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Abstract 

Background  Soybean (Glycine max (L.) Merr) is an important source of human food, animal feed, and bio-energy. 
Although the genetic network of lipid metabolism is clear in Arabidopsis, the understanding of lipid metabolism in 
soybean is limited.

Results  In this study, 30 soybean varieties were subjected to transcriptome and metabolome analysis. In total, 98 
lipid-related metabolites were identified, including glycerophospholipid, alpha-linolenic acid, linoleic acid, glyco-
lysis, pyruvate, and the sphingolipid pathway. Of these, glycerophospholipid pathway metabolites accounted for 
the majority of total lipids. Combining the transcriptomic and metabolomic analyses, we found that 33 lipid-related 
metabolites and 83 lipid-related genes, 14 lipid-related metabolites and 17 lipid-related genes, and 12 lipid-related 
metabolites and 25 lipid-related genes were significantly correlated in FHO (five high-oil varieties) vs. FLO (five low-oil 
varieties), THO (10 high-oil varieties) vs. TLO (10 low-oil varieties), and HO (15 high-oil varieties) vs. LO (15 low-oil varie-
ties), respectively.

Conclusions  The GmGAPDH and GmGPAT genes were significantly correlated with lipid metabolism genes, and the 
result revealed the regulatory relationship between glycolysis and oil synthesis. These results improve our understand-
ing of the regulatory mechanism of soybean seed oil improvement.
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Background
Soybean (Glycine max (Linn.) Merr) is an important 
crop that produces high-quality protein and vegetable 
oil [1]. To ensure a global supply of soybean products, 
the development of high-yield and high-oil cultivars has 
become the primary breeding target in soybean breed-
ing programs [2]. Soybean is rich in various primary and 
secondary metabolites, such as flavonoids, lipids, and 
sugar metabolites [3, 4]. Lipid metabolites play an impor-
tant role in seed metabolism and are the main carrier for 
the production of soybean oil [5]. In recent years, the 
functional genes related to plant primary and secondary 
metabolism have been determined by metabolomic and 
multi-omics analyses [6, 7]. A systematic analysis of the 
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lipid species and content and an understanding of the 
associated molecular mechanisms in soybean are impor-
tant for lipid metabolism research in soybean.

Non-targeted metabolomics can be used to detect a 
wide array of metabolites and has been applied to plant, 
microbiology, and animal research [8]. In-depth research 
into metabolites can further our understanding of key 
regulatory substances and can determine cellular pro-
cesses with metabolic balance [9, 10]. Non-targeted 
metabolomics approaches have been applied to multiple 
species. Qin et  al. applied an ultra-high-performance 
liquid chromatography coupled with Linear Trap Quad-
rupole and OrbiTrap MS (UHPLC-LTQ-OrbiTrap-MS) 
metabolomics approach to analyze the characteristic 
metabolites between tea varieties, identifying 90 differ-
ential metabolites [11]. Previous research detected 90 fla-
vonoid-related metabolites in quinoa seeds, including 18 
metabolites that were important contributors to flavo-
noid biosynthesis [12].

Plant seed oils are generated in the endoplasmic reticu-
lum (ER) and are stored as triacylglycerols (TAGs) [13, 
14]. The precursors of TAGs are mainly derived from gly-
colysis, and glycolysis is catalyzed via enzymes to gener-
ate acyl-CoAs [15, 16]. The acyl-CoAs are assembled in 
glycerol diaphysis to form TAGs via the Kennedy path-
way [17]. Glycerol-3-phosphate (G3P) also acts as a pre-
cursor for TAG assembly at the ER. The G3P is gradually 
acylated by a series of enzymes to convert TAGs, involv-
ing glycerol phosphate acyltransferase (GPAT), lysophos-
phatidic acid acyltransferase (LPAAT), diacylglycerol 
acyltransferase (DGAT), and phospholipid acyltrans-
ferase (PDAT) [15–18].

In recent years, researchers have made progress in 
the study of lipid metabolism. In Arabidopsis, the over-
expression of AtDGAT​ increased the seed oil content and 
seed weight [19]. The over-expression of flax LuDGAT1, 
LuPDAT1, and LuPDAT2 in Arabidopsis significantly 
increased the oil content of seeds [20]. In Arabidop-
sis, AtPDAT1 silenced by RNA-interference (RNAi) in 
a dgat1-1 condition or AtDGAT1 silenced by RNAi in a 
pdat1-1 condition resulted in a 70–80% decrease in seed 
oil content [21]. Studies have shown that MYB89 inhibits 
the accumulation of oil content in seeds, and the MYB89 
knockdown were found to increase oil content signifi-
cantly [22]. The over-expression of BnWRI1 in Arabidop-
sis increased the oil content of the seed by approximately 
10–40% [23]. Previous research found that the mutation 
of WRKY6 led to a significant increase in seed size and 
a higher percentage of oil bodies in the mature seeds of 
Arabidopsis [24].

There is few comprehensive combined non-targeted 
metabolomics and transcriptomics analysis of the lipids 
in soybean seeds. In this study, a combined metabolome 

and transcriptome method was used to explore the regu-
latory mechanism of lipid metabolism in soybean seeds. 
Based on the combined analysis, we identified lipid-
related metabolites associated with oil synthesis and 
further revealed the regulatory relationship between gly-
colysis and oil synthesis. The results are important for 
understanding oil accumulation in soybean.

Results
Soybean oil contents and metabolic profiling analysis
To identify a comprehensive lipid regulatory network 
at the seed development stage, we used non-targeted 
metabolic profiling analysis. Thirty soybean varieties 
were included in this experiment, comprising 15 high-oil 
(HO) and 15 low-oil (LO) soybean varieties (Additional 
file  1: Table  S1, Figure S1). A total of 5970 metabolites 
were identified in at least one soybean sample, including 
organic acids, amino acids, phenylpropanoids, secondary 
metabolites, lipids, and flavonoids.

To identify the differences in metabolites between dif-
ferent varieties, three comparison groups were defined, 
namely a comparison of the five high-oil (FMHO) and 
five low-oil (FMLO) varieties (FMHO vs. FMLO); a com-
parison of 10 high-oil (TMHO) and 10 low-oil (TMLO) 
varieties (TMHO vs. TMLO); and a comparison of 15 
high-oil (MHO) and 15 low-oil (MLO) varieties (MHO 
vs. MLO). As shown in Fig. 1, the OPLS-DA found that 
the model performed relatively well and could accurately 
describe the samples (Fig.  1A). Based on the OPLS-DA 
model, a total of 1448 differentially abundant metabo-
lites (DAMs) were upregulated, and 1545 DAMs were 
downregulated in FMHO vs. FMLO. These metabolites 
included flavonoids, amino acids, lipids, and unknown 
metabolites. Furthermore, a total of 2015 DAMs and 
1491 DAMs were identified in TMHO vs. TMLO and 
MHO vs. MLO, respectively (Fig.  1B). As shown in 
Fig. 1C, there were 535 common upregulated DAMs and 
188 common downregulated DAMs identified. Metabo-
lite annotation showed that a total of 98 metabolites 
were identified in the metabolome to participate in lipid 
synthesis.

Transcriptomic analysis of HO and LO soybean seeds
To understand the transcriptional regulation of lipid 
metabolism in HO and LO soybean seeds, RNA-seq anal-
ysis was performed. Three comparison groups were iden-
tified, namely a comparison group of five HO and five LO 
varieties (FHO vs. FLO); a comparison of 10 HO and 10 
LO varieties (THO vs. TLO); and a comparison of 15 HO 
and 15 LO varieties (HO vs. LO).

According to differential expression analysis, there 
were 6470, 6025, and 5783 DEGs in FHO vs. FLO, THO 
vs. TLO, and HO vs. LO, respectively. The numbers of 
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upregulated DEGs were higher than the numbers of 
downregulated DEGs in the comparison groups, except 
for FHO vs. FLO (Fig. 2A, B). As shown in Fig. 2C, a total 
of 1299 common DEGs were found with upregulated 
expression, while 2542 common DEGs were identified 
with downregulated expression.

Differential lipid‑related DEGs in HO and LO soybean seeds
Soybean fatty acid-related genes were identified from soy-
bean (high- and low-oil content) transcriptome data accord-
ing to the soybean genome database (https://​soycyc.​soyba​se.​
org/). The expression of fatty acid-related genes was assessed 
in each pathway. A total of 10 fatty acid-related pathways 
were detected, and the lipid-related genes were classified 
into specific pathways (Additional file 1: Table S2; Fig. 3A). 
Lipid-related genes with high expression were detected in 
“GLCOLYSIS,” “TRIGLSYN-PWY,” and “PWY-5156” in each 
comparison group (Fig. 3B). To evaluate the changes in lipid 
DEGs in each pathway among different comparison groups, 
a bar graph of lipid DEGs is shown in Fig. 3C. In different 

comparison groups, many lipid DEGs involved in “TRIGL-
SYN-PWY”, “PWY-5156”, and “PWY-5971” were identified 
as significantly upregulated, including diacylglycerol acyl-
transferase (Glyma.13G295900, DGAT), glycerol-3-phos-
phate 1-O-acyltransferase (Glyma.10G119900, GPAT), and 
very-long-chain acyl-CoA synthetase (Glyma.07G019100, 
LASC) (Fig.  3C). In addition, the glycolytic pathway may 
be involved in lipid metabolism, and GAPDH and PK were 
found to be highly expressed in each comparison group.

Differential accumulation of lipids with HO and LO content
The lipids in soybean play essential roles in regular cell 
functioning. In this study, the lipid-related metabolites 
of 30 soybean varieties during the respective R6 peri-
ods were studied. In the negative ion mode, a total of 32 
lipid-related metabolites were discovered using the KEGG 
database, and these were classified into six metabolic path-
ways. Most of the alpha-linolenic acid-related metabolites 
were enriched in negative ion mode (Fig.  4A; Additional 
file 1: Table S3). In the glycolysis metabolic pathway, there 

Fig. 1  Multivariate statistical analysis of the metabolome data in the soybean samples. A. OPLS-DA model analysis. B. Number of differential 
metabolites in different comparison groups. Pink and green columns represent the numbers of genes with upregulated and downregulated 
expression, respectively. C. Upsetplot diagram showing the overlapping DAMs in the three comparison groups

https://soycyc.soybase.org/
https://soycyc.soybase.org/
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Fig. 2  Multivariate statistical analysis of the transcriptome data in the soybean samples. A KEGG enrichment of DEGs. B Number of differential 
genes in different comparison groups. Pink and green columns represent the numbers of genes with upregulated and downregulated expression, 
respectively. C Upsetplot diagram showing the overlapping DEGs in the three comparison groups
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were three DAMs in FMHO vs. FMLO, namely D-glucose 
1-phosphate, D-glucose 6-phosphate, and D-fructose 
1,6-bisphosphate. There was one DAM in the glycolysis 
metabolic pathway in TMHO vs. TMLO and MHO vs. 
MLO. In the linoleic acid and alpha-linolenic acid meta-
bolic pathways, 10-hydroperoxy-8E,12Z-octadecadienoic 
acid, 9,10-dihydroxy-12,13-epoxyoctadecanoate, 2(R)-
HPOT, and traumatic acid were found to be differentially 
accumulated in different comparison groups (Fig. 4C).

In the positive ion model, a total of 66 lipid-related 
metabolites were identified, and among these, the glyc-
erophospholipid pathway had the most annotated 
metabolites (Fig.  4B). A cluster heatmap of 66 lipid-
related metabolites showed that glycerophospholipid 
pathway metabolites accumulated significantly in the 

three comparison groups (FMHO vs. FMLO, TMHO 
vs. TMLO, and MHO vs. MLO). In the FMHO vs. 
FMLO comparison group, LysoPC (22:2 (13Z, 16Z)), 
PE (20:0/22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), and PE 
(15:0/22:1(13Z)) were found to be significantly accumu-
lated. In the TMHO vs. TMLO comparison group, PE 
(15:0/22:1 (13Z)), PE (20:0/22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 
19Z)), and PE (18:3(6Z, 9Z, 12Z)/22:6(4Z, 7Z, 10Z, 13Z, 
16Z, 19Z)) were significantly enriched. In the MHO 
vs. MLO comparison group, LysoPC(22:2(13Z, 16Z)), 
LysoPC(22:2(13Z, 16Z)), PE (20:0/22:6(4Z, 7Z, 10Z, 13Z, 
16Z, 19Z)), PE(18:3(6Z, 9Z, 12Z)/22:6(4Z, 7Z, 10Z, 13Z, 
16Z, 19Z)), and PE(15:0/22:1(13Z)) were highly accu-
mulated (Fig. 4D). These results showed that these lipid 

Fig. 3  Functional categorization and expression analysis of lipid-related genes in the three comparison groups. The distribution of lipid-related 
DEGs identified in A. The functional categorization of lipid-related genes from B FHO vs. FLO, THO vs. TLO, and HO vs. LO. Differentially expressed 
genes (DEGs) involved in major lipid metabolism pathways in C FHO vs. FLO, THO vs. TLO, and HO vs. LO. GLYCOLYSI: glycolysis I (from glucose 
6-phosphate), PWY4FS-5: superpathway of phosphatidylcholine biosynthesis, PWY-5995: linoleate biosynthesis I (plants), TRIGLSYN-PWY: 
diacylglycerol and triacylglycerol biosynthesis, PWY-4261: glycerol degradation I, PWY-5147: oleate biosynthesis I (plants), PWY-5989: stearate 
biosynthesis II (bacteria and plants), PWY-5156: superpathway of fatty acid biosynthesis II (plant), PWY-5971: palmitate biosynthesis II (bacteria and 
plants), and PWY-5173: superpathway of acetyl-CoA biosynthesis
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metabolites might play an important role in oil synthesis 
in soybean.

Other relevant DAMs
Flavonoids and carbon and amino acids were also identi-
fied in this study, and the results were consistent with the 
oil content determination. Our results suggest that the 
accumulation of carbon and sugars might play an impor-
tant role in soybean oil content and yield.

The flavonoid DAMs in the three comparison groups 
were also compared. A total of 57 flavonoids were found in 
the three comparison groups. As shown in Additional file 1: 
Figure S2, (  −  )-maackiain-3-O-glucosyl-6′′-O-malonate, 
( +)-gallocatechin, 5-O-caffeoylshikimic acid, 8-C-gluco-
sylnaringenin, and butin were more highly accumulated 

in FMHO compared to FMLO. In the TMHO vs. TMLO 
comparison group, 21 flavonoids were upregulated. How-
ever, no flavonoids were significantly enriched in the MHO 
vs. MLO comparison group (Additional file 1: Figure S2). 
The results suggest that the accumulation of flavonoids 
may affect the seed coat color and yield of soybean.

Combined analysis of gene–metabolite network reveals 
the biosynthesis mechanism of lipids in HO and LO 
varieties
The KEGG enrichment analysis result showed that the 
DEMs and DEGs were enriched in photosynthesis, fatty 
acid biosynthesis, linoleic acid metabolism, and flavonoid 
biosynthesis pathways in the three comparison groups 
(Additional file 1: Figure S3).

Fig. 4  Differential metabolite analysis in the three comparison groups in positive ion mode and negative ion mode. A The distribution of 
lipid-related metabolites identified in negative ion mode. B The distribution of lipid-related metabolite identified in positive ion mode. C 
Enrichment analysis of lipid-related metabolites in the three comparison groups in negative ion mode. D Enrichment analysis of lipid-related 
metabolites in the three comparison groups in ion positive mode
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Gene and metabolite networks were constructed. In the 
FHO vs. FLO network, 33 lipid-related metabolites and 
83 lipid-related genes generated 212 subnetworks (r > 0.5). 
The results showed that the 14 subnetworks were sig-
nificantly correlated (r > 0.8, p < 0.01). LysoPC(18:0) was 
found to be positive associated with Glyma.15G140200 
(r > 0.91, p < 1.52E-08) and Glyma.10G119900 (r > 0.94, 
p < 1.73E-10). Sphinganine was found to be nega-
tively associated with Glyma.17G033600 (r <    −  0.61, 
p < 0.004) Glyma.06G172600 (r <  −  0.60, p < 0.004), and 
Glyma.17G242900 (r <   − 0.59, p < 0.005) (Fig. 5A).

In the THO vs. TLO network, 14 lipid-related metabo-
lites and 17 lipid-related genes generated 35 subnetworks 
(r > 0.5). Among them, important regulatory lipid-
related genes and lipid-related metabolites were discov-
ered, including Glyma.09G029900, which was positively 
associated with 12-oxo-9(Z)-dodecenoic acid (r > 0.87, 
p < 2.90E-13) and 10-hydroperoxy-8E,12Z-octadecadien-
oic acid (r > 0.89, p < 3.93E-15) (Fig. 5B).

In the HO vs. LO network, 12 lipid-related metabo-
lites and 25 lipid-related genes generated 63 subnetworks 
(r > 0.5). In the subnetwork, LysoPC (18:0) and gluco-
sylceramide (d18:1/16:0) metabolites were significantly 
associated with multiple lipid-related genes (Fig.  5C; 

Additional file 1: Table S4). This result showed that these 
metabolites might play important roles in oil synthesis.

Co‑expression analysis of transcription factors 
and lipid‑related metabolites
In this study, transcription factors (TFs) were obtained 
from online databases (http://​plant​tfdb.​cbi.​pku.​edu.​cn/), 
and differentially expressed TFs were identified using 
transcriptome data. In FHO vs. FLO, THO vs. TLO, 
and HO vs. LO, a total of 1110, 986, and 2165 TFs were 
screened, respectively. The most abundant TF families 
in each comparison group were bHLH, MYB, and ERF 
(Additional file 1: Figure S4).

In the FHO vs. FLO network, 42 TFs and five lipid-
related metabolites generated 66 subnetworks (r > 0.92). 
Among them, the GmMYBs (eight) and GmbHLHs (eight) 
genes were found to be most abundant in the subnetworks 
(Fig.  6A; Additional file  1: Table  S5). There were 31 TFs 
involved in regulating lipid metabolites in THO vs. TLO 
(r > 0.8), and 50 TFs were identified as being related to lipid 
metabolites in HO vs. LO (r > 0.7), which all contained dif-
ferent members of TFs, such as MYB (Glyma.04G177300, 
Glyma.05G098200, Glyma.10G142200, Glyma.11G0 
10900 and Glyma.15G066800), bHLH (Glyma.08G 

Fig. 5  Network analysis of DEGs and DAMs in the three comparison groups. A FHO vs. FLO, B THO vs. TLO, and C HO vs. LO. Red circles represent 
different genes. Triangles with different colors represent different metabolic pathways

http://planttfdb.cbi.pku.edu.cn/


Page 8 of 13Zhao et al. Biotechnology for Biofuels and Bioproducts           (2023) 16:70 

203600, Glyma.08G274200, Glyma.13G251300 and 
Glyma.19G128900), and AP2/ERF (Glyma.03G116700, 
Glyma.05G157400, Glyma.10G223200 and Glyma.16G 
154100). This result indicated that these TFs might play 
key roles during oil synthesis in soybean (Fig. 6).

Combined analysis of the gene–metabolite network 
reveals the biosynthesis mechanism of lipids in HO and LO 
soybean seeds
The differences in lipid synthesis in the seeds of the three 
comparison groups were explored based on the inte-
grated analysis of the transcriptomics and metabolomics 
data. As shown in Fig. 7, lipid biosynthesis pathways were 
analyzed in this study, which mainly included glycolysis, 
fatty acid synthesis, and the Kennedy pathway.

Glycolysis mainly provides a carbon supply for vegeta-
ble oil synthesis. In this study, the D-glucose content was 
reduced compared to D-glucose 6-phosphate and D-fruc-
tose 1,6-bisphosphate. The GmFBP, GmGAPDH, GmPK, 
and GmPFK genes were found to be upregulated. These 
findings indicated the possible reason of the decrease in 
glucose content is that the glucose is being used as a sub-
strate for lipid synthesis.

The de novo production of TAGs is through the Ken-
nedy pathway and is catalyzed by LPAT, PAH, and DGAT. 
In the ER, the LPAT, DGAT, and PAH are the rate-limit-
ing enzymes in TAG synthesis [25, 26]. In the three com-
parison groups, GmLPAAT​, GmGPAT, and GmDGAT​ 
were markedly induced.

Quantitative RT‑PCR validation
Ten DEGs were randomly selected for qRT-PCR analysis 
to further verify the reliability of the RNA-seq results. 
The relative expression levels of the 10 genes in the qRT-
PCR were consistent with the transcriptome results data 
(Additional file  1: Figure S5). The expression profiles of 
the 10 genes were obtained by qRT-PCR, and the tran-
scriptome results indicated significant correlations in 
FHO vs. FLO (R2 = 0.79), THO vs. TLO (R2 = 0.76), and 
HO vs. LO (R2 = 0.79) (Additional file 1: Figure S6). The 
above results showed that the transcriptome data in this 
study were reliable.

Discussion
Soybean oil is valued as an edible vegetable oil as well 
as for industrial applications and biofuels [27]. Previ-
ous studies have shown that plant oil is stored as TAGs 
[28]. In plants, glycolysis pathway provides carbon source 
for fatty acid synthesis and further generates TAG [29, 
30]. In this study, a combined metabolomics and tran-
scriptomic approach was used to explore the metabolite 
changes and the transcriptional regulation in HO and LO 
soybean varieties.

Previous studies have suggested that the most impor-
tant lipid compounds in soybean are glycerophospho-
lipids, primarily PC, PE, and PA [31]. Some of these 
metabolic compounds have been found in soybean [32]. 
In this study, we found that 98 lipid-related metabo-
lites could be classified into six metabolic pathways 

Fig. 6  Network analysis of transcription factors and lipid metabolites in the three comparison groups. A FHO vs. FLO, B THO vs. TLO, and C HO vs. 
LO. Red circles represent different transcription factors. Triangles with different colors represent different metabolic pathways
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(Additional file 1: Table S3). In FMHO vs. FMLO, there 
were three DEMs that were significantly enriched in the 
glycolysis metabolic pathway, namely D-glucose 1-phos-
phate, D-glucose 6-phosphate, and D-fructose 1,6-bis-
phosphate (Fig. 4). In the parallel transcriptomic analysis, 
glycolytic pathway genes were significantly upregulated, 
including the GAPDH, PK, and BASS genes. It is reported 
that Bass2 can increase the oil content of Brassica napus 

[33]. Some researchers have revealed that GAPCs can 
regulate the accumulation of seed oil content [34]. In 
Arabidopsis, over-expression of AtPKp gene increased 
seed oil content [35]. Previous studies found that WRI1 
is a major regulator in the glycolytic pathway and lipid 
metabolism [36–38]. Previous studies exhibited that gly-
colysis metabolites are closely related to seed oil content, 
such as fructose-6-phosphate (F6P), glucose-6-phosphate 

Fig. 7  Gene–metabolite network illustrating lipid metabolism in low-oil and high-oil soybean. The oil synthesis pathways are displayed, and the 
involved genes and metabolites are indicated. Red represents higher expression levels, and green represents lower expression levels
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(G6P) and fructose-1,6-diphosphate (FBP), etc. [33]. In 
the TMHO vs. TMLO and MHO vs. MLO comparison 
groups, we also found that glycolysis metabolites were 
enriched. The above results showed that the glycolysis 
pathway provides a carbon source for oil synthesis.

The main component of soybean oil is TAGs, which 
are synthesized from G3P precursors [39]. In this study, 
we found that glycerophospholipids were the main com-
ponents of lipid-related metabolites. A total of 38 lipid-
related metabolites in the glycerophospholipid pathway 
were identified (Additional file 1: Table S3). In FMHO vs. 
FMLO, 11 lipid DAMs in the glycerophospholipid path-
way were found. Among these, LysoPC (22:2(13Z, 16Z)) 
and PE (15:0/22:1(13Z)) were significantly enriched. 
In the parallel transcriptomic analysis, we found that 
GmLAAPT and GmGPAT were upregulated (Additional 
file 1: Table S2). Previous research has shown that DGAT 
and GPAT are involved in TAG biosynthesis [20, 21, 40]. 
In TMHO vs. TMLO and MHO vs. MLO, nine and 11 
DAMs of lipids in the glycerophospholipid pathway were 
found, respectively. Among these, PE (15:0/22:1(13Z)) 
and LysoPC (22:2(13Z, 16Z)) were also significantly 
enriched. Previous studies exhibited that phosphati-
dylcholine (PC) is the most abundant phospholipid and 
plays a key role in the production of TAG [41, 42]. We 
deduce that the glycerophospholipid pathway may regu-
late the synthesis of TAGs.

To explore the relationship between genes and metab-
olites, a two-dimensional network diagram was con-
structed using lipid-related genes and metabolites. A 
total of 212 subnetworks were identified in the FMHO 
vs. FMLO comparison group. Multiple studies have dem-
onstrated that genes and metabolites related to the gly-
colysis pathway affect the accumulation of plant oil [33, 
35]. Glycolysis is core to the synthesis of oil, as it converts 
sugars into precursors for the synthesis of fatty acids [35]. 
In this work, LysoPC(18:0) was found to be positively 
associated with Glyma.10G119900 (GmGPAT) (r > 0.94, 
p < 1.73E-10). It is reported that LysoPC is the main com-
ponent of fatty acid synthesis, and GmGPAT is related 
to TAG synthesis [43, 44]. We also found that sphinga-
nine was negatively associated with Glyma.06G172600 
(GmGAPDH) (r <    −   0.60, p < 0.004). Sphinganine was 
downregulated, and the GmGAPDH gene was upregu-
lated. Thus, GmGPAT, and GmGAPDH may be key genes 
in glycolysis and oil synthesis, which may help elucidate 
the genetic relationship between glycolysis and seed oil 
synthesis.

In conclusion, this combined metabolome and tran-
scriptome study allowed for a large-scale analysis of lipids 
in soybean.

Conclusions
A total of 5970 metabolites were identified using a non-
targeted approach. We identified 98 lipid-related metab-
olites, including glycerophospholipids, alpha-linolenic 
acid, linoleic acid, glycolysis, pyruvate, and the sphin-
golipid pathway, which significantly broadens our under-
standing of the lipid compounds present in soybean. We 
further explored the correlation network and identified 
novel candidates (GPAT and GAPDH) that regulate lipid 
biosynthesis in soybean. The above results expand our 
understanding of lipid accumulation patterns and molec-
ular regulatory mechanisms in soybean.

Methods
Plant materials
Thirty soybean varieties, comprising 15 with high-oil and 
15 with low-oil contents, were evaluated in this study 
and were obtained from the Soybean Research Institute, 
Northeast Agricultural University. These 30 soybean 
varieties were grown under the same field conditions in 
Harbin (162.41°E, 45.45°N), Heilongjiang, China. The 
samples were collected at the R6 developmental stage, 
and two biological replicates were collected. All samples 
were frozen quickly in liquid nitrogen for transcription 
and metabolite analysis. These mature seeds were used to 
determine the oil content.

Metabolite profiling
Non-targeted metabolome analysis was performed 
by Bioacme Biotechnology Co., Ltd. (Wuhan, China). 
Briefly, 100 mg of sample was placed into a 1.5-mL cen-
trifuge tube, to which 300  μL of 75% methanol/water 
was added and centrifuged at 12,000 rpm, 10 min at 4 °C. 
All metabolites were identified using the Metlin data-
base. The differential metabolites were analyzed using 
an orthogonal partial least squares-discriminant analy-
sis (OPLS-DA) model, with a variable importance in the 
projection (VIP) score of ≥ 1 and a |log2 (fold change)| 
of ≥ 1. The functional annotations of these metabolites 
were obtained using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (http://​www.​kegg.​jp/​
kegg/​compo​und/).

Transcriptome sequencing
Total RNA was isolated and an RNA library was con-
structed for each sample using an Illumina HiSeq plat-
form by Bioacme Biotechnology Co., Ltd. (Wuhan, 
China). Raw sequences were obtained by removing the 
adapter sequence, low-quality reads, and poly-N. Clean 
data quality is controlled using FastQc (V0.11.8) soft-
ware [45]. Q20, Q30 and GC-content of the clean data 

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
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were calculated. The adaptor and low-quality sequence 
reads were deleted from the data sets. After data process-
ing, the Raw sequences were converted into clean reads. 
The high-quality clean reads were mapped to the refer-
ence genome and were used for transcriptome analy-
sis. Hisat2 software were applied to map with reference 
genome [46]. The unigenes were annotated by search-
ing the Swiss-Prot, Gene Ontology (GO), Eukaryotic 
Orthologous Groups of proteins (KOG), Non-redundant 
(NR), and KEGG databases. Differentially expressed 
genes (DEGs) were identified using the edgeR R package 
[47]. A |log2 (fold change)| of ≥ 1 and a false discovery 
rate of < 0.05 were used to define significant differential 
expression. 10 fatty acid-related pathways were identified 
from the soybean genome database (https://​www.​soyba​
se.​org/).

Gene–metabolite network analysis
The transcription factor was screened using the online 
database (http://​plant​tfdb.​cbi.​pku.​edu.​cn/). Differential 
transcription factors and lipid-related genes are identi-
fied (|log2 (fold change)| of ≥ 1). Transcription factors, 
lipid-related genes and lipid-related metabolites were 
used to construct network relationship in R, respectively. 
And a Pearson’s correlation cutoff value of 0.5 was gener-
ated. Visualization of the network was performed using 
Cytoscape 3.6.0 software [48].

Quantitative real‑time PCR
Several DEGs were subjected to quantitative real-time 
PCR (qRT-PCR) analysis. The RNA was extracted and 
cDNAs were generated with ReverTra Ace qPCR RT 
Master Mix (TOYOBO, Osaka, Japan). The qRT-PCR 
was accomplished by CFX Connect TM real-time sys-
tem (BIO-RAD) with the SYBR Green PCR kit (SYBR 
Green, TOYOBO, Osaka, Japan). GmACTIN was used as 
an internal control. The DN50 seed samples were used as 
a calibrator. Three biological replicates with three tech-
nical replicates were applied to each sample. Relative 
expression levels were estimated using the 2−ΔΔct method 
[49]. All qRT-PCR primers are listed in Additional file 1: 
Table S6.

Statistical analysis
All data were analyzed using Excel 2019 (Microsoft 
Corp., Redmond, WA, USA) and SPSS 19.0 (IBM Corp., 
Armonk, NY, USA), and significance tests were achieved 
by Student’s t-test.

Abbreviations
FHO vs FLO	� Five high-oil varieties vs five low-oil varieties
THO vs TLO	� 10 High-oil varieties vs 10 low-oil varieties
HO vs LO	� 15 High-oil varieties vs 15 low-oil varieties
ER	� Endoplasmic reticulum
TAG​	� Triacylglycerols
G3P	� Glycerol-3-phosphate
GPAT	� Glycerol phosphate acyltransferase
LPAAT​	� Lysophosphatidic acid acyltransferase
DGAT​	� Diacylglycerol acyltransferase
PDAT	� Phospholipid acyltransferase
LACS	� Long-chain acyl-CoA synthetase
GAPDH	� Glyceraldehyde-3-phosphate dehydrogenase
PK	� Pyruvate kinase
LysoPC	� Lysophosphatidylcholine
PE	� Phosphatidylethanolamine
PAH	� PA phosphatase
PA	� Phosphatidic acid
FBP	� Fructose-1,6-bisphosphatase
PFK	� 6-Phosphofructokinase
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