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Abstract

Background: Interest in the detailed lignin and polysaccharide composition of plant cell walls has surged within
the past decade partly as a result of biotechnology research aimed at converting biomass to biofuels. High-resolution,
solution-state 2D 1H–13C HSQC NMR spectroscopy has proven to be an effective tool for rapid and reproducible
fingerprinting of the numerous polysaccharides and lignin components in unfractionated plant cell wall materials, and
is therefore a powerful tool for cell wall profiling based on our ability to simultaneously identify and comparatively
quantify numerous components within spectra generated in a relatively short time. However, assigning peaks in new
spectra, integrating them to provide relative component distributions, and producing color-assigned spectra, are all
current bottlenecks to the routine use of such NMR profiling methods.

Results: We have assembled a high-throughput software platform for plant cell wall profiling that uses spectral
deconvolution by Fast Maximum Likelihood Reconstruction (FMLR) to construct a mathematical model of the signals
present in a set of related NMR spectra. Combined with a simple region of interest (ROI) table that maps spectral
regions to NMR chemical shift assignments of chemical entities, the reconstructions can provide rapid and
reproducible fingerprinting of numerous polysaccharide and lignin components in unfractionated cell wall material,
including derivation of lignin monomer unit (S:G:H) ratios or the so-called SGH profile. Evidence is presented that
ROI-based amplitudes derived from FMLR provide a robust feature set for subsequent multivariate analysis. The utility
of this approach is demonstrated on a large transgenic study of Arabidopsis requiring concerted analysis of 91 ROIs
(including both assigned and unassigned regions) in the lignin and polysaccharide regions of almost 100 related
2D 1H–13C HSQC spectra.
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Conclusions: We show that when a suitable number of replicates are obtained per sample group, the correlated
patterns of enriched and depleted cell wall components can be reliably and objectively detected even prior to
multivariate analysis. The analysis methodology has been implemented in a publicly-available, cross-platform (Windows/
Mac/Linux), web-enabled software application that enables researchers to view and publish detailed annotated spectra
in addition to summary reports in simple spreadsheet data formats. The analysis methodology is not limited to studies
of plant cell walls but is amenable to any NMR study where ROI segmentation techniques generate meaningful results.
Please see Research Article: http://www.biotechnologyforbiofuels.com/content/6/1/46/.

Keywords: Lignin composition, Spectral deconvolution, Maximum likelihood, NMR spectroscopy,
Multivariate data analysis
Background
Interest in the detailed lignin and polysaccharide composi-
tion of plant cell walls has surged within the past decade
partly as a result of biotechnology research aimed at
converting biomass to biofuels [1,2]. Numerous studies
have established the link between the relative amount of
lignin and cellulose in vascular tissues and the accessibility
of plant cell walls to chemical, enzymatic, and microbial
digestion [2-4]. Comparisons of different species [5], and
transgenic studies in which synthesis of cell wall compo-
nents is genetically modified [3,4,6], are particularly useful
in identifying these linkages.
High-resolution, solution-state 2D 1H–13C HSQC NMR

spectroscopy has proven to be an effective tool for rapid
and reproducible fingerprinting of the numerous polysac-
charides and lignin components in unfractionated plant
cell wall materials [7-11]. Recent advances in “ball-milled”
sample preparations dissolved or swelled in organic sol-
vents have enabled unfractionated material to be profiled
without the need for component isolation [12,13]. The
heterogeneous and highly polymeric nature of the ball-
milled cell wall material, in which polymers are of sig-
nificantly lower degree of polymerization (DP) than in the
intact cell wall (where DP of cellulose is ~7000-15000)
[13], results in spectra with broad linewidths and consider-
able complexity. However, the dispersion provided by the
two-dimensional correlation of protons to their attached
13C nuclei, at natural abundance, enables resolution and
assignment of numerous lignin, cellulose, and hemi-
cellulosic components. The 2D 1H–13C HSQC experiment
is thus a powerful tool for cell wall profiling based on our
ability to simultaneously identify and comparatively quan-
tify numerous components within spectra generated with
relatively short acquisition times (15–20 min/sample, but
up to 5 h if excellent signal-to-noise and the ability to de-
tect minor components is desirable).
As sample preparation and data acquisition methods

have improved [10,11], the task of spectral analysis has
become a bottleneck in large studies. NMR-based chemo-
metrics is one data analysis approach recently applied to
investigate structural/compositional differences between
wood samples from Populus [14]. Chemometrics is a
multivariate approach with an extensive history in meta-
bonomics [15,16]. General strengths of a multivariate ap-
proach that simultaneously examines features from
different sample groups include the ability to detect subtle
patterns among features across sample groups, albeit
sometimes with confusion by artifacts [12], and assess the
relative importance of each feature for group discrimin-
ation [14].
NMR-based chemometrics is characterized by a se-

quence of steps involving: i) NMR data processing, in-
cluding baseline correction if necessary; ii) generation of
a feature set usually by selecting intensity values on each
peak or summing over segmented regions (spectral bin-
ning); iii) production of a data table in which each sam-
ple represents a row and the features are columns; iv)
normalization (row-based) and scaling (column-based)
of the data; and v) multivariate statistical modeling. The
greatest pitfalls lie in feature selection (step ii). Originally
developed as a rapid and consistent method to generate
data sets automatically and handle problems of peak
“drift”, spectral binning unfortunately reduces spectral
resolution and can generate artifacts in crowded spectra
where the boundary of a bin may lie at the center of a
signal. Even when the full resolution spectrum is used
without binning, the common technique of analyzing 2D
data by generating a 1D row vector from the 2D grid re-
sults in a loss of correlation information between the 1H
and 13C intensity values during the analysis process, al-
though this may be retained by indexing the 1D data so
that 2D spectra can be recreated, including after, for ex-
ample, principal component analysis [14].
An alternative to peak-based or bin-based feature se-

lection is to mathematically model the data and use the
modeled parameters as features for subsequent analysis.
If the model can efficiently represent the relevant fea-
tures of the data, the modeling step dramatically reduces
the number of columns in the data matrix (data reduc-
tion) without loss of relevant information or generation
of artifacts. Recently, spectral deconvolution using fast
maximum-likelihood reconstruction (FMLR) was shown
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Table 1 Sample groups of Arabidopsis thaliana used in
study

Gene Sample groups(s) # replicates WT-eff

WT WT 4 X

pal1 pal1-2, pal1-3 10 (5,5) X

pal2 pal2-2, pal2-3 10 (5,5) X

c4h c4h-2 , c4h-3 6 (1,5)

4cl1 4cl1-1, 4cl1-2 10 (5,5)

4cl2 4cl2-1, 4cl2-2 10 (5,5) X

ccoaomt1 ccoaomt1-3, ccoaomt1-5 11 (6,5)

ccr1 ccr1-3, ccr1-6 7 (3,4)

f5h1 f5h1-2, f5h1-4 10 (5,5)

comt comt-1, comt-4 10 (5,5)

cad6 cad6-1, cad6-4 10 (5,5) X

The table lists the ten genes [24] involved in the study and the associated
sample groups. The two mutant alleles associated with the same gene were
consolidated into a single sample group for the purposes of this study. This
consolidation was justified in terms of a calculated t-test value between the
two groups that was less than 3 for each normalized %S, %G, and %H value.
The designation of “WT-eff” refers to a sample group whose percentage S, G,
and H values are not statistically different from those of the wild-type group.
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to accurately quantify metabolites in 2D 1H–13C HSQC
spectra [17,18]. FMLR constructs the simplest time-
domain model (e.g., the model with the fewest number
of signals and parameters) whose frequency spectrum
matches the visible regions of the spectrum obtained
from identical Fourier processing of the data [19,20].
Spectral analysis of 2D 1H–13C HSQC NMR data by

FMLR would appear to be an attractive approach for
high-throughput plant cell wall profiling in the following
respects:

i. FMLR has already been shown to accurately model
the characteristics of complex 2D 1H–13C HSQC
solution spectra [17], and can be performed with
minimal input information and operator
intervention (moderately high throughput).

ii. Because of the high spectral dispersion inherent in
2D 1H–13C NMR data, the detailed but localized
amplitude and frequency information derived from
FMLR should be easily combinable with assigned
region-of-interest tables to generate the relative
concentration of cell wall components in each
sample (cell wall component profiles). Previous work
has shown the utility of region of interest (ROI)-
segmentation in quantitative 2D 1H–13C NMR
studies [21,22].

iii. ROIs that correspond to a resolved peak or peak
cluster can be defined even when the NMR
assignment is tentative or unknown. The cell wall
component profiles are thus suitable for both
untargeted and targeted profiling.

iv. Simple visual inspection of the cell wall component
profiles might suffice to identify patterns of
enrichment and depletion of various components
between sample groups.

v. The cell wall component profiles are also a robust
feature set for input into multivariate analysis.

We apply here the spectral analysis methodology of
FMLR with ROI-based segmentation to a large (98 sam-
ples) 2D 1H–13C NMR study of Arabidopsis lignin mu-
tants and controls involving 20 sample groups (10
consolidated groups). Our focus here is not on biological
conclusions to be drawn from the study (this is pub-
lished concomitantly) [23], but on the methodology and
software implementation of data analysis for powerful
cell wall profiling by NMR.

Materials & methods
Biological sources
For ten genes involved in lignin biosynthesis [24], two
Arabidopsis thaliana mutant alleles were analyzed (see
Table 1). The 20 sample groups were consolidated into
10 effective sample groups based on statistically similar
lignin composition. These samples were drawn from an
overall pool of forty biological replicates of each homo-
zygous mutant and 32 biological replicates for wild-type
type were grown simultaneously in a random block design,
spread over different trays, in the same environment.
Plants were grown first under short-day conditions (8 h
light, 21°C, humidity 55%) during 6 weeks, and then trans-
ferred to the greenhouse. For all of the biological repeats,
the main stem was harvested just above the rosette when
the plant was completely senesced. Once harvested, axil-
lary inflorescences, siliques and seeds, as well as the bot-
tom 1 cm of the main stem, were removed. The rest of the
inflorescence stem was cut into 2 mm pieces and bio-
logical repeats were pooled per 8 stems to obtain 5 bio-
logical replicates for the mutant alleles and 4 repeats for
the wild-type, except for c4h-2, ccr1-3, and ccr1-6. In order
to have enough biomass for NMR analyses, the senesced
inflorescence stems of c4h-2 were pooled in one single
pool, for ccr1-3 the stems were pooled in 3 pools, and for
ccr1-6 in 4 pools.

Sample preparation and cell wall dissolution
Preparation of whole cell wall samples for NMR was large-
ly as described previously [8,10]. In brief, pre-ground
Arabidopsis stem samples (~200 mg) were extracted with
water (3×) and then 80% aqueous ethanol (sonication 3 ×
20 min) yielding 70–100 mg of cell wall material. Isolated
cell walls (~80 mg) were ball-milled (4 × 30 min milling
and 5 min cooling cycles, total time 2 h 20 min) using
a Fritsch (Idar-Oberstein, Germany) Planetary Micro
Pulverisette 7 ball mill vibrating at 800 rpm with 12 mL
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ZrO2 vessels containing thirty 5 mm ZrO2 ball bearings.
Aliquots of the ball-milled whole cell walls (~60 mg)
were transferred into NMR sample tubes, swollen in
DMSO-d6:pyridine-d5 (4:1, v/v, 600 μl), and subjected to
2D NMR experiments.
Analysis overview
The process of FMLR reconstruction with ROI segmen-
tation can be viewed as a sequence of steps involving:

1. NMR data acquisition and processing
2. Ensemble matrix formation and importation of

grouping information
3. Spectral normalization
4. ROI segmentation
5. Spectral deconvolution by FMLR
6. ROI assignment and generation of a feature matrix
7. ROI normalization of the feature matrix
8. Statistical analysis of the features
NMR data acquisition and processing
NMR spectra were acquired on a Bruker Biospin (Billerica,
MA) AVANCE 700 MHz spectrometer fitted with a cryo-
genically cooled 5-mm TXI gradient probe with inverse
geometry (proton coils closest to the sample). Cell wall
samples were swollen in 4:1 DMSO-d6:pyridine-d5, 0.5 mL;
the central DMSO solvent peak was used as internal ref-
erence (δC, 49.5; δH, 3.49 ppm). Adiabatic HSQC ex-
periments (hsqcetgpsisp.2.2) were carried out using the
parameters described previously [10].
The initial steps of NMR data processing (conversion

from time-domain to frequency domain) were performed
using Topspin 3.1-Macintosh (Bruker Biospin, Rheinsteten,
Germany). The processing consisted of i) apodization
(matched Gaussian in F2, squared cosine-bell in F1),
Table 2 Basis functions and parameters used in FMLR

Basis functions

Name Type Expression Derivative Usage

Sinusoid Complex eiωt iteiωt Always

Damping function Real e�atη �tηe�atη Used excep

Parameters

Parameter Symbol Variable Basis function Initial valu

Frequency Ω Yes Sinusoid From peak

Decay Rate Α Yes Damping function From “prot

Decay Power Η No Damping function Assigned b
on single d

The time domain basis functions along each model dimension are the complex pro
frequency domain functions are obtained from Fourier transformation using a digit
Multidimensional basis functions are derived from the product of the orthogonal co
linear) optimization of the parameters, the derivative basis functions are used. The
signal between a Lorentzian (η = 1) and Gaussian (η = 2) decay profile. This value is
the optimization of any given data set. The corresponding derivative basis function
angular frequency (sinusoid) and decay rate (damping function).
ii) zero-filling, iii) Fourier transformation, and iv) phase
correction; no linear prediction was used.
The apodization and zero-filling parameters associated

with steps i-iv along each dimension d define a vector op-

erator F̂ d that can be applied identically to both the ac-
quired FID and the model FID along dimension d. In the

FMLR algorithm, the F̂ d operator converts discrete basis
functions in the time domain (see Table 2) to discrete basis
functions in the frequency domain.

Ensemble matrix formation
To facilitate concerted analysis of multiple data sets, the
2D absorption spectra (portions remaining after phase
correction and discarding of imaginary components) were
appended together to form an “ensemble” data set
(pseudo-3D matrix). Two of the dimensions correspond
to the 1H and 13C spectral frequencies and the remaining
dimension is a “pseudo-dimension” that encodes the spec-
tral index (and identity of the sample source).

Spectral normalization
The intensity of each data point in the spectrum was
normalized to the sum of all intensity points prior to
spectral analysis. This pre-analysis normalization step
removes intensity modulation due to varying concentra-
tions of biological material and allows the same intensity
thresholds to be applied across all data sets.

ROI segmentation
A region of interest (ROI) as used in this context refers
simply to a 2D spectral window or “box” associated with
a spectral transition from a molecular entity. Regions of
interest were manually defined for 91 ROIs within Newton
by drawing boxes overlaid on the spectra (see graphical
view in Figure 1A-C). Results from previous cell wall
t along indirect dimensions of constant time experiments

e Constrained

position No

otype” signal Yes

ased on profiling of data sets. Fixed per analysis
ata set

No (fixed)

duct of a sinusoid basis function with a damping function. The corresponding
al operator derived from the acquisition and processing parameters.
mponent basis functions along each dimension. For gradient-based (non-
exponent η appearing in the decay rate term is a value that modulates the
adjusted to fit a similar class of peak shapes and is left constant throughout
s are used to calculate the derivative of the basis function with respect to the
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(See figure on previous page.)
Figure 1 Annotated high-resolution, solution-state 2D 1H–13C HSQC NMR of a wild-type Arabidopsis spectrum in the A) lignin aromatic,
B) polysaccharide anomeric, and C) lignin-polysaccharide regions. The rectangular boxes denote ROIs that correspond to assigned NMR
transitions (colored boxes with annotations) or simply resolved regions of the spectrum that have yet to be assigned (gray boxes). The
unassigned regions are associated with an ID that is used to identify them in the feature matrix. To avoid crowding the figure, the ID does not
appear as a label. The lowest contour in the figure corresponds to an intensity level of 3 SD of rms noise.
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profiling studies [8,10,11,25] and model compounds were
used to determine the footprint of the ROIs appearing in
the figures and to assign 52/91 ROIs in the various spec-
tral regions. As an ROI is drawn once and can be
superimposed onto any spectrum, the time required to de-
fine their boundaries is based only on the number of ROIs,
rather than the number of spectra.
For future studies, ROIs defined from earlier studies

can be imported and graphically adjusted to align with
the local spectra.

Fast maximum-likelihood reconstruction (FMLR)
The detailed theory and equations for applying the
maximum-likelihood method to analysis of NMR data
have been reported previously [19,20], and most recently
for the analysis of 2D 1H–13C data sets in a metabolomics
context [17]. The specific steps for performing spectral
deconvolution of the Arabidopsis data in this study
consisted of:

1. Prototype Signal Generation: An isolated signal was
graphically selected by the operator as an archetypal
signal. The signal giving rise to the peak was fitted
using a model whose basis functions and model
parameters are specified in Table 2. The decay rate
(linewidths) obtained from this optimization were
used as initial values for further modeling. For the
Arabidopsis study, the prototype linewidth was
80 Hz along both the 1H and 13C dimensions.

2. Constraint Specification: The FMLR algorithm uses
constraints on linewidth to assist in convergence of
the fitting algorithm in crowded spectral areas.
Linewidth constraints are specified as a multiple of
the prototype linewidth along each dimension. For
the study reported here, the linewidth was
constrained to be a factor of 1/2 to 2 relative to the
prototype linewidth, i.e., 40–160 Hz.

3. Choosing Noise Thresholds: During spectral
deconvolution (see below), signals are added
incrementally in a series of iterations. Initially the
pick threshold is set to the maximum peak height
and is then reduced geometrically by a factor of

ffiffiffi

2
p

at the conclusion of each iteration. The analysis
algorithm is terminated when the pick threshold
reaches a minimum value specified as a multiple of
signal-to-noise. The S/N threshold for this study
was 4.0.
4. Spectral Deconvolution: To avoid modeling
extraneous features of the spectrum, only those
peaks in a spectrum contained within at least one
ROI were modeled by spectral deconvolution.
Spectral deconvolution was initiated after steps 1–3
above and continued without operator intervention
for a series of 10 iterations that yielded 22,389
signals (5 × 22,389 = 111,945 total parameters)
across the 98 data sets. The total duration time of
the analysis was 28 minutes on an off-the-shelf
Pentium laptop [AMD Phenom II N870 Triple-Core
Processor 2.3 GHz, 6.0 GB RAM, Windows 7 SP 1
2009 64 bit OS, Java 1.6.0_25_b06 with Java Hot
Spot (TM) 64 bit server virtual machine].

ROI assignment and feature matrix generation
A signal was assigned to a target ROI if its peak center
existed within the boundaries of that ROI. When a
source peak is contained within more than one target
ROI (i.e., two or more target ROIs overlap), the Newton
assignment algorithm assigns the source peak to the tar-
get ROI with the greatest “gravity metric” (product of
source peak and target peak intensities divided by the
spectral distance between the source and target peak
summed over all target peaks).
The amplitude of each ROI was calculated as the simple

sum of all signal amplitudes (obtained from spectral de-
convolution) assigned to that ROI. From this information,
a “feature matrix” can be constructed of a 2D nr × ns
matrix where nr is the number of regions of interest and
ns is the number of spectra.

ROI normalization
After generation of the feature matrix, which can be
imported into any standard spreadsheet program (csv file
format), the value of each ROI amplitude (i.e., the sum of
amplitudes of all signals located within the region of inter-
est) was normalized by a value L representing lignin con-
tent in the spectrum. The value L is the weighted sum of
integrals of the following ROI amplitudes:

L ¼ S2=6½ � þ S02=6½ � þ 2 G2½ � þ 2 G20½ � þ H2=6½ � ð1Þ

Where [S2/6], [S'2/6], [G2], [G'2], [H2/6] represent the
ROI amplitudes in regions corresponding to the S
(syringyl), G (guaiacyl), and H (p-hydroxyphenyl) lignin
types [See also Figure 1A]. The coefficients are derived
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from the relative ratio of proton/carbon pairs assigned
to the spectral regions. This normalization step produces
a meaningful metric (i.e., as a fraction of lignin content
in the sample) for reporting the amplitudes of cell wall
components. The normalization operation was performed
within a spreadsheet program (Microsoft Excel).
For spectra in which an internal standard (e.g., DSS or

formate) is present at a fixed concentration (not shown
here), the software also supports normalization by the in-
tensity of the ROI associated with the internal standard.

Statistical data analysis
Differences in ROI amplitudes between Arabidopsis mu-
tant lines and a wild type were analyzed with analysis of
variance using the glm procedure of the SAS/STAT soft-
ware, Version 9.3 of the SAS System for windows.
Copyright © 2011, SAS Institute Inc., Cary, NC, USA.
P-values were adjusted for multiple testing using the
Dunnett approach. All reported significant differences are
at the overall α level of 0.05.
Table 3 Normalized S/G/H lignin changes

A: Estimated differences from FMLR

Sample group S

Δ% CI p-value Δ%

pal1 1.6 -2.1;5.3 0.73 -1.6

pal2 0.7 -3.0;4.4 1 -1.4

c4h 9.2 5.1;13.2 3E-7 -15.9

4cl1 10.2 6.5;13.9 1E-9 -13.2

4cl2 -1.1 -4.8;2.6 0.94 0.6

ccoaomt1 8.2 4.5;11.8 5E-7 -11.6

ccr1 -12.5 -16.4;-8.6 6E-12 -2.6

f5h1 -25.0 -28.7;-21.3 1E-12 24.9

comt -21.9 -25.6;-18.2 1E-12 21.3

cad6 0.5 -3.2;4.2 1 -0.2

B: Estimated differences from ROI Integration

Sample group S

Δ% CI p-value Δ%

pal1 1.1 -2.2;4.5 0.90 -1.3

pal2 0.2 -3.1;3.5 1 -0.7

c4h 7.7 4.0;11.3 2E-6 -12.6

4cl1 8.2 4.9;11.5 4E-8 -10.3

4cl2 -1.0 -4.4;2.3 0.93 0.6

ccoaomt1 6.5 3.2;9.8 1E-5 -8.9

ccr1 -9.6 -13.1;-6.1 2E-9 -0.5

f5h1 -21.3 -24.7;-18.0 1E-12 21.3

comt -16.7 -20.0;-13.4 1E-12 16.4

cad6 -0.2 -3.5;3.1 1 0.3

‘Δ%’ The average predicted differences in the mean percent of S, G, and H lignin betwe
corresponding 95% confidence intervals, ‘p-value’ the Dunnett adjusted p-values. The a
from two different ROI quantitative methods: FMLR reconstruction and ROI integration.
Data visualization
All of the contour plots contained in the figures here
were rendered by Newton and exported in the vector-
based format of encapsulated postscript (EPS). Annota-
tions were added using Adobe Illustrator. Bar charts and
similar graphics comparing ROI amplitudes were pro-
duced by Microsoft Excel and SAS.

Software availability
The software application can be downloaded and run
from instructions found at http://newton.nmrfam.wisc.
edu/. The host machine must have an installed version
of the Java Runtime Environment (JRE) v1.6+ to run the
application; Microsoft Windows, Apple MacOS, and
various Linux implementations are all supported.

Results and discussion
Region of interest specification
After processing the spectra and creating the ensemble,
a set of 91 ROIs were specified as 2D rectangles along
G H

CI p-value Δ% CI p-value

-4.8;1.6 0.57 0.03 -3.5;3.6 1

-4.6;1.8 0.73 0.6 -2.9;4.2 1

-19.3;-12.4 1E-12 6.7 2.8;10.6 0.0001

-16.3;-10.0 1E-12 3.0 -0.6;6.5 0.13

-2.6;3.8 1 0.5 -3.1;4.0 1

-14.7;-8.4 1E-12 3.4 -0.1;6.9 0.06

-6.0;0.8 0.18 15.1 11.3;18.9 1E-12

21.7;28.1 1E-12 0.1 -3.4;3.7 1

18.2;24.5 1E-12 0.6 -3.0;4.0 1

-3.4;2.9 1 -0.2 -3.8;3.3 1

G H

CI p-value Δ% CI p-value

-3.9;1.4 0.65 0.1 -2.4;2.7 1

-3.4;2.0 0.98 0.5 -2.1;3.0 1

-15.5;-9.6 1E-12 4.9 2.2;7.7 7E-5

-13.0;-7.6 1E-12 2.1 -0.4;4.6 0.14

-2.1;3.3 0.99 0.4 -2.1;3.0 1

-11.6;-6.3 1E-12 2.5 -0.05;5.0 0.06

-3.4;2.3 1 10.1 7.4;12.8 1E-12

18.6;23.9 1E-12 0.07 -2.5;2.6 1

13.7;19.1 1E-12 0.3 -2.2;2.9 1

-2.4;3.0 1 -0.1 -2.6;2.4 1

en each sample group and the effective wild-type sample group, ‘CI’ the
verage predicted differences in Table 3A and Table 3B reflect values calculated
Values in bold indicate significant differences at an overall significance level of 0.05.

http://newton.nmrfam.wisc.edu/
http://newton.nmrfam.wisc.edu/
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Processed spectrum (data), FMLR reconstruction (model), and residual of the aromatic (A) and polysaccharide (B) region of
the 2D 1H–13C HSQC for a wild-type sample of Arabidopsis. The color of a contour is assigned to the color of the ROI associated with the
dominant signal in that region. As can be seen in the figure, a minimal number of reconstructed signals is required to yield a model with an
associated residual that is less than the noise floor (noise floor = 3.0 SD). The set of contours near (3.6, 76) ppm and (4.7, 63) ppm in (B) are not
reflective of poor modeling but are a consequence of the fact that no ROI was defined near those positions. Signals in that region of the
spectrum were simply not modeled.
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the 1H and 13C axis as shown in the lignin, lignin-
polysaccharide, and polysaccharide-anomeric regions of
Figure 1A-C. The spectral regions shown in each figure
were obtained from a selected spectrum from the wild-
type sample group of Arabidopsis. The boundaries were
graphically drawn to segment the spectrum into clusters
of signals that are resolved from one another (although
the signals within a cluster may be only partially re-
solved). Assignments of plant cell wall components from
previous studies [10,11] using model compounds were
used to assign 52 of the 91 ROIs (see Figure 1A-C). Once
specified for a given study, a ROI table can be exported
and imported into other studies with minimal adjustment.

Spectral deconvolution by FMLR
A mathematical model of all signals present in the spec-
tral ensemble was obtained by spectral deconvolution
using fast maximum likelihood reconstruction (see
FMLR section of methods for details). Signals present in
an ROI were modeled if the height of the residual peak
was at least 4.0 standard deviations (SD) above the mea-
sured root-mean-square (rms) noise of the ensemble.
Peaks outside of any ROI were ignored. Each signal was
modeled with five parameters: a scalar amplitude, a fre-
quency along each dimension, and a decay rate (linewidth)
along each dimension. The final statistics associated with
the deconvolution are summarized in Table 3.
The data, model, and residual of spectra from the com-

plex lignin-side-chain plus polysaccharide region of a
wild-type sample are shown in Figure 2. Each marker in
the figure denotes the center of a signal obtained from
spectral deconvolution. Evidence for the suitability of the
model to account for major features of the data is that a
minimal number of observed signals yields a recon-
structed model with a small associated residual (difference
between the data and the model). As evident from the
figure plotted at a threshold intensity of 3.0 SD, there
are few signals in the residual with a peak threshold
greater than 3.0 SD (SD of rms noise).

Feature set of ROI amplitudes
The generation of a meaningful “feature set” of ROI-
based amplitudes from FMLR is straightforward. Each
peak was automatically assigned to an ROI based on
whether its peak center was located within a given ROI
(see ROI Assignment section of methods). The amplitude
of an ROI was calculated as the simple sum of all signal
amplitudes assigned to that ROI. To provide a more mean-
ingful comparison of ROI amplitudes between sample
groups, each ROI amplitude was normalized by total lignin
content (see ROI Normalization section of Methods). This
normalized ROI amplitudes per spectrum results in a fea-
ture matrix of 91 ROI amplitudes × 98 spectra (available
from Additional Information).

SGH lignin composition
The relative composition of S (syringyl), G (guaiacyl), and
H (p-hydroxyphenyl) lignin units is an important element
of plant cell wall profiling. The spectral data associated
with the SGH ROIs for the sample groups in the study
(averaged over all spectra per mutant sample group) is
shown as a series of contour plots in Figure 3. In discern-
ing whether relative percentages of SGH lignin are modu-
lated across the sample groups, the bar chart of Figure 4
provides a graphical view of the normalized profiles
obtained from the SGH portion of the ROI feature matrix.
Differences in S, G, and H percentages between the
Arabidopsis mutant lines and the wild-type together with
Dunnett adjusted p-values are given in Table 3. The over-
all pattern of enrichment and depletion in the mutant
sample groups compared to the wild-types is displayed in
the bar chart of Figure 5 where 3 patterns are evident:
i) increase of H and S relative to G (c4h, 4cl1, ccoaomt1);
ii) increase of H relative to S (ccr1), and iii) depletion of S
relative to G (f5h1 and comt). These results are confirmed
by thioacidolysis on the same set of Arabidopsis lignin
mutants and are published concomitantly [23].
When comparing %S, %G, and %H changes between

the mutant groups and wild-type groups, the correspond-
ing p-values are all < 0.0001 (Table 3) for any change
greater than 4% (Table 3). The differences are in general
larger in magnitude for patterns detected with FMLR re-
construction (Table 3A) versus ROI integration (Table 3B).

Correlation of ROI changes to SGH modulation
To assess which ROIs might be correlated with the SGH
patterns, Pearson correlations were calculated between
all ROI amplitudes and the lignin compounds G2, G′2,
S2/6, S′2/6, and H2/6. LA-Sβ was highly positively cor-
related to S2/6 (r = 0.94, p < 0.0001) and S′2/6 (r = 0.94,
p < 0.0001) and highly negatively correlated to G2 (r = -0.88,
p < 0.0001). LA-Sβ is assigned specifically to β-syringyl
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Figure 3 Contour plots of 2D 1H–13C HSQC spectral regions associated with signals assigned to the S′2/6, S2/6, G′2, G2, G5/6, and H2/6
transitions. The data shown represent the mean spectra of all samples belonging to each sample group (number of spectra for each sample
group shown in parentheses). The color of each contour is assigned based on the FMLR reconstructions, i.e., the dominant signal associated with
each grid point is used to assign a color to that pixel (and related contour). The contour plots show the ability of the reconstructions to
discriminate between assigned (colored) and unassigned (black) signals that partially overlap.
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ethers and therefore relates to the S-G distribution, being
obviously lower when the S-content is lower. LBα is highly
positively correlated to G2 (r = 0.82, p < 0.0001). The LBα
region is assigned to phenylcoumaran (β–5) units in lig-
nins. Such units arise from coupling of a monolignol (at
its β-position) with a guaiacyl G (or H) unit (at its 5-
position), but not a syringyl unit (which has the 5-position
blocked with a methoxyl group); thus levels are higher
when relative syringyl levels are lower (S/G is lower). The
correlations are visualized in Figure 6. Such correlations
or associations can be powerful aids in enhancing our
assignment capabilities in these complex cell wall samples.
For example, the profile of two of the unassigned regions
(ROI55 and ROI66) in the lignin region of the spectrum
(Figure 1A) are highly positively correlated with H2/6
(r = 0.93, p < 0.0001 for both).

Conclusions
The spectral dispersion inherent in 2D 1H–13C HSQC
renders ROI segmentation methods useful for semi-
quantitative studies of complex biological systems [21,22].
The profile of any single cross peak in the spectrum is
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linearly proportional to the concentration of the under-
lying species giving rise to the resonance. The term
“semi-quantitative” is used here because the amplitude of
different cross peaks in the 2D 1H–13C HSQC spectrum
is not strictly comparable due to a range of factors relat-
ing to NMR methods themselves, and to the properties
of the various polymers. For example the finite RF power
available on the carbon channel in proton-carbon correl-
ation experiments leads to non-uniform excitation of car-
bon resonances across the spectrum, although this is
somewhat ameliorated by using adiabatic-pulse experi-
ments [26]. If the experiment permits longer acquisition
times, a range of quantitative 2D HSQC experiments
[27,28] have been developed to mitigate this artifact.
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We provide evidence here using a sizeable mutant
study that FMLR reconstruction is useful both for rapid
profiling of plant cell wall material and in improving the
accuracy of conventional ROI segmentation methods for
analysis of NMR spectra. The approach of generating a
frequency domain spectrum from Fourier processing of
a model time domain signal was used to reconstruct a
model spectrum with close agreement to the processed
data (Figure 2) using a small number of signals (degrees
of freedom). An analysis of variance (ANOVA) in the
SGH regions of the ROI feature matrix between pairs of
mutant and wild-type sample groups yielded differences
larger in magnitude using ROI segmentation coupled
with FMLR reconstruction than with simple ROI integra-
tion alone. The difference between fixed-window integra-
tion techniques and spectral deconvolution is expected to
be more pronounced in heterogeneous systems that display
Figure 6 Bar charts reflecting the correlations between the ROIs and
broad line widths such as in ball-milled preparations of
plant cell wall material.
Even more significant is that assignment of ROIs to a

mathematical model of the data rather than the data it-
self makes subsequent quantification less sensitive to
changes in ROI definition. When modeled mathematic-
ally, the entire amplitude of a signal is assigned to an
ROI as long as the peak center associated with the signal
is encapsulated by the ROI. With direct integration of
the spectrum itself, however, the ROI amplitude values
are always modulated by changing the size or position of
the ROI. This is an important consideration for general
profiling using ROI segmentation because ROIs can be
reused between studies with a minimal amount of adjust-
ment (e.g., a constant ppm shift applied across all ROIs).
A strength of ROI segmentation methods is that prior

information about spectral assignments can be used but
is not required for profiling. In plant cell wall profiling,
for example, the assignment of the lignin components is
important not only in calculating SGH composition but
also as a means of normalizing cross peaks from other
regions of the spectrum. Even if a cluster of peaks is not
assigned, the cluster may be associated with a region of
interest and profiled across sample groups.
Conventional approaches create a feature set using

spectral binning and then apply multivariate techniques
to detect patterns among features across sample groups.
The feature set of such an analysis is large and must
eventually be related to a molecular species for targeted
studies. This study provides an example of detecting pat-
terns of enriched and depleted cell wall components
using simple one-way ANOVA techniques directly on a
meaningful feature set.
The analysis methodology has been implemented in a

publicly-available, cross-platform (Windows/Mac/Linux),
web-enabled software application (http://newton.nmrfam.
wisc.edu) that enables researchers to view and publish de-
tailed annotated spectra in addition to summary reports in
the Arabidopsis mutant lines.

http://newton.nmrfam.wisc.edu
http://newton.nmrfam.wisc.edu
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standard csv formats. The csv format of the ROI feature
matrix, for example, can be directly imported into dedi-
cated software packages for metabolomic data processing
and statistical analysis such as MetaboAnalyst 2.0 (www.
metaboanalyst.ca) [29], as well as general statistical pack-
ages such as R (http://www.r-project.org/) and Matlab
(http://www.mathworks.com/products/matlab/).
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