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Abstract
Simultaneous saccharification and fermentation (SSF) is one process option for production of
ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together
with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-
product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal
drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH)
for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting
organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below
37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast
concentration and at a high solid loading. In this review, we make a brief overview of recent
experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has
been made with respect to increasing the substrate loading, decreasing the yeast concentration and
co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat
straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield
based on total hexoses and pentoses higher than 70%.

Introduction
Bioethanol produced by fermentation of lignocellulosic
biomass (second generation bioethanol), from agricul-
tural by-products, forest residues or energy crops, shows
many potential advantages in comparison to sugar or
starch-derived bioethanol (first generation bioethanol),
from both energetic and environmental points of view.
One significant environmental factor is that the reduction
in greenhouse gas emission will be larger with lignocellu-
losic ethanol than for starch-derived ethanol, due to the
lower overall oil input required in the process [1]. Most
process concepts for bioethanol from lignocellulose start
with a thermo-chemical hydrolysis of the hemicellulose
part (pretreatment), followed by an enzymatic hydrolysis

of the cellulose part and a yeast-based fermentation of the
resulting sugars. Lignin, the main by-product in the proc-
ess, can be directly used as solid fuel, or as a source for
higher added-value biorefinery products. Highly encour-
aging progress has been made with respect to decreasing
the cost of enzymes, optimizing the method of pretreat-
ment, and developing novel yeast strains, primarily Sac-
charomyces cerevisiae strains capable of fermenting
pentoses.

One option is to perform the enzymatic hydrolysis
together with the fermentation, instead of subsequent to
the enzymatic hydrolysis. This is called SSF – after Simul-
taneous Saccharification and Fermentation. SSF is today
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important in the dry-milling process in the corn-based
ethanol industry in the U.S. [2]. In the current review, we
look at recent developments on SSF applied to lignocellu-
losic feedstocks.

The Process – step-by-step
The SSF concept
The idea of performing the enzymatic hydrolysis and fer-
mentation simultaneously was put forward by Gauss et al.
in a patent from 1976 [3]. The authors stated that the glu-
cose yield in a traditional separate enzymatic hydrolysis
(using enzymes produced by the fungus Trichoderma ree-
sei) was low, probably due to end-product inhibition of
the hydrolysis by glucose and cellobiose. The authors
could, however, show that they obtained a higher overall
ethanol yield when using SSF, which they attributed to the
removal of glucose and cellobiose by the fermentation,
and the consequent release of end-product inhibition.
The term SSF (the abbreviation SSF is often used also for
solid state fermentation) was not used by the authors at the
time, but became the common notation for this process
within just a few years from the original invention. The
avoidance of end-product inhibition is still probably the
most important reason for using SSF, but there are several
additional potential advantages. Gauss and co-workers,
mentioned for instance the advantage that glucose does
not need to be separated from the lignin fraction follow-

ing a separate enzymatic hydrolysis step, thereby avoiding
a potential loss of sugar. Furthermore, the combination of
hydrolysis and fermentation decreases the number of ves-
sels needed and thereby investment costs. The decrease in
capital investment has been estimated to be larger than
20%. This is quite important, since the capital costs can be
expected to be comparable to the raw material costs in
ethanol production from lignocellulose [4]. Other advan-
tages, relating to co-consumption of pentose and hexose
sugars, and detoxification have become apparent more
recently, as will be discussed later in this review.

Inevitably, there are also disadvantages of SSF in compar-
ison to the separate hydrolysis and fermentation (SHF)
process. The optimum temperature for enzymatic hydrol-
ysis is typically higher than that of fermentation – at least
when using yeast as the fermenting organism. In an SHF
process, the temperature for the enzymatic hydrolysis can
be optimized independently from the fermentation tem-
perature, whereas a compromise must be found in an SSF
process. Furthermore, the yeast cannot be reused in an SSF
process due to the problems of separating the yeast from
the lignin after fermentation. Therefore, the yeast will nec-
essarily represent a yield loss in an SSF process, if the yeast
is produced from carbohydrates within the process (see
Figure 1) or a running cost if it is externally supplied. The
enzymes are equally difficult to reuse, also in an SHF proc-

Schematic representation of an SSF processFigure 1
Schematic representation of an SSF process.
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ess. The enzymes are either produced within the process
(see Figure 1) – thereby representing a loss of substrate –
or are externally supplied and thereby add to the chemical
costs. Recirculation of enzymes is equally difficult since
the enzymes bind to the substrate, although a partial des-
orption can be obtained after addition of surfactants [5].

The availability of lignocellulosic feedstocks varies
depending on geographic location (see e.g. Kim and Dale
[6]), and the lignocellulosic feedstocks are rather hetero-
geneous in terms of both structure and chemical compo-
sition (see Table 1). This heterogeneity has a strong
impact on the process design, affecting virtually all proc-
ess steps, i.e. the mechanical handling of the material, pre-
treatment conditions, choice of enzymes and yeast strains,
as well as separation and properties of the remaining
lignin. This will become apparent in the discussion below.

Pretreatment
The purpose of the pretreatment is to alter the lignocellu-
losic structure and increase the rate of enzymatic hydroly-
sis of primarily the cellulose. This should be done with a
minimum formation of compounds, which inhibit the
fermenting microorganisms [7]. The accessible surface
area is regarded as one of the most important factors
affecting the effectiveness of enzymatic cellulose degrada-
tion [8-12]. In native wood only a small fraction of the cell
wall capillaries are accessible to the enzymes [13]. Pre-
treatment, however, increases the available area in several
ways [12,14-16]; i) fragments and cracks are formed yield-
ing increased area [14], ii) the hemicellulose fraction is
hydrolysed which diminishes shielding effects [17,18],
iii) the lignin also undergoes structural changes
[10,14,19,20] and the wood is delignified to various
degrees, depending on the pretreatment technology [21].
Thus, the shielding of microfibrils and occluding of pores,
caused by lignin, can be removed. Other factors, believed
to influence the digestibility in SSF, are the substrate crys-
tallinity [11,22,23] and the degree of polymerization
(DP) [24].

The pretreatment methods can be divided into physical
and chemical methods, and combinations of these two
are commonly used (see e.g. the review written by Mosier
et al. [21]). The type of feedstock strongly affects the
choice of pretreatment method. The hemicellulose is, for
instance, acetylated to a high degree in xylan-rich materi-
als. Since acetate is liberated during hydrolysis, the pre-
treatment of these materials is to some extent
autocatalytic and require less added acid and milder proc-
ess conditions. However, the liberated acetate adds to the
toxicity of the hemicellulose hydrolyzates.

Ammonia fiber/freeze explosion (AFEX) pretreatment is
regarded as an attractive method for pretreatment of agri-
cultural residues, yielding highly digestible cellulose
[25,26]. AFEX depolymerizes the lignin, removes the
hemicellulose and decrystallizes the cellulose [27,28]. The
moderate temperature and pH also minimize formation
of sugar degradation products. However, the method suf-
fers from high costs of ammonia and ammonia recovery
[25]. In this context the lime method, based on calcium
(or sodium) hydroxide [29-31] should also be men-
tioned. Alkali pretreatments are run at lower temperatures
for long residence times, and as for the AFEX method, a
delignification of the biomass is obtained.

Steam explosion is an intensively studied pretreatment
method [21]. The effects of uncatalyzed steam explosion
– and liquid hot water pretreatments – on the biomass are
primarily attributed to the removal of hemicelluloses. By
adding an acid catalyst, the hydrolysis can be further
improved [19,32]. Dilute acid pretreatments using H2SO4
[33-36] or SO2 [37-41] are the most investigated pretreat-
ment methods because of their effectiveness and inexpen-
siveness. These methods have been applied in pilot plants
and, hence, are close to commercialization [42,43]. Acid
catalyzed treatment improves the hemicellulose removal
[19,32], gives a partial hydrolysis of cellulose [34,37,38]
and alters the lignin structure [10,14,19,20]. The main
drawbacks are related to the process equipment require-

Table 1: Composition of some lignocellulosic raw materials (% of dry matter)

Raw material Glucan Mannan Galactan Xylan Arabinan Lignin Ref

Agricultural residues
Corn stover 36.4 0.6 1.0 18.0 3.0 16.6 [151]
Rice straw 34.2 - - 24.5 - 11.9 [151]
Sugar cane bagasse 40.2 0.5 1.4 22.5 2.0 25.2 [152]
Wheat straw 38.2 0.3 0.7 21.2 2.5 23.4 [151]
Switch grass 31.0 0.3 0.9 20.4 2.8 17.6 [151]
Hardwood
Salix 41.5 3.0 2.1 15.0 1.8 25.2 [153]
Softwood
Pine 46.4 11.7 - 8.8 2.4 29.4 [151]
Spruce 49.9 12.3 2.3 5.3 1.7 28.7 [35]
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ments [21,44] and inhibitor formation [45]. So far, suc-
cessful pretreatments with alkali, AFEX and liquid hot
water have been limited to agricultural residues and her-
baceous crops [25,46-48], whereas acid catalysed steam
pretreatments have generated high sugar yields from these
materials as well as from softwood feedstocks [33-41].

A simple quantification of the harshness of a steam pre-
treatment process is the so called Severity Factor, log(R0).

This factor combines the time and the temperature of a

process into a single entity, [49]. For acid

catalyzed pretreatments the Combined Severity Factor,
log(CS), is sometime used. This takes also the pH into
account, log(CS) = log(R0) - pH[50], and typical values for

acid catalyzed steam explosion pretreatment of softwood
are in the range 2 to 4 [35,41].

Optimal pretreatment conditions in an SSF process do not
necessarily differ much from those of an SHF processes
utilizing lignocellulosic biomass. However, several com-
pounds present in pretreatment hydrolyzates, which
inhibit enzymatic hydrolysis are converted by the fer-
menting organisms. This is a probable explanation
behind the higher reported ethanol yields in SSF com-
pared to SHF [51,52]. Inhibitor formation from the pre-
treatment may therefore be tolerated to a higher extent in
an SSF process. Inhibitory compounds can be put into
three major groups; furaldehydes, weak acids, and pheno-
lics. The two most common furaldehydes, HMF (5-
hydroxymethyl-2-furaldehyde) and furfural (2-furalde-
hyde), are formed at severe conditions from hexoses and
pentoses, respectively [45,53,54]. Weak acids from ligno-
cellulosic materials, such as acetic, formic and levulinic
acid, are mainly formed by de-acetylation of hemicellu-
lose or HMF breakdown [53,54]. Phenolic compounds
are formed chiefly during lignin breakdown, and are to be
found in numerous variants, depending on the type of
lignin [55]. For a more in-depth discussion on inhibition
see e.g. the review by Almeida et al [7].

Enzymatic hydrolysis
A successful pretreatment has to a large extent removed
the hemicellulose, leaving the cellulose available for
hydrolysis. Since the most commonly used microorgan-
isms for ethanol production solely utilize sugar mono-
mers, the cellulose needs to be hydrolyzed, which in an
SSF occurs concomitantly with the fermentation. Histori-
cally, industrial cellulose digestion has been made with
acid hydrolysis [56] and optimization of acid hydrolysis
of various lignocellulosic materials have been carried out
for ethanol producing purposes [57-59]. Acid hydrolysis,
however, produces hydrolyzates that are relatively toxic to
the fermenting microorganisms, and the maximum glu-

cose yield is limited to approximately 60% in a batch
process for kinetic reasons [60]. Enzymatic degradation of
the cellulose fraction, on the other hand, has the potential
of yielding relatively non-toxic hydrolyzates with higher
sugar yields.

Enzymes specialized in breaking up the β-1-4-glycosidic
bonds of glucan are collectively called cellulases. In 1950,
Reese et al [61] presented a model of enzymatic cellulose
hydrolysis based on multiple enzymes (C1 and CX). The
C1 enzyme was assumed to produce shorter polyanhydro-
glucose chains, while the solubilization was attributed to
the CX enzyme. Basically the same picture applies today,
but there has been a huge progress in knowledge about all
the different specific enzyme components involved. The
cellulases are divided into three sub-categories, represent-
ing three types of activity: endoglucanases, exoglucanases
(cellobiohydrolases) and β-glucosidases. Endoglucanases
significantly reduce the degree of polymerization of the
substrate by randomly attacking the interior parts, mainly
in the amorphous regions of cellulose. Exoglucanases (or
cellobiohydrolases), on the other hand, incrementally
shorten the glucan molecules by binding to the glucan
ends and releasing mainly cellobiose units. Finally, β-glu-
cosidases split the disaccharide cellobiose into two units
of glucose.

Several types of microorganisms can produce cellulase
systems including aerobic filamentous fungi, aerobic
actinomycetes, anaerobic hyperthermophilic bacteria and
anaerobic fungi (see e.g. review by Lynd et al. [62]). Inten-
sive research on the aerobic filamentous fungi T. reesei
during the past decades has resulted in an efficient cellu-
lase producing organism, which is currently dominating
the industrial cellulase production [62,63].

As already mentioned, an important advantage with SSF
compared to SHF is the reduction of end-product inhibi-
tion by sugars formed in the hydrolysis. The fermentation
product ethanol also inhibits hydrolysis, but to a lesser
extent than cellobiose or glucose [64]. Another advantage
is that inhibitors from the pretreatment can be metabo-
lized by the microorganisms [51]. However, also the SSF
process may suffer from incomplete hydrolysis of the
solid lignocellulosic fraction. Except for inhibition by
end-products or other components [51,65], this can be
due to enzyme deactivation, unproductive enzyme
adsorption [66], decreasing availability of chain ends
[24], and increasing crystallinity with conversion of pre-
treated cellulose [67].

In an industrial SSF, enzyme and cell concentrations
should be appropriately balanced in order to minimize
costs for yeast and enzyme production. Synergies between
the enzymes, e.g. endo-exo synergism [68,69], exo-exo
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synergism [70], and synergism between endo- or exoglu-
canases and β-glucosidases [71], should also be optimized
by tuning the composition of the enzyme mixtures. The
optimal composition will most certainly depend on the
lignocellulosic raw material.

Fermenting microorganisms
The general requirements on an organism to be used in
ethanol production is that it should give a high ethanol
yield, a high productivity and be able to withstand high
ethanol concentrations in order to keep distillation costs
low [72]. In addition to these general requirements,
inhibitor tolerance, temperature tolerance and the ability
to utilize multiple sugars are essential for SSF applica-
tions. Tolerance towards low pH-values will minimize the
risk of contamination. The work-horse in starch or
sucrose-based ethanol production is the common Bakers'
yeast, Saccharomyces cerevisiae. This organism produces
ethanol at a high yield (higher than 0.45 g g-1 at optimal
conditions) and a high specific rate (up to 1.3 g g-1 cell
mass h-1 [73]). It also has a very high ethanol tolerance,
over 100 g L-1 has been reported for some strains and
media [74]. In addition, the organism has proven to be
robust to other inhibitors, and hence it is suitable for fer-
mentation of lignocellulosic materials [75,76].

Hemicellulose from hardwood and agricultural residues
are typically rich in xylans (cf. Table 1) – hardwood con-
taining primarily O-acetyl-4-O-methyl-glucuronoxylan,
whereas grasses contain arabinoxylan [77]. Softwood
hemicellulose, on the other hand, contains more man-
nans – primarily in the form on galactoglucomannan –
and less xylan. Mannose fermentation is normally effi-
cient in S. cerevisiae, whereas the ability to ferment galac-
tose is strain dependent [78], and the genes for galactose
utilization are furthermore repressed by glucose [79,80],
leading to a typical sequential utilization of the sugars.
Clearly, xylose fermentation is a more significant issue for
agricultural residues and hardwood than for softwood.
Xylose is not metabolized by wild-type S. cerevisiae, apart
from a minor reduction to xylitol. This, and for some parts
the temperature tolerance, have been the main reason
behind the interest to test also other microorganisms for
lignocellulose conversion in SSF.

Naturally xylose-fermenting yeasts, such as Pichia stipitis
and Candida shehatae [81-83], could potentially be advan-
tageous to use in SSF of materials with high xylan con-
tents. However, their tolerance to inhibitory compounds
in undetoxified lignocellulose hydrolyzates is rather low
[84,85], and in addition, a very low and well-controlled
supply of oxygen is required for efficient xylose fermenta-
tion [86-88]. The main "competitors" to the yeast have
been the bacteria Zymomonas mobilis and genetically engi-
neered Escherichia coli. Z. mobilis, an obligately anaerobic

bacterium, which lacks a functional system for oxidative
phosphorylation, produces ethanol and carbon dioxide as
principal fermentation products. Interestingly, Z. mobilis
utilizes the Entner-Duodoroff pathway which gives a
lower ATP production per catabolized glucose [89,90].
This in turn gives a lower biomass yield and a higher eth-
anol yield on glucose compared to S. cerevisiae [91]. How-
ever, wild-type Z. mobilis lacks the ability to ferment
pentose sugars, and a major drawback is furthermore that
it is not a very robust organism. In general, bacteria appear
to be less tolerant to lignocellulose-derived inhibitors
[92], and a detoxification step may be needed prior to the
fermentation. In contrast to Bakers' yeast and Z. mobilis, E.
coli is capable of metabolizing a wide variety of substrates
(including hexoses, pentoses and lactose), but the wild-
type organism has a mixed fermentative pathway, and is
thus a poor ethanol producer. In a landmark contribu-
tion, awarded U.S. patent number 5000000 [93], a strain
of E. coli was genetically engineered into an ethanol pro-
ducer by overexpression of PDC (encoding pyruvate
decarboxylase) and adhB (encoding alcohol dehydroge-
nase) from Z. mobilis [94]. Excellent results have been
achieved with recombinant E. coli, e.g. the KO11 strain,
which have shown ethanol yields from 86 to close to
100% of the theoretical, and final ethanol concentrations
up to 40 g L-1 on hemicellulose hydrolyzates of bagasse,
corn stover and corn hulls [95]. However, only the liquid
fraction was used in reported studies, and the hydro-
lyzates were furthermore detoxified prior to use by over-
liming to pH 9 with calcium hydroxide and then adjusted
to pH 6.0–6.5 with HCl. Furthermore, since the optimal
pH is 6.5, E. coli is less suitable for SSF processes with T.
reesei cellulases, which generally is considered to have a
pH optimum around 4.8 [96].

Pentose fermentation by engineered S. cerevisiae
Due to the very attractive properties of S. cerevisiae in
industrial fermentations, there have been significant
efforts made in the past decades to design recombinant
xylose and arabinose fermenting strains of this yeast.
Xylose fermenting strains of S. cerevisiae can in principal
be constructed either by introducing genes encoding
xylose isomerase (XI) from bacteria and fungi [97-99], or
genes encoding xylose reductase (XR) and xylitol dehy-
drogenase (XDH) from fungi [100,101]. Also the endog-
enous XKS1 gene encoding xylulokinase (XK) has to be
overexpressed to obtain significant xylose fermentation
[101]. Transport proteins are needed for uptake of xylose,
as well as of other sugars in yeast. In S. cerevisiae, xylose
has been found to be transported by the hexose transport-
ers, [102,103], but the affinity for xylose is approximately
200-fold lower than for glucose [104]. Consequently,
xylose uptake is competitively inhibited by glucose.
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There are 20 different genes encoding sugar transport
related proteins, 18 individual systems (Hxt1-17 and
Gal2) and two related signal proteins (Snf3p and Rgt2p).
The transporters exhibit different affinities for sugars, and
the expression of their corresponding genes is regulated
by the sugar concentrations, i.e. the availability of the car-
bon source [105]. It has previously been suggested that
xylose is taken up by both high- and low-affinity systems
of glucose transporters (Figure 2), but the uptake is
increased in the presence of low glucose concentrations
[106]. Studies have indicated that the high- and interme-
diate-affinity hexose transporters; Hxt4, Hxt5 Hxt7 and
Gal2 are in fact the most important transporters for xylose
[107]. Furthermore, it has been shown that a low (but
non-zero) glucose concentration is needed in the medium
for efficient xylose uptake [108]. This has been explained
by a need for glucose for expression of glycolytic enzymes
and intermediates [109], as well as generation of interme-
diary metabolites for the initial steps of the xylose metab-
olism and the pentose phosphate pathway [108]. Another

possible explanation, inferred from both experiments and
computer modeling, is that the glucose is needed for the
expression of hexose transporters with favorable xylose
transport properties, e.g. Hxt4 [110,111]. Consequently,
in order to obtain efficient co-fermentation of xylose and
glucose in SSF (sometimes denoted SSCF – simultaneous
saccharification and co-fermentation) with recombinant
S. cerevisiae, it is necessary to keep the glucose concentra-
tion low, which has been shown in practice in recent SSF
studies [112,113].

Experimental work on optimizing SSF
Reported experimental work on SSF have focused on
improving the process by increasing the substrate loading
(i.e. the content of water insoluble solids, WIS), decreas-
ing enzyme and yeast concentration, and varying temper-
ature and pH. Some recent SSF studies on lignocellulosic
feedstocks, which have been made with reasonably high
contents of water insoluble solids (WIS), and acceptable
ethanol yields are shown in Tables 2 and 3. Many studies

Simplified scheme of sugar transport and metabolism in S. cerevisiaeFigure 2
Simplified scheme of sugar transport and metabolism in S. cerevisiae. 1. Low- and intermediate-affinity hexose transporters. 2. 
High-affinity hexose transporters. (Abbreviations: PPP, pentose phosphate pathway; XR, xylose reductase; XDH, xylitol dehy-
drogenase; XK, xylulokinase; GK, glucokinase; PGI, phosphoglucose isomerase; PFK, phosphofructokinase; AD, aldolase; TPI, 
triose phosphate isomerase; GDH, glyceraldehyde-3-P dehydrogenase; GPD, glycerol-3-P dehydrogenase; GPP, glycerol-3-
phosphatase; PDC, pyruvate decarboxylase; ALD, acetaldehyde dehydrogenase; ADH, alcohol dehydrogenase)
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on pure cellulose (e.g. Sigmacell 50) have also been made,
but these are not considered in this review. Table 2 shows
studies in which only hexose sugars have been fermented,
whereas Table 3 shows studies with co-fermentation of
both hexoses and the pentose xylose.

Substrate loading
In order to achieve a high final ethanol concentration, a
high substrate loading, and hence a high WIS content, is
crucial for the economy of the SSF process. Batch mode is

the classical form of SSF. When the WIS content in SSF is
increased, the ethanol yield tends to decrease (Figure 3A).
In practice, it has been difficult to achieve good ethanol
yields above WIS contents of around 10% (cf. Tables 2
and 3).

Instead of adding all substrate initially, a gradual or step-
wise addition, i.e. a fed-batch approach can be used. There
are several advantages by running SSF in fed-batch mode.
By not adding all the hydrolyzate at once, the levels of

Table 2: Brief summary of SSF experiments carried out on hexose sugars.

Raw material Type of 
pretreatment

Amount 
of solids 1

Detoxification Temp 
(°C)

Strain Cultivation on 
hydrolyzate

Final ethanol 
conc. (g L-1)

Ethanol 
yield (%) 2

Mode of 
operation 3

Year and 
reference

Barley straw Steam 7.5% WIS No 35 S. cerevisiae Yes 22.4 80 Batch 2007 [121]
Salix Steam 9% WIS No 37 S. cerevisiae Yes 32 76 Batch 2006 [120]
Salix Steam 11% WIS No 37 S. cerevisiae Yes 33 62 Fed-batch 2006 [120]
Spruce Steam 10% WIS No 37 S. cerevisiae Yes 44.5 84 Batch 2005 [117]
Spruce Steam 6–10% 

WIS
No 37 S. cerevisiae Yes 44.5 84 Fed-batch 2005 [117]

Yellow Poplar 
Hardwood

Dilute-acid 11.5% WIS LLE-OL 4 34 Z. mobilis No 32.2 54 Batch 1999 [131]

Poplar Steam 10% w/v No (only solids 
in def. medium)

42 K. fragilis 
CECT 10875

No 19.0 71.2 Shake flask 2004 [138]

Eucalyptus Steam 10% w/v No (only solids 
in def. medium)

42 K. fragilis 
CECT 10875

No 17.0 62.5 Shake flask 2004 [138]

Wheat straw Steam 10% w/v No (only solids 
in def. medium)

42 K. fragilis 
CECT 10875

No 18.1 62.5 Shake flask 2004 [138]

Sweet sorghum 
bagasse

Steam 10% w/v No (only solids 
in def. medium)

42 K. fragilis 
CECT 10875

No 16.2 60.9 Shake flask 2004 [138]

B. carinata 
residue

Steam 10% w/v No (only solids 
in def. medium)

42 K. fragilis 
CECT 10875

No 19.0 68.1 Shake flask 2004 [138]

Old corrugated 
cardboard 
(OCC)

none 6 wt % No, def. medium 40 K. fragilis No 14.1 61.2 * Shake flask 2004 [154]

Old corrugated 
cardboard 
(OCC)

none 6 wt % No, def. medium 40 S. cerevisiae No 14.2 61.8 * Shake flask 2004 [154]

Paper sludge none 6 wt % No, def. medium 40 K. fragilis No 8.8 63.7 * Shake flask 2004 [154]
Paper sludge none 6 wt % No, def. medium 40 S. cerevisiae No 9.0 65.5 * Shake flask 2004 [154]
Antigonum 
leptopus leaves

Alkaline + H2O2 10% w/v No 43 K. fragilis No 27 n.a. Shake flask 2001 [141]

Antigonum 
leptopus leaves

Alkaline + H2O2 10% w/v No 40 S. cerevisiae No 21 n.a. Shake flask 2001 [141]

Sugar cane 
leaves

Alkaline + H2O2 10% w/v No 43 K. fragilis No 28 n.a Shake flask 2001 [141]

Sugar cane 
leaves

Alkaline + H2O2 10% w/v No 40 S. cerevisiae No 22 n.a. Shake flask 2001 [141]

Willow (Salix 
caprea QO82)

Steam- 
pretreatment

10% dry 
matter

No 37 S. cerevisiae No 28.7 84.4 Batch 1995 [122]

Willow (Salix 
caprea QO82)

Steam 10% dry 
matter

No 37 Z. mobilis No 27.9 82.1 Batch 1995 [122]

Switchgrass Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae & 
B. clausenii 
mixed culture

No 37.0 * 87 5 Shake flask 1992 [136]

Sweetgum Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 36.6 * 86 5 Shake flask 1992 [136]

Corn cob Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 39.1 * 94 5 Shake flask 1992 [136]

Corn stover Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 39.1 * 92 5 Shake flask 1992 [136]

Wheat straw Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 38.3 * 90 5 Shake flask 1992 [136]

Populus Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 38.3 * 90 5 Shake flask 1991 [125]

Populus Dilute sulfuric 
acid

7.5% w/v 
cellulose

No (only solids 
in def. medium)

37 S. cerevisiae No 36.6 * 86 5 Batch 1991 [125]

* Not directly given in the reference article, calculated by the authors.
1. The amount of solids can vary significantly due to how this is reported (e.g. WIS or dry matter), and may have a large impact on the SSF results. This is not always clearly defined 
in the respective research article.
2. Based on maximal theoretical ethanol yield on available hexoses, in most cases only glucose.
3. Batch and Fed-batch refers to SSF in bioreactor/fermenter.
4. LLE-OL = Liquid-liquid extraction followed by overliming
5. The maximal theoretical yield was assumed by Wyman et al. [136] to be only 95% due to cell growth.
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inhibitors can be kept lower, giving less inhibition of the
fermentation. A suitable feed rate may also allow a contin-
uous conversion of inhibitors, as has been shown in fed-
batch fermentation of dilute-acid hydrolyzates [114]. In
addition, it has been reported that also the inhibition of
the enzymes decreases when some of the toxic com-
pounds are converted [51]. Stirring is a significant prob-
lem at high WIS contents due to the high viscosity [115],
which results in mass and heat transfer problems. This
becomes less pronounced with fed-batch SSF, due to the
gradual hydrolysis of added fibers [116,117]. An addi-
tional advantage with fed-batch, is that the glucose level
can be kept lower during co-fermentation of xylose and
glucose (SSCF), which promotes xylose uptake [112,113]
(as discussed later on). An alternative to fed-batch addi-
tion is to make a pre-hydrolysis, i.e. to add enzymes to the
bioreactor some time before the fermenting organism is

added. This can be made at an elevated temperature and
will decrease the initial viscosity at the start of fermenta-
tion [118]. A disadvantage may be a less efficient co-fer-
mentation of xylose due to the higher glucose
concentration in the medium in the case of SSCF.

Enzyme loading
The enzyme loading is clearly important for the process
economy, but the economic sensitivity towards the
enzyme loading in SSF is difficult to predict due to the
large uncertainties of the cost of enzymes, and lack of suf-
ficient experimental data on the effect of enzyme load.
Techno-economical calculations have indicated that a
50% reduction of enzyme loading is beneficial if the yield
decreases less than 6–7% and required residence time is
not increased by more than 30% [119]. The enzymatic
hydrolysis of the solid fraction has a large control over the

The influence of substrate loading (A), enzyme loading (B), and cell concentration (C) on ethanol yield in SSF of different mate-rials: pretreated barley straw (black circle) [121], pretreated spruce (black diamond) [117, 149], pretreated salix (black square) [120], pretreated willow (black triangle) [122] and pretreated corn stover (×) [150]Figure 3
The influence of substrate loading (A), enzyme loading (B), and cell concentration (C) on ethanol yield in SSF of different mate-
rials: pretreated barley straw (black circle) [121], pretreated spruce (black diamond) [117, 149], pretreated salix (black square) 
[120], pretreated willow (black triangle) [122] and pretreated corn stover (×) [150].
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Table 3: Brief summary of SSF experiments carried out on both hexose and pentose sugars.

Raw 
material

Type of 
pretreatment

Amount 
of solids

Detoxification Tem
p (°C)

Strain Cultivation on 
hydrolyzate

Final ethanol 
conc. (g L-1)

Ethanol 
yield (%) 1

Mode of 
operation 2

Year and 
reference

Barley straw Steam 7.5% WIS No 35 S. cerevisiae 
TMB3400

Yes 22.0 63 Batch 2007 [155]

Wheat straw Steam 7% WIS No 34 S. cerevisiae 
TMB3400

Yes 32.9 75 Batch 2008 [113]

Wheat straw Steam 7% WIS No 34 S. cerevisiae 
TMB3400

Yes 34.7 78 Fed-batch 2008 [113]

Wheat straw Steam 9% WIS No 34 S. cerevisiae 
TMB3400

Yes 33.2 59 Batch 2008 [113]

Wheat straw Steam 9% WIS No 34 S. cerevisiae 
TMB3400

Yes 38.1 71 Fed-batch 2008 [113]

Sugar cane 
bagasse

Steam 7.5% WIS No 32 S. cerevisiae 
TMB3400

Yes 26.7 59 * Batch 2008 [128]

Sugar cane 
bagasse

Steam 7.5% WIS No 35 P. stipitis 
CBS6054

Yes 19.5 43 * Batch 2008 [128]

Corn stover Steam 10% WIS No 35 S. cerevisiae 
TMB3400

Yes 30.3 54 Batch 2006 [112]

Corn stover Steam 11% WIS No 35 S. cerevisiae 
TMB3400

Yes 36.8 59 Fed-batch 2006 [112]

1. Based on maximal theoretical ethanol yield on available hexoses and pentoses (in most cases glucose and xylose).
2. Batch and fed-batch refers to SSF in bioreactor/fermenter.
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total rate of ethanol production in SSF [117,120]. Studies
in which the enzyme loading has been varied therefore
show a strong positive correlation between enzyme load-
ing and the overall ethanol yield [121,122] (Figure 3B).
Commercial cellulase preparations available today often
need to be supplemented with extra β-glucosidase to pre-
vent end-product inhibition by cellobiose. Optimal β-glu-
cosidase additions have been estimated for e.g.
saccharification of pretreated aspen [123]. The optimal
enzyme cocktail composition is certainly raw-material
specific, and supplementation with extra β-glucosidase is
– as to be expected – more important in SHF than in SSF
[124].

To decrease the amount of added enzymes needed, inves-
tigations of SSF with mixtures of S. cerevisiae and the β-
glucosidase producing yeast strain Brettanomyces clausenii,
have been undertaken, and compared to SSF with only S.
cerevisiae. At low enzyme loadings and without β-glucosi-
dase addition, the mixture performed well. However, at
higher cellulase loadings, higher ethanol yields were
obtained when β-glucosidase was added [125]. Another
way of overcoming limiting hydrolysis and simplify the
SSF process, is to use cellobiose-fermenting yeasts, such as
Brettanomyces clausenii [126], or possibly recombinant
Klebsiella oxytoca [127].

Yeast loading
In a large-scale SSF process, the yeast (or other fermenting
microorganisms) will most likely be cultivated on the
hemicellulose hydrolyzate (see Figure 1). Hence, a higher
yeast concentration in the SSF will result in a lower overall
ethanol yield if the substrate cost for the production of the
yeast is considered. However, lowering the yeast concen-
tration will lower the volumetric productivity, and may
also lead to a stuck fermentation. The rate of the enzy-
matic hydrolysis have in many – probably most –
reported SSF experiments been rate determining, and the
yeast concentration could therefore be lowered
[117,119,120]. In agreement with this, there seems not to
be a strong positive correlation between cell concentra-
tion and measured ethanol yield (not counting the yield
cost of the yeast production or sugar losses in the pre-
treatment) above 1–2 g L-1 cells (Figure 3C) for typical SSF
conditions (~10% WIS and 30 FPU g-1 cellulose). There is
no doubt more work to be done on balancing the rates of
hydrolysis and fermentation during SSF.

Co-fermentation of pentose and hexose sugars (SSCF)
Progress is rapid in the field of xylose fermentation, but
few industrial yeast strains have yet the demonstrated
capability of fermenting xylose in lignocellulosic hydro-
lyzates efficiently. Hahn-Hägerdal et al. [92] recently pre-
sented information on the performance of industrial
xylose fermenting strains in lignocellulosic hydrolyzates.

All strains covered in their summary were XR and XDH
expressing strains, which also overexpressed XK.
TMB3400 is the only industrial pentose fermenting S. cer-
evisiae strain for which results on SSF of lignocellulosic
materials have so far been reported [112,113,128]. Etha-
nol concentrations reaching 40 g L-1 and yields up to 80%
of the theoretical based on xylose and glucose (at a WIS
content of 7%) have been achieved (Table 3). By-product
formation decreases the ethanol yield from xylose with
xylose fermenting strains of S. cerevisiae. However, less xyl-
itol is formed by XR/XDH-carrying strains in fermentation
of lignocellulosic hydrolyzates [129,130] compared to
defined medium, probably due to additional electron
acceptors present in the media. This was seen also in SSF
experiments with the strain TMB3400 for several xylose-
rich materials [112,113,128]. Both glycerol and xylitol
formation lead to a regeneration of NAD+ (cf. Figure 2).
Interestingly, more glycerol than xylitol was produced
[113].

Other pentose utilizing yeasts than S. cerevisiae TMB3400
have been evaluated in SSCF. Recently, Rudolf et al. [128]
used sugar cane bagasse as a substrate in SSF with P. stipitis
as a fermenting organism (see Table 3). It was indeed pos-
sible to use the organism in untreated bagasse hydro-
lyzate, but clearly higher yields and ethanol
concentrations were achieved with S. cerevisiae TMB3400.
Xylose fermenting bacteria have not been much examined
in lignocellulosic SSF, but yellow poplar hardwood was
used in SSF experiments with recombinant Z. mobilis co-
fermenting xylose and glucose [131]. However, a thor-
ough detoxification was required prior to the SSF.

Arabinose fermentation in SSF has not yet been reported,
although arabinose fermenting S. cerevisiae strains have
recently been constructed [132,133] as well as strains co-
utilizing arabinose and xylose [134]. Also Z. mobilis
strains co-utilizing arabinose and xylose have been devel-
oped [135]. However, further work is needed before effi-
cient ethanol production in SSF from arabinose can be
conducted.

Temperature
In SSF a compromise between the optimal temperatures
for the cellulolytic enzymes and the yeast is needed. Ear-
lier SSF experiments in our labs were often run at a tem-
perature of 37°C. Since the yeast S. cerevisiae has an
optimal temperature around 30°C and the cellulolytic
enzymes around 55°C, this was regarded as a suitable
compromise at the high end of what S. cerevisiae can tol-
erate [117,120,122,125,136]. However, recent studies
have shown important strain differences with respect to
temperature tolerance, and furthermore, the co-fermenta-
tion of glucose and xylose is affected by temperature.
Rudolf et al. [128] concluded that more xylose was con-
Page 9 of 14
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sumed by TMB3400 at 32°C than at 37°C during SSF of
sugar cane bagasse, and Olofsson et al. [113] found that a
temperature of 34°C was to prefer in SSF of wheat straw.
Possibly, a lower rate of hydrolysis, which gives a slower
release of glucose, favors xylose uptake in the competition
for transporters. Furthermore, inhibition effects may play
a role, and tolerance to inhibitors may be higher at tem-
peratures closer to the optimum of the yeast.

Thermotolerance is clearly an important topic for SSF and
thermotolerant yeast strains, e.g. Fabospora fragilis, Saccha-
romyces uvarum, Candida brassicae, C. lusitaniae, and Kluy-
veromyces marxianus, have been evaluated for future use in
SSF [137-141], to allow fermentation at temperatures
closer to the optimal temperature for the enzymes. How-
ever, in all these cases saccharification of pure cellulose
(e.g. Sigmacell-50) or washed fibers, in defined fermenta-
tion medium, were applied. SSF of cellulose with mixed
cultures of different thermotolerant yeast strains have also
been carried out [140,142]. However, there is so far a lack
of results from SSF experiments in which untreated ligno-
cellulosic materials have been used together with thermo-
tolerant strains.

Inhibitors
The amounts and types of inhibitory compounds vary
strongly between different raw materials, and also depend
on the pretreatment method. Hence, the needed inhibitor
tolerance of a strain in an SSF process may vary depending

on raw material. Several alternatives of detoxification (i.e.
removal of inhibitory compounds) have been explored,
e.g. over-liming, extraction with organic solvents, ion
exchange, molecular sieves, and steam stripping
[143,144]. Overliming with Ca(OH)2 is the most com-
monly used method. A significant drawback of this
method is that calcium salts may precipitate in the process
and contaminate surfaces of distillation columns, evapo-
rators and heat-exchangers. Hence, detoxification should
be avoided if possible, due to additional process cost as
well as possible loss of fermentable sugars [145,146].

More tolerant yeast strains for SSF than those available
today, may be achieved through genetic modifications,
e.g. overexpressing genes encoding enzymes for resistance
against specific inhibitors, and altering co-factor balance
in the cell [7]. Another way to improve strains is by evolu-
tionary engineering, through which strain robustness is
improved by mutation and selection [147]. Yet another
approach to overcome the problem with inhibition is by
adapting the SSF process. By applying e.g. a fed-batch
mode of substrate addition with proper feed protocol and
control variables, the levels of inhibitors can be kept at an
acceptable level. Such strategies have proven successful
during cultivation and fermentation of liquid hydro-
lyzates [148,149], as well as in SSF [117]. A combination
of more inhibitor-tolerant strains in combination with
efficient feed strategies will likely improve process robust-
ness in SSF processes.

SSF in relation to other process optionsFigure 4
SSF in relation to other process options. The arrows show the approach of SSF to other process options as a result of process 
changes. (Abbreviations: SSF = simultaneous saccharification and fermentation; SHF = separate hydrolysis and fermentation; 
CBP = consolidated bioprocessing, i.e. a process in which the enzymes are produced by the fermenting organism; SSCF = 
simultaneous saccharification and co-fermentation; SoSF = solid state fermentation.)
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Conclusion
The basic challenges for SSF – as for any other process
option – are to obtain as high degree of hydrolysis and as
high ethanol yield as possible. There is no doubt that the
development of more efficient pentose fermenting yeasts
with improved robustness in hydrolyzates, and the devel-
opment of more efficient enzymes and enzyme cocktails
will continue. Process economic evaluations are essential
for this development. Useful "iso-cost" curves in the oper-
ational space can thereby be constructed to guide further
development work [119]. The simplest – and original –
SSF is a batch process in which substrate, enzymes and
yeast are all present in the reactor initially, and at the
intended concentrations. Additional degrees of freedom
are available for process improvement by changing some
of the initial conditions. In principle, substrate(s),
enzymes and even yeast may all be gradually fed during the
process. Several of these options can probably be dis-
carded for practical reasons, but it is nevertheless clear that
there are many options relatively unexplored for the
improvement of SSF. The new variants of SSF that are now
tried, can be seen as a move of the "classical" SSF process
in the direction of other process options, although not
taking it all the way (see Figure 4). The result will be new
"hybrid" processes, which will be tuned for the feedstock
and the enzymes used.
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