMX730-pGAL::XKS1 is nearly proportional to the con-
centration of galactose allowing us to directly examine 
the impact of Xks1 on d-xylose metabolism.

To show that the galactose induced expression of XKS1 
results in an expected increase in Xks1 kinase activ-
ity, d-xylulose dependent ATP consumption was meas-
ured in cell free extracts (CFEs) of IMX730△H and 
IMX730-pGAL::XKS1. Herein, cells were incubated for 
3 h in MM with 0.5% ethanol and either 0, 0.025 and 1% 
galactose. Next, a cell free extract (CFE) was prepared 
that was incubated for 20  min with and without 1  mg/
mL d-xylulose and 0.1 mM ATP. Since the Kinase Assay 
Kit of Sigma Aldrich measures the consumption of ATP 
(to ADP) by all expressed kinases, the background level 
of ATP consumption in the absence of d-xylulose was 
significant. However, upon the addition of d-xylulose, 
elevated kinase activity could be detected that, as com-
pared to the expression data (Fig. 3A), correlated to the 
amount of the inducer galactose added (Fig. 3B). When 
CFEs without the addition of d-xylulose was used as 
background, the Xks1 activity in IMX730-pGAL::XKS1 
in the presence of 0.025 and 1% d-galactose increased 
with 2.59 ± 0.24 and 4.49 ± 0.15 -fold, respectively. The 
fold-increase in Xks1 activity at 1% galactose (Fig.  3B) 
was significantly lower as compared to the increase in 
expression of XKS1 (Fig.  3A) which can be attributed 
to the high kinase background levels and variation in 

measurements, which is evident from the large error 
bars. Like the expression data, the kinase activity at 
0.025% galactose amounts to about 50% of that with 1% 
galactose. The Xks1 activity of IMX730-pGAL::XKS1 in 
the presence of 1% galactose was comparable with that of 
the IMX730△H strain (Fig. 3B) and was not affected by 
the galactose concentration (data not shown).

The growth of strain IMX730-pGAL::XKS1 after 24  h 
in mineral medium containing 8% d-xylose was analyzed 
with various galactose concentrations (data not shown). 
A concentration of 0.0125% galactose yielded optimal 
growth rates. Under these conditions, the expression of 
XKS1 was only 64.7 ± 2.8 fold upregulated relative to no 
addition of galactose (Fig.  3). Therefore, 0.0125% galac-
tose was used in an aerobic growth experiment with 
IMX730△H and IMX730-pGAL::XKS1, using differ-
ent concentrations of D-xylose. IMX730△H showed 
similar growth in the 96 wells plate as compared to the 
shake flask experiment (Fig.  1): growth rates and bio-
mass accumulation were significantly decreased upon the 
addition of increasing d-xylose concentrations in which 
8% d-xylose (and in 96 wells plates also 4% d-xylose) 
yielded no visible growth (Fig.  4A). In contrast, the 
IMX730-pGAL::XKS1 strain not only showed a reduced 
lag phase as compared to the IMX730 strain but was also 
able to grow at all d-xylose concentrations tested, even 
at 8% d-xylose albeit with some growth inhibition. Thus, 
growth was significantly improved as compared to the 
IMX730△H strain. This data showed that reduced XKS1 
expression levels improve growth rates and biomass 
accumulation at high d-xylose concentrations.

Fig. 3  A Transcript fold change levels of XKS1 in IMX730-△H (grey bars) and IMX730-pGAL::XKS1 (white bars) at various galactose concentrations 
ranging from 0 to 1%. WT-0 represented IMX730-△H was incubated in the absence of galactose, while WT-1 represented IMX730-△H incubated in 
the presence of 1% galactose. Cells were incubated aerobically in MM containing 0.5% d-xylose and 2 h after the addition of the galactose RNA was 
isolated. B Xks1 activity in IMX730-pGAL::XKS1 (white bars) at 0, 0.025 and 1% galactose and in IMX730-△H (grey bar, 0% galactose). All error bars 
were obtained from biological duplicates
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The IMX730-pGAL::XKS1 was also subjected to 
intracellular ATP level measurements using the con-
ditions described above for the IMX730 strain, except 
that 0.003% (low XKS1 expression) or 1% (high XKS1 
expression) galactose was included to induce the 
expression of XKS1. In IMX730-pGAL::XKS1, at a 
low d-xylose concentration of 0.5% (Fig.  5; squares), 
the measured ATP levels were higher as compared to 
8% d-xylose although a significant increase was meas-
ured if XKS1 was expressed at a low level (with 0.003% 
galactose, open squares). Similar to the decreased ATP 
levels in the IMX730 strain (Fig.  2), the ATP levels 
after the addition of 1% galactose (in the pre-culture) 
and 8% d-xylose, were decreased with 42.1 ± 6.1% in 

IMX730-pGAL::XKS1. When the expression of XKS1 
was significantly decreased, using 0.003% galactose, the 
ATP levels were 42% higher as compared to 1% galac-
tose (Fig. 5; circles). The data show that the decreased 
expression of XKS1 is accompanied by significantly 
increased ATP levels (already after 10  min) thereby 
alleviating the substrate accelerated death observed at 
high XKS1 expression levels.

Discussion
In the development of S. cerevisiae for second genera-
tion ethanol production there is a continued need for 
high-performance d-xylose metabolizing strains. Irre-
spective of the engineering strategy used, d-xylose 
metabolizing strains depend on the expression of Xks1 
which converts d-xylulose into d-xylulose-5-phosphate 
at the expense of one ATP. Since this is the committing 
step in d-xylose metabolism, regulation of XKS1 would 
potentially be required. However, d-xylose mediated 
regulation in S. cerevisiae does not appear to exist, likely 
because this sugar is not recognized as carbon source. 
Remarkably, also in the naturally d-xylose metaboliz-
ing yeast Pichia stipitis, the expression of XKS1 (or 
XYL3) is not regulated by the d-xylose concentration 
[47]. In contrast, the conversion of d-glucose to d-glu-
cose-6-phosphate by hexokinase is highly regulated in 
S. cerevisiae through gene expression [48], protein deg-
radation [49–51] and negative feedback loops [38, 52]. 
A major regulatory role in d-glucose metabolism is ful-
filled by Hxk2, which not only catalyzes the phosphoryla-
tion of d-glucose into d-glucose-6-phosphate, but that is 
also required for the glucose-induced repression of sev-
eral genes, including HXK1 and GLK1, and for glucose-
induced expression HXK2 itself [41, 53, 54]. The rate of 

Fig. 4  Aerobic growth in 96 wells micro-titer plates of IMX730-△H (A) and IMX730-pGAL::XKS1 (B) in mineral medium containing 0.5% d-xylose 
(●), 1.0% d-xylose (■), 2.0% d-xylose (▲), 4.0% d-xylose (◆) and 8.0% d-xylose (○) complemented with 0.0125% galactose. Error bars were 
obtained from biological triplicates

Fig. 5  Intracellular ATP analysis in the IMX730-pGAL::XKS1 strain 
which was pre-incubated for 2 h with 0.003125% galactose (open 
symbols) or 1.0% galactose (closed symbols). 0.5% d-xylose (squares) 
or 8% d-xylose (circles) was added to the cultures at T0 and ATP levels 
were analyzed after 1, 10, 30 and 60 min. Error bars were obtained 
from biological duplicates
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d-glucose phosphorylation is also determined by a nega-
tive feedback loop thereby limiting the amount of ATP 
being consumed at high d-glucose availability. Accu-
mulation of d-glucose-6-phosphate results in increased 
d-trehalose-6-phosphate levels, produced by the treha-
lose pathway, which decreases through direct inhibition 
the phosphorylation of d-glucose by Hxk2. Therefore the 
deletion of Tps1, which converts d-glucose-6-phosphate 
into d-trehalose-6-phosphate, is lethal for strains grown 
on d-glucose which has been attributed to ATP deple-
tion [42, 43]. Hence, the overexpression of Xks1 com-
bined with the absence of a negative feedback loop could, 
at high d-xylulose concentrations, potentially lead to 
rapid ATP consumption and cause substrate accelerated 
death. Such a phenomenon was observed with d-glucose 
conversion by Hxk2 which, when the negative feedback 
loop was deleted (TPS1), showed substrate accelerated 
death since all d-glucose is instantaneously converted 
in to d-glucose-6-phosphate thereby draining all ATP 
[42, 55, 56]. Likewise, reduced activity of l-ribulokinase, 
converting l-ribulose into l-ribulose 5-phosphate with 
the consumption of one ATP, is also crucial for efficient 
l-arabinose utilization in a l-arabinose consuming S. cer-
evisiae strain [57].

Previous studies [58, 59] showed that in metabolically 
engineered S. cerevisiae strain, only moderate transcript 
levels of XKS1 are required for improved d-xylose con-
sumption which is in agreement with Latimer et al. [60]. 
However, increased Xks1 expression in a strain without 
PPP overexpression, causes an increase in d-xylulose 
consumption [61] which is in contrast to Rodriguez-Peña 
et al. [62] who showed that the overexpression of XKS1 
in a wild-type S. cerevisiae strain is lethal when cells are 
grown solely on d-xylulose. The difference between the 
latter two studies can be attributed to: (1) the promoter 
driving XKS1, (2) copy number of the constructs, (3) 
strain usage and (4) D-xylulose concentration used. Rich-
ard et  al. used d-xylulose in combination with a higher 
non-fermentable concentration of d-xylose, which 
interferes, in Fusarium oxysporum, with d-xylulose 
uptake [63], thereby affectively reducing the intracel-
lular d-xylulose concentration. Furthermore, Ni et  al. 
[64] and van Vleet et  al. [65] showed that, via the dele-
tion of PHO13, increased expression of TAL1 improved 
d-xylose consumption at high d-xylose concentrations. 
This is most likely due to increased flux through the PPP 
thereby increasing the ATP production downstream in 
the pathway.

Overall, all these results point at a phenomenon of 
substrate accelerated death with d-xylose as substrate, 
but the hypothesis of ATP depletion was not further 
experimentally tested nor where conditions explored 
where the phenomenon does not occur. Here, we show 

that decreased expression of XKS1, using the galactose 
tunable expression system (Fig.  3), improves growth at 
high d-xylose concentrations (Fig.  4B) in a xylose con-
suming strain. In the wild-type IMX730 strain, already 
at 2% d-xylose, growth rate reduction could be observed 
(Figs. 1, 4A) which is accompanied with decreased ATP 
levels (Fig.  2). At higher d-xylose concentrations, these 
effects are further exacerbated, resulting in near to com-
plete growth arrest at 8% d-xylose (Fig. 2). ATP levels in 
S. cerevisiae were previously studied under various con-
ditions (or inhibitors) and it was shown that even dur-
ing starvation (either carbon or nitrogen) the ATP levels 
drops only up to ~ 50% [66–70]. Moreover, Takaine et al. 
recently showed that the stable maintenance of ATP is 
essential for proteostasis and that ATP levels remain 
remarkably stable throughout different growth phases 
[71]. We show that ATP levels decrease to similar lev-
els as observed previously in starving cells, and there-
fore conclude that the fast conversion of d-xylulose to 
d-xylulose-5-phosphate by Xks1 drains the intracellular 
ATP levels in the cells. The current data underscores pre-
vious observations that a moderate expression of Xks1 
improves the d-xylose consumption [58, 60], however in 
those studies a direct link to ATP depletion was not dem-
onstrated. Wahlbom et al. showed that XKS1 was upreg-
ulated in an evolutionary engineering experiment with 
a strain expressing the XK/XRD pathway and grown on 
2% d-xylose [72]. The abovementioned data shows that 
conditions, strain and pathway determine the outcome of 
the optimal expression level of Xks1. Thus with a defined 
feedback mechanism of the regulation of the metabolic 
flux through Xks1, external interference is necessary to 
realize the optimal balance between the metabolic flux 
and the availability of ATP. Further, engineering of the 
d-xylose pathway appears not nearly as efficient as gly-
colysis and still requires fine-tuning either in terms of 
gene expression, protein degradation or the engineering 
of a d-xylose sensing system in S. cerevisiae [73, 74]. Ide-
ally, this would mean that a demand-dependent expres-
sion of XKS1 may be employed to maintain a high flux 
of d-xylose metabolism during the fermentation until all 
d-xylose is utilized. This would require a flexible XKS1 
expression system based on a genetic circuit that is com-
posed of a promoter that senses d-xylose at low concen-
trations (comparable to the promoters of Hxt6/7) and a 
d-xylose sensing system based on e.g. Rgt2/Snf3. Both 
aspects, d-xylose promotors [75, 76] and d-xylose sens-
ing [77], still requires more research and implementation 
to yield an economical feasible second generation biofuel 
process.
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