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Abstract

Background: Switchgrass is an abundant and dedicated bioenergy feedstock, however its inherent recalcitrance is
one of the economic hurdles for producing biofuels. The downregulation of the caffeic acid O-methyl transferase
(COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines
showed improved fermentation yield with Saccharomyces cerevisiae and wild-type Clostridium thermocellum (ATCC
27405) in comparison to the wild-type switchgrass.

Results: Here we examine the conversion and yield of the COMT transgenic and wild-type switchgrass lines with
an engineered and evolved C. thermocellum (M1570) strain. The fermentation of the transgenic switchgrass by
M1570 had superior conversion relative to the wild-type control switchgrass line with an increase in conversion of
approximately 20% and ethanol being the primary product accounting for 90% of the total metabolites measured
by HPLC analysis.

Conclusions: The engineered and evolved C. thermocellum M1570 was found to respond to the apparent reduced
recalcitrance of the COMT switchgrass with no substrate inhibition, producing more ethanol on the transgenic
feedstock than the wild-type substrate. Since ethanol was the main fermentation metabolite produced by an
engineered and evolved C. thermocellum strain, its ethanol yield on a transgenic switchgrass substrate (gram/gram
(g/g) glucan liberated) is the highest produced thus far. This result indicates that the advantages of a modified
feedstock can be combined with a modified consolidated bioprocessing microorganism as anticipated.

Keywords: Transgenic, Switchgrass, Metabolic engineering, Clostridium thermocellum, Consolidated bioprocessing,
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Background
Lignocellulosic biomass is an abundant feedstock but its
inherent recalcitrance towards conversion is one of the
major economic hurdles to producing biofuels [1,2]. Lignin
is a major component of plant cell walls and a contributor
to recalcitrance by negatively impacting enzymatic
hydrolysis of cellulose and hemicellulose to fermentable
sugars [3,4]. Genetic engineering of feedstocks to reduce
lignin content and/or improve composition has been
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shown to increase the accessibility of the cellulose and
hemicellulose to enzymatic hydrolysis and as a result
improve fermentation yield [5-11].
Although variation exists among these processes, the

majority of lignocellulosic feedstocks to ethanol biocon-
version schemes have four primary objectives: reduction
of biomass particle size, biomass pretreatment, hydroly-
sis of carbohydrate polymers to fermentable sugars, and
fermentation of these sugars to ethanol. Consolidated
bioprocessing (CBP) approaches combine enzyme pro-
duction, substrate hydrolysis, and fermentation into one
process. Despite continued reductions in the cost of
hydrolytic enzymes, CBP remains an attractive alterna-
tive due to the potential of decreasing costs associated
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with reducing unit operations and exogenous enzyme
supplementation [12-14].
Clostridium thermocellum is a thermophilic and cellulo-

lytic Gram-positive bacterium that is considered a consoli-
dated bioprocessing candidate because of its ability to grow
rapidly on native crystalline cellulose without the addition
of exogenous enzymes. Moreover, C. thermocellum fer-
mentations showed the utilization of up to 75% of thecellu-
lose contained in pretreated biomass sources [7,15-17].
However, the wild-type strain has a mixed-product fermen-
tation profile consisting of lactic acid, formic acid, acetic
acid, and ethanol as well as carbon dioxide and hydrogen.
As a result strain engineering approaches are needed to
increase the yield of ethanol and minimize the production
of the other metabolites [18]. Argyros et al. [19] developed
a strain of C. thermocellum (M1570) that was evolved for
growth and contained deletions in the acetic and lactic acid
pathways (Δhpt Δldh Δpta). The strain produced ethanol
in a 40:1 ratio with respect to residual organic acids in
actively pH controlled Avicel fermentations.
Here we expand on the previous work of Fu et al. [7]

and Yee et al. [8] where they showed that downregula-
tion of the caffeic acid 3-O-methyltransferase (COMT)
gene in switchgrass reduced recalcitrance and improved
microbial bioconversion yield regardless of pretreatment
condition for simultaneous saccharification and fermen-
tation (SSF) with S. cerevisiae [7,8]. In contrast to yeast-
based SSF, C. thermocellum (ATCC 27405) fermentations
demonstrated sensitivity to the COMT transgenic bio-
mass. It was postulated that additional soluble lignin
pathway-derived constituents resulting from the COMT
gene disruption measured by GC-MS in the fermentation
broth may have led to the sensitivity and/or inhibition
[8,20]. The fermentation sensitivity was not observed in
the fermentation of the wild-type switchgrass line. This
inhibition can be eliminated by extensive washing or hot
water extraction, which allowed C. thermocellum to have a
superior yield of fermentation products with the trans-
genic substrate versus wild-type line biomass, exceeding
the yeast-based SSF yield [7,8]. In this study we fermented
the less recalcitrant transgenic COMT switchgrass with the
recombinant C. thermocellum strain M1570 developed
by Argyros et al. [19]. We show that the fermentation
of the transgenic biomass had superior conversion in
comparison to the wild-type switchgrass and the primary
fermentation end-product metabolite is ethanol at a 9:1
ratio of ethanol to acetic acid.

Results
From the previous studies, fermentation of dilute-acid
pretreated and extensively washed switchgrass had higher
conversions than hot water or no pretreatment [7,8]. As a
result the biomass was dilute acid pretreated and hot
water extracted prior to fermentation. The carbohydrate
composition of the biomass after dilute acid pretreatment
was primarily glucan from cellulose measured by the
quantitative saccharification assay. The dilute acid pre-
treatment solubilized the hemicellulose and the extensive
washing removed soluble compounds and extractives.
The mutant (M1570) and wild-type (DSM 1313) C. ther-

mocellum fermentations of the pretreated and washed
transgenic (T1-3-TG) and wild-type control (T1-3-WT)
switchgrass lines were monitored over time by tracking
weight loss to gaseous products through periodic venting
of the tared serum bottle. At 145 hours the weight loss
stabilized indicating that the fermentations had ceased.
Analysis of the endpoint fermentation broth was per-
formed using HPLC measuring soluble sugars (glucose,
cellobiose, arabinose, and xylose) and the primary fermen-
tation metabolites for C. thermocellum (acetic acid, lactic
acid, ethanol, and formic acid). The fermentation broths
did not contain formic acid, cellobiose, arabinose, or
xylose as measured by HPLC. The endpoint conversion
was reported as mg/g glucan loaded for both metabolites
and soluble but unfermented glucose. The transgenic line
had greater conversion to fermentation metabolites than
the wild-type by 11 and 27% for DSM 1313 and M1570,
respectively (Figure 1, Table 1, and Additional file 1: Table
S1). Moreover, the product profiles showed that ethanol
was approximately 90% of the total metabolite conversion
for fermentations with M1570 on either the transgenic or
the wild-type switchgrass (1.7 g/L and 1.2 g/L, respect-
ively). In contrast, the DSM 1313 fermentations produced
acetic acid and ethanol at a ratio of approximately 2:1 for
both transgenic and wild-type switchgrass with minimal
amounts of lactic acid production.
The T1-3-TG fermentation with M1570 had a conver-

sion of 0.19 g/g glucan loaded or a yield of 0.27 g/g glucan
liberated (Additional file 1: Table S1 and Additional file 2:
Table S2), which is equivalent to the 0.27 g/g yield of etha-
nol achieved in the pH controlled Avicel fermentations by
Argyros et al. [19]. The mutant and the wild-type C. ther-
mocellum strains had similar conversions for fermenta-
tions on the same biomass line but significantly different
metabolite ratios (Figure 1 and Additional file 1: Table S1).
There were not substantial concentrations of liberated but
unfermented sugars in the broth in the M1570 strain
fermentations, but there was a slight increase of a 2.4-fold
in residual, soluble, unfermented glucose in the DSM
1313 strain fermentation of the T1-3-TG in comparison to
the T1-3-WT (Figure 1 and Additional file 1: Table S1).
This could be due to the fact that these fermentations
were heavily buffered to pH 7.0, but not actively pH
controlled while the optimal growth range is above 6.2.
The endpoint pH was approximately 6.3 for the M1570
fermentations and approximately 5.8 for the wild type
C. thermocellum fermentations which is below the opti-
mal growth range. Previous results showed an 18%
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Figure 1 Conversion (mg/g glucan loaded) for C. thermocellum mutant M1570 and wild-type DSM 1313 strains on both transgenic
(T1-3-TG) and wild-type (T1-3-WT) switchgrass. The standard deviation is from the average of triplicate buffered serum bottle fermentations.
The light gray bars represent ethanol, the dashed bar represents lactic acid, the dotted bar represents acetic acid, and the dark gray bar represents
soluble unfermented glucose.
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improvement for fermentations with wild-type C. ther-
mocellum (ATCC 27405) in actively pH controlled fer-
mentations on COMT switchgrass [7]. Here we only
show an 11% improvement in a buffered batch system;
the residual, soluble, unfermented glucose is reported
and cannot account for this difference. The pH and
headspace effects may account for this difference in
conversion of the transgenic biomass compared to the
wild-type line. In addition to conversion, yield (mg/g
glucan liberated) was evaluated for the fermentations
described above. The glucan liberated from the biomass
was determined by analysis of the solid fermentation
residues using a quantitative saccharification assay for
carbohydrate composition. The yield was calculated
based on the assumption that all glucan liberated was
converted to fermentation metabolites measured by
HPLC (Table 1). A change in microbe from the wild-
type (DSM 1313) to the mutant (M1570) significantly
Table 1 Endpoint fermentation analysis of C. thermocellum st

Strain/
Switchgrass

Total products (acetic acid + lactic
acid + ethanol) (mg)

Glucan liberated
biomass (m

DSM 1313/
T1-3-WT

73.1 ± 2.0 226 ± 5

DSM 1313/
T1-3-TG

87.3 ± 3.0 264 ± 16

M1570/
T1-3-WT

69.5 ± 1.2 232 ± 13

M1570/
T1-3-TG

95.8 ± 2.6 309 ± 13
changed the product ratio from approximately 2:1 to 1:9
acetic acid to ethanol, regardless of wild-type versus trans-
genic switchgrass, but not the overall yield. A change from
wild-type to transgenic switchgrass, improved the accessi-
bility and conversion of the glucan, regardless of microbe,
but not the overall fermentation yield. Moreover, regardless
of the C. thermocellum strain, the transgenic switchgrass
had more glucan liberated indicating that the cellulose was
more easily accessible. Analysis of endpoint fermentation
metabolites and unfermented soluble glucose indicated a
total mass balance closure of approximately 60% for the
above fermentations. This calculation was based on a stoi-
chiometric ratio of 1:1 for ethanol to CO2 and acetic acid
to CO2. In addition, it does not include maintenance, cell
density, and protein production. The mass balance remains
open and that calculation coupled with low yields suggests
that carbon may be diverted through alternate pathways to
side products that were not measured.
rains on transgenic and wild-type switchgrass

from
g)

Yield (mg total products/g
glucan liberated)

Conversion (mg total
products/g glucan loaded)

324 ± 6 178 ± 2

332 ± 26 198 ± 6

300 ± 17 170 ± 3

310 ± 16 216 ± 6
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Discussion
Transgenic feedstocks with reduced recalcitrance in com-
bination with consolidated bioprocessing microbes have
the potential to further reduce the cost of biofuels by
eliminating or drastically reducing the requirement of
exogenous hydrolytic enzymes. Therefore we examined
the fermentation performance of the C. thermocellum
M1570 strain on transgenic COMT switchgrass. We
showed that fermentations with either the wild-type or
mutant C. thermocellum strain on the transgenic switch-
grass had improved conversion (mg/g glucan loaded), total
products, and glucose liberated in comparison to the wild-
type switchgrass indicating that the transgenic switchgrass
was more easily digested. Moreover, the conversion for
the M1570 strain was 90% ethanol with minimal amounts
of the side products lactic and acetic acid regardless of
switchgrass line. Fermentations of transgenic or wild-type
switchgrass by either C. thermocellum strain gave compar-
able total end-product fermentation yields (mg/g glucan
liberated), however with significantly different metabolite
ratios. The similar yields and minimal residual unfer-
mented carbohydrates in the fermentation broth indicate
that the glucan liberated and utilized for measured end-
point fermentation products was similar for both strains.
The mass balance remains open for these fermentations

where only endpoint metabolites and soluble but unfer-
mented glucose is considered. The mass balance closure
was approximately 60% under the assumption that glucan
liberated was converted to fermentation metabolites and
CO2 was estimated using the stoichiometric ratio of 1:1
for both ethanol to CO2 and acetic acid to CO2. In addi
tion, both C. thermocellum strains had low endpoint fer-
mentation yields and this may be in part be due to carbon
flow through alternate pathways. Argyros et al. [19] and
van der Veen et al. [21] both hypothesized that the disrup-
tion of fermentation metabolic pathways can lead to a
redox imbalance and metabolism bottlenecks. They both
showed that there is an accumulation of central meta-
bolites, such as pyruvate, in their deletion strains. More-
over, van der Veen et al. [21] showed that their evolved
Δhpt Δldh Δpta mutant channeled 17% of the available
carbon to secreted amino acids. The open mass balance
and low yields from these fermentations suggests that
there is a redox-imbalance in Δhpt Δpta Δldh mutant
strain and the carbon is diverted through alternate path-
ways. This issue may be potentially solved through further
study of intracellular redox state and metabolic pathways
leading to alternate engineering strategies [22-24].

Conclusions
This set of fermentations establishes a baseline for CBP
conversion of transgenic switchgrass with a genetically
engineered and evolved C. thermocellum strain (M1570)
that produces primarily ethanol. The mutant strain
responded to the reduced recalcitrant transgenic COMT
switchgrass with the same trend as the wild-type C. ther-
mocellum. The ethanol yield for the mutant strain was
significantly higher for the fermentation of the transgenic
versus the wild-type control switchgrass. These results
give additional support toward the potential of transgenic
COMT switchgrass as a biomass feedstock line with
reduced recalcitrance and improved fermentation yield.
With further understanding of intracellular metabolism
and redox state leading to engineered strains with
improved ethanol yield, rate, and titer, CBP with C. ther-
mocellum mutants in combination with biomass with
reduced recalcitrance have the potential to further reduce
the costs of cellulosic ethanol.

Materials and methods
Growth and harvesting conditions for transgenic and
control plant material
COMT down-regulated transgenic and wild-type control
switchgrass (Panicum virgatum L.) lines were generated
by the Samuel Roberts Noble Foundation as previously
described in Fu et al. [7].

Pretreatment
The biomass was milled in a Wiley mill using a 20 mesh
screen (Thomas Scientific, Swedesboro, NJ, USA). Dilute
acid pretreatment was performed as described previously
in Fu et al. [7] and Yee et al. [8]. Briefly, the biomass was
soaked overnight in 0.5% H2SO4 and loaded at a ratio of
2.5 g dry per Hastelloy steel tubular pretreatment reactor
(Industrial Alloys Plus Inc., Utica, KY, USA). The reactors
were preheated in boiling water for 2 minutes and then
transferred to a fluidized sand bath (Omega FSB1:Techne
Co., Cole Parmer, Court Vernon Hills, IL, USA) at 180°C
for 7.5 minutes [7,25]. The reactors were cooled by
quenching in an ice bath. The biomass was washed with
100 mL Milli-Q water (Millipore Corporation, Billerica,
MA, USA) per gram dry biomass and then subjected to a
hot water extraction to remove inhibitory water soluble
compounds and washed a second time as described previ-
ously by Yee et al. [8]. The solid residual biomass was
stored at −20°C until fermentation.

Consolidated bioprocessing conversion
The Lee R. Lynd Lab at Dartmouth College (Hanover,
NH, USA) generously donated the C. thermocellum DSM
1313 strain and the Mascoma Corporation (Lebanon, NH,
USA) provided the C. thermocellum M1570 strain. The
M1570 strain was developed in the C. thermocellum DSM
1313 Δhpt background strain. Lactate dehydrogenase
(Ldh) and phosphotransacetylase (Pta) genes were deleted
and the Δhpt Δldh Δpta mutant strain was transferred in
batch culture for 2,000 hours and a stable strain was
achieved [19]. All CBP fermentations were cultivated at
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55°C and underwent orbital shaking at 125 rpm in defined
no-yeast extract media for thermophilic clostridia (MTC)
[26]. Bottles were loaded with 0.75 g of biomass on a dry
basis, autoclaved for 30 minutes for sterilization purposes,
and a 2.0% vol/vol inoculum was used for a final volume
of 50 mL. The inoculum was grown in 125 mL anaerobic
serum bottles with 50 mL of MTC media and a carbon
source of 5.0 g/L Avicel (FMC BioPolymer, Newark, DE,
USA) at 125 rpm and 55°C. Samples were not removed
from the serum bottles during fermentation; instead
weight loss was used to monitor the progress of the
fermentation [7,8,10,27].

Analytical methods
Endpoint fermentation broth samples were analyzed for
metabolites (acetic acid, lactic acid, and ethanol) and re-
sidual carbohydrates (cellobiose, glucose, xylose, arabinose)
using a high performance liquid chromatography (HPLC)
LaChrom Elite™ system (Hitachi High Technologies
America Inc., Schaumburg, IL, USA) equipped with a re-
fractive index detector (model L-2490). The products and
carbohydrates were separated using an Aminex™ HPX-
87H column (Bio-Rad Laboratories Inc., Hercules, CA,
USA) at a flow rate of 0.5 mL/min of 5.0 mM sulfuric acid
and a column temperature of 60°C [7,8,16].
Pretreated and washed biomass and fermentation resi-

dues were analyzed for carbohydrate composition using a
quantitative saccharification assay NREL/TP-510-42618
and HPLC method NREL/TP-510-42623. Briefly, the sam-
ples were analyzed for carbohydrate composition using a
high performance liquid chromatography (HPLC) LaChrom
Elite™ system (Hitachi High Technologies America Inc.)
equipped with a refractive index detector (model L-2490)
and a UV-Vis detector (model L-2420). The carbohydrates
(glucose, xylose, galactose, mannose, and arabinose) and
pentose and hexose sugar degradation products (furfural
and 5-hydroxy methyl furfural) were separated using an
Aminex™ HPX-87P column (Bio-Rad Laboratories Inc.), at
a 0.6 mL/min flow rate of water and a column temperature
of 80°C [7,8].
C. thermocellum utilizes hexose sugars, and after dilute

acid pretreatment and extensive washing the hexose sugar
content of the biomass was primarily glucan from cellu-
lose because the dilute acid pretreatment solubilized the
hemicellulose and the extensive washing removed extrac-
tives and soluble components. Analysis of the carbohy-
drate composition post-pretreatment and washing showed
negligible amounts of mannose, arabinose, and xylose.
Both prior to and post-fermentation the carbohydrate
content of the biomass was determined by the quantitative
saccharification assay. The conversion was calculated
based on the initial glucan content of the biomass loaded
and the yield was calculated based on glucan liberated
from the biomass. Both conversion and yield are
calculated under the assumption that all available glucan
was converted to fermentation products.

Additional files

Additional file 1:Table S1. Endpoint conversion (mg/g glucan loaded)
for products and soluble unfermented glucose.

Additional file 2:Table S2. Endpoint yield (mg/g glucose liberated) for
products and soluble unfermented glucose.
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