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Combined whole cell wall analysis 
and streamlined in silico carbohydrate-active 
enzyme discovery to improve biocatalytic 
conversion of agricultural crop residues
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Abstract 

The production of biofuels as an efficient source of renewable energy has received considerable attention due to 
increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation 
biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, 
inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohy-
drates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues 
contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate 
complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between 
plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composi-
tion, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, 
and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, 
improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency 
of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, 
knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass decon-
struction is pivotal. Here we overview the use of common “-omics”-based methods for the study of lignocellulose-
metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and 
accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-
assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize 
agricultural residues and the microbial communities that digest them provides promising streams of research to maxi-
mize value and energy extraction from crop waste streams.
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Background
Growing international concern over climate change has 
led to continued interest  in generating bioliquids (e.g., 
ethanol) and biogases (e.g., methane) from viable and 
sustainable sources of energy. First-generation biofuel 
crops, such as corn and sugarcane, which contain high 
amounts of starch and sucrose, respectively, are readily 
fermented by microorganisms to produce ethanol and 
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biogas in biodigesters [1, 2]. However, their use for bio-
fuel production has socioeconomic consequnces , includ-
ing the food versus fuel debate, as their dedicated use for 
fuel directly impacts food prices and competition of land 
usage [3]. Second-generation biofuel crops do not com-
pete directly with food production and have been well 
regarded as sustainable sources of fermentable biomass. 
These feedstocks include inedible woody plants, bioen-
ergy crops (e.g., switchgrass), and agricultural residues.

Crop residues are biomaterials remaining in the field 
after harvest and consist mainly of straw or stover from 
grains and oilseeds. Primary sources include rice (Oryza 
sativa), wheat (Triticum aestivum), corn (Zea mays), 
barely (Hordeum vulgare), oat (Avena sativa), rye (Secale 
cereale), canola (Brassica napus), flax (Linum usitatissi-
mum), peanut (Arachis hypogaea), sunflower (Helianthus 
annuus), sorghum (Sorghum bicolor), soybean (Glycine 
max), pea (Pisum sativum), and chickpea (Cicer arieti-
num) [4–12]. Historically, crop residues are usually left to 
decay on field after threshing and were incorporated into 
soil by plowing and disking or used as livestock feed or 
bedding [13]. Seasonal burning of agricultural residues is 
practiced in many countries, resulting in large scale wast-
age and has been linked to environmental problems, such 
as emission of airborne particulate matter (PM) pollut-
ants (e.g.,  PM2.5) and greenhouse gases [14, 15].

Crop residues are readily available and produced in 
great quantities. Globally, the total residue produced 
from a collection of 27 common food crops was esti-
mated to be 3.8 billion tonnes per year [16], and the 
theoretical global energy potential from six major crop 
residues was estimated to be 65 exajoules per year, equal-
ing 66% of annual worldwide transportation energy 
consumption in 2006–2008 [7]. However, the high con-
centration of lignocellulosic biomass, including recalci-
trant polysaccharides, such as cellulose, hemicelluloses, 
pectins, and aromatic polymers (i.e., lignin), has limited 
their widespread use in biofuel production. Cross-linking 
of hemicellulose to lignin and hemicellulose–cellulose 
interactions further contribute to biomass recalcitrance 
[17]. Moreover, the diversity of monosaccharide com-
position and non-cellulosic carbohydrate lignin linkages 
can vary between crop residues [18], affecting their val-
orization as  high-value products, including ethanol and 
methane.

Carbohydrate-active enzymes (CAZymes) are com-
monly used in biofuels to convert recalcitrant polysac-
charides into fermentable carbohydrates. In bioethanol 
production, CAZymes are added to biomass prior to or 
simultaneously with fermentation, or expressed from 
an engineered organism for consolidated bioprocessing 
[19]; whereas biogas production uses the native produc-
tion of CAZymes from anaerobic microorganisms within 

a biomass biodigester [2]. To date, numerous CAZyme 
classes and families have been discovered that target cel-
lulose and other plant cell wall polysaccharide linkages in 
biofuel  feedstocks [20]. Enabling technologies and soft-
ware to sequence genomes/metagenomes and annotate/
predict novel CAZymes have resulted in extensive litera-
ture describing new CAZymes and microorganisms for 
biorefinery applications.

Two areas that are pivotal for valorization of agricul-
tural residues as viable feedstocks are: 1) to elucidate the 
carbohydrate composition and linkages within the plant 
cell wall material, and 2) to optimize enzyme, microbe, 
or microbial community treatments to maximize release 
of fermentable carbohydrates. This review will focus on 
recent analyses of common crop residue cell wall struc-
tures, current glycomic methods used for cell wall anal-
ysis, and in silico assessment of CAZyme function, or 
lack thereof, encoded within microbial communities to 
inform more efficient polysaccharide saccharification.

Crop cell wall polysaccharides
The cell wall material of agricultural residues is com-
prised predominantly of cellulosic, hemicellulosic, and 
pectic polysaccharides, of which cellulose predominates. 
Cellulose is a linear chain of 4-linked β-D-glucopyranoses 
existing abundantly in the form of hydrogen-bonded, 
cable-like microfibrils that contain a heterogeneous 
mixture of crystalline and amorphous regions with  a 
diameter ranging from 3 to 20  nm depending on cell 
wall type [21]. Non-cellulosic polysaccharides demon-
strate great diversity in monosaccharide composition 
and linkage (Fig. 1). Hemicelluloses are a group of plant 
polysaccharides consisting mostly of 4-linked neutral 
sugar backbone, with or without side chains or substitu-
ent groups (e.g., methyl group, acetyl group, and ferulic 
acids). This includes mainly xyloglucan, xylan, and het-
eroxylans (e.g., arabinoxylan (AX), 4-O-methyl glucuron-
oxylan (GX), glucuronoarabinoxylan (GAX)), mannans, 
and heteromannans (e.g., glucomannan (GlM), galacto-
mannan (GaM), and galactoglucomannan (GGM)), and 
mixed-linkage glucans in higher plants [21, 22]. Callose 
is a linear 3-linked β-D-glucan, and although its classi-
fication of a hemicellulose is debated, it is important in 
higher plant cell development and responses to environ-
mental cues [21, 23]. Pectins are a group of galacturonic 
acid-rich polysaccharides, including homogalacturonan 
(HG) and rhamnogalacturonans (RG-I and RG-II). HG 
has a 4-linked galacturonic acid backbone that can be 
6-O-methyl-esterified and O-acetylated [21]. RG-I con-
sists of a backbone of alternating galacturonic acids and 
rhamnoses and side chains of arabinan, galactan, and 
arabinogalactans, while RG-II is composed of a homoga-
lacturonan backbone decorated with highly complex side 
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chain structures built with more than 20 types of glyco-
sidic linkages from 13 different monosaccharides [21, 
24]. Aside from the wide variety of monosaccharide and 
linkage composition between polysaccharides, the cell 

wall becomes increasingly complex when considering 
inter- and intra-chain interactions between polysaccha-
rides. Cellulose microfibrils commonly interact with pec-
tin and hemicelluloses (xylans, mannans, and xyloglucan) 

Fig. 1 Cartoon schematic of non-cellulosic plant cell wall polysaccharides. Representative schematics chosen for xyloglucan [225], mannans and 
xylans [226], and pectins [24, 114]. Monosaccharide symbols follow the Symbol Nomenclature for Glycans [227]
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through hydrogen bonding [25]. Pectins are also known 
to gel and interact with one another in the presence of 
calcium and boron [26]; as well, cross-linking within ara-
binan chains in pectins [27] and AX chains [28] by feru-
loyl residues has been well noted. Structural variation is 
complex and has been extensively studied and reviewed 
[21, 29]. Importantly, variations in the fine chemistry of 
these networks exist between plant species and at differ-
ent developmental stages [30].

Crop cell wall polysaccharide variation
Monocot (cereal crops, such as corn, wheat, and barley) 
and dicot plants (legumes, oilseeds, and soybeans) have 
similar cellulose content in primary and secondary cell 
walls, but differ greatly in the abundance and chemistry 
of hemicelluloses [31–34]. Typically, monocots contain 
much more heteroxylans than dicots in both the pri-
mary (20–40 vs. 5%) and secondary cell wall (40–50 vs. 
20–30%) [31, 35–39]. Heteroxylans can vary greatly in 
their substitution patterns, effecting interactions with 
cellulose and lignin, and in turn, biomass recalcitrance 
[17, 40]. Dicots generally contain more GX, whereas 
monocot heteroxylans contain arabinose sidechains 
(AX and GAX) [18]. This difference can be observed 
between common agricultural crops, including canola, 
a dicot [41], and cereals [42]. Mixed-linkage glucans are 
absent in most dicots, but represent 10–30% of total cell 
wall content in monocots [31, 39]. This is in contrast to 
xyloglucan (20–35 vs. 5%) and pectins (20–25 vs. 1–5%), 
which are more prevalent in primary cell walls of dicots 
rather than monocots [31, 36, 39]. Although large dif-
ferences in hemicellulose content and composition exist 
between monocot and dicot plants, variation can also be 
seen within a single group. For example, monocot heter-
oxylans can differ in concentration, presence of GAX or 
AX, and xylan substitution level or arabinose:xylose ratio 
[42–45]. Furthermore, variation can be seen at the spe-
cies level as xyloglucan sidechains were shown to differ 
between canola species B. napus and B. campestris [41], 
between plant anatomy (e.g., root vs. root hairs; sugar-
cane bagasse vs. straw) [46, 47], and between develop-
mental stages in rice [48].

Plant cell wall polysaccharides are not the only struc-
tural differences observed; cross-linking between struc-
tural carbohydrates by lignin are also diverse. Lignin 
is a hydrophobic, polyphenolic biopolymer consisting 
mainly of three phenylpropanoid monomers with vary-
ing degrees of methoxylation, including p-hydroxyphe-
nyl (H), guaiacyl (G), and syringyl (S) units [49]. Lignin 
increases cell wall recalcitrance by forming complex 
interactions with plant cell wall hemicelluloses, includ-
ing heteroxylans in monocots and heteromannans in 
dicots [17] (Fig.  1). Lignin in monocot crops contains 

substantially more ferulic and ρ-coumaric acid than in 
dicots [31]. These components form covalent linkages 
with arabinose sidechains on GAX and AX; however, 
lignin can also be conjugated to the backbone of GGM 
[17, 31].

Notably, the structural diversity of plant cell wall pol-
ysaccharides and lignin polymers that exists in nature 
can be further augmented by common pre-treatments 
that cause chemical modification of cell wall polysaccha-
rides [34]. Thus, a comprehensive understanding of plant 
cell wall chemistry is helpful throughout the treatment 
process.

Cell wall analysis techniques
Glycomic analysis of plant cell walls has seen a recent 
resurgence in part due to the demand for using plant bio-
mass for biofuels [22]. These methods have improved and 
proven useful in elucidating the structure of native crop 
plant cell wall polysaccharides [50], modifications result-
ing  from pre-treatments, and biodigester waste residues 
[51–53]. Glycomic analysis of lignocellulose can range 
from composition (e.g., total sugar, total lignin, monosac-
charide composition, and lignin monomer composition) 
to detailed structural features (e.g., glycosidic linkage 
composition and sequences; lignin–carbohydrate inter-
action) with the use of advanced analytical instruments 
and techniques described below and summarized in 
Fig. 2.

UV–Vis spectrophotometer
Colorimetric assays (Fig.  2a) can be performed using a 
simple UV–Vis spectrophotometer for quantification of 
neutral carbohydrates [54], uronic acids [55, 56], lignins 
[57], and substituents groups (e.g., ferulate and acetate) 
[58–60] of whole plant cell walls prepared from agricul-
tural residues. A broad range of enzymatic–colorimetric 
assay kits are commercially available (e.g., Megazyme, 
Sigma-Aldrich) for the analysis of starch and non-starch 
polysaccharides, such as arabinan, AX, mixed-linkage 
glucan, GlM, and GaM in lignocellulosic biomass of agri-
cultural residue.

High‑performance anion‑exchange chromatography 
with pulsed amperometric detection (HPAEC‑PAD)
HPAEC-PAD (Fig. 2b) is convenient for the identification 
of liberated neutral monosaccharides and uronic acids 
from plant residues [61]. Neutral sugars from non-cellu-
losic components of agricultural residue can be readily 
hydrolyzed by trifluoroacetic acid (TFA) into alditol ace-
tates for analysis (e.g., 2 M, 120 °C, 2 h) [22, 62]; however, 
sulfuric acid is normally used for the complete hydrolysis 
of recalcitrant crystalline cellulose in agricultural residue 
[22]. Methanolysis combined with TFA hydrolysis is best 
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suited for water-soluble uronic acid-containing poly-
saccharides [63, 64]. Complementary to HPAEC-PAD, 
reverse-phase high-performance liquid chromatography 
coupled to ultraviolet detection (RP-HPLC–UV) with 
various pre- or post-column derivatization approaches 
(e.g., 1-phenyl-3-methyl-5-pyrazolone) are available for 
monosaccharide analysis [65, 66]. A benefit of HPAEC-
PAD is that it does not require derivatization; it is more 
commonly used than the RP-HPLC–UV method for 
monosaccharide analysis of plant residues. In addition to 
monosaccharide analysis, HPAEC-PAD is an important 
method for detecting and quantifying oligosaccharides 
and evaluating the purity of purified oligosaccharide 
samples [67, 68].

Gas chromatography–mass spectrometry/flame ionization 
detection (GC–MS/FID)
GC–MS/FID (Fig. 2c) is an essential tool for the mono-
saccharide analysis of agriculture residues. Over the past 
several decades, many derivatization methods have been 
developed for GC–MS/FID analysis of monosaccharides 
[69]. Among them, the alditol acetate (AA) derivatization 
method is the most common [70]. Notably, a GC–MS 
procedure has been recently developed for comprehen-
sive monosaccharide analysis of insoluble lignocelluloses 
resistant to acid hydrolysis based upon alditol acetate 
derivatization [71]. Glycosidic linkage analysis, normally 
referred to as “methylation analysis,” is a fundamental 
technique for structural characterization of plant cell 
wall polysaccharides based on GC–MS/FID analysis of 
the partially methylated alditol acetate (PMAA) deriva-
tives prepared by permethylation, hydrolysis, reduction, 
and peracetylation of whole cell wall and fractions [22, 
70, 72, 73]. Uronic acids in plant residues are converted 
to their corresponding 6,6-dideuterio neutral sugars 
before methylation analysis [74, 75]. Deuteriomethylation 
or ethylation is used for localizing the naturally existing 
O-methyl group during linkage analysis of cell wall pol-
ysaccharides (e.g., 4-O-methylglucuronic acids of GX) 
[76–78]. The relative composition of plant polysaccha-
rides can be estimated from the results of linkage compo-
sition by assigning glycosidic linkages to corresponding 
polysaccharide structures followed by summing up all the 
values grouped to each structure [22].

Liquid chromatography electrospray ionization tandem 
mass spectrometry (LC–ESI–MS/MS)
LC–ESI–MS/MS (Fig.  2d) is most commonly used for 
determining the molecular mass and linkage sequence of 
oligosaccharides generated by partial depolymerization 
of cell wall polysaccharides through enzymatic and/or 
chemical means (e.g., weak acid hydrolysis, methanolysis, 
acetolysis, alkaline degradation, and β-elimination) [79]. 
Oligosaccharides are usually purified using graphitized 
carbon solid-phase extraction before structural charac-
terization by LC–ESI–MS/MS [67]. NMR and other MS 
techniques (e.g., MALDI-tof–MS) are complimentary to 
LC–ESI–MS/MS for structural analysis of oligosaccha-
rides released enzymatically or chemically from plant 
residues [67, 68, 80]. Recently, there has been interest in 
the development of LC–MS-based methods for glyosidic 
linkage analysis [81–85], and LC–ESI–MS/MS methods 
have been developed for fast monosaccharide analysis 
with high sensitivity [86–88]. These novel methylation-
LC–MS analyses are fast and sensitive and can be used to 
complement current GC-based linkage analyses.

Nuclear magnetic resonance (NMR)
Advanced structural features (e.g., anomeric configura-
tion, ring forms, substituents, glyosidic linkage compo-
sition, and sequence) of polysaccharides isolated from 
agricultural residues can be obtained by a series of one-
dimensional (1D), two-dimensional (2D) (e.g., COSY, 
TOCSY, HSQC, HMBC, NOESY, and ROESY), and 
three-dimensional (e.g., TOCSY-HSQC) solution-state 
NMR experiments (Fig.  2e; [89, 90]). A recently devel-
oped method involving permethylation followed by 2D 
1H-13C HSQC solution-state NMR analysis can be used 
for polysaccharide profiling of whole cell wall [91]. A 
novel method for collecting 2D 1H-13C HSQC NMR 
spectra from non-derivatized ball-milled whole cell 
wall dissolved in deuterated reagents (e.g., DMSO-d6/
pyridine-d5) has been increasingly popular for lignocel-
lulose characterization [49, 92–95]. Impressive progress 
has been made within the past decade in solid-state NMR 
analysis by the production of uniformly isotope-labeled 
plant and fungi cell wall samples by feeding 13CO2 or 
media containing 13C-glucose and 15N-salts, and by the 
introduction of ultrahigh-field (e.g., 900  MHz) NMR 
spectrometers [40, 96, 97]. For instance, recent high-
resolution multi-dimensional magic-angle spinning 

Fig. 2 Analytical methods for total cell wall analysis. a UV/Vis spectrophotometer colorimetric assays. AX*: total arabinoxylan can be determined 
through commercially available kit; b HPAEC-PAD; c GC–MS/FID; d LC–ESI–MS/MS; e NMR; and f Immunological methods, such as Glycome profiling 
and MAPP. Corn GAX was used as a model polysaccharide to demonstrate representative structural information that could be inferred by each 
method [28]

(See figure on next page.)
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solid-state NMR evidence indicated that cellulose, hemi-
celluloses, and pectins could be associated non-cova-
lently with the sub-nanometer scale to form an integrated 
network in plant primary cell walls [97]. A series of high-
resolution solid-state 2D 13C-13C correlation NMR meth-
ods specifically designed for enhancing the detection of 
lignin aromatic signals were successfully used for the 
structural characterization of lignin–carbohydrate inter-
face of plant secondary cell walls (e.g., mature stems of 
rice, maize, and switchgrass) [98].

Glycome profiling/microarray polymer profiling (MAPP)
Large collections (more than 200 worldwide) of cell wall 
glycan-directed monoclonal antibodies (mAbs) with 
known glycan epitope-binding specificities have allowed 
for the development of immunological methods for 
screening plant cell wall samples, termed glycome profil-
ing (Fig. 2f; [99]). This analysis is conducted on fraction-
ated plant cell walls using increasingly harsh chemicals, 
followed by an ELISA of the fractions in a 96-well plate; 
the results are commonly presented as a heat map [99]. 
Alternatively, a microarray polymer profiling (MAPP) 
procedure involving the integration of cell wall sequen-
tial fractionation with the generation of microarrays 
probed with glycan-binding mAbs or carbohydrate-
binding modules (CBMs) has been developed [100]. 
Both immunological procedures have proved to be very 
useful for high-throughput screening of whole cell wall 
polysaccharides and their degradation products during 
and after bioconversion, and can be used in combination 
with other polysaccharide screening techniques, such as 
Fourier transform infrared spectroscopy-attenuated total 
reflectance [101–105].

CAZymes in the production of biofuels
CAZymes are classified based upon the catalytic mecha-
nism by which they act, including glycoside hydrolases 
(GH) [106, 107], polysaccharide lyases (PL) [108], carbo-
hydrate esterases (CE) [108], and auxiliary activities (AA) 
[109] (Fig. 3a). Each of these classes are further divided 
into sequence-related families.

GHs hydrolyze glycosidic bonds between carbohy-
drates or a carbohydrate and aglycone moiety, such as 
lipids or proteins [106, 107]. For most GH-mediated 
hydrolysis, two residues are critical for this enzymatic 
mechanism, a proton donor and a nucleophile/base, and 
results in a mechanism that either retains or inverts the 
anomeric configuration [106, 110]. With such diverse 
substrate potential existing in nature [111], it is unsur-
prising that GHs have been found to be active on car-
bohydrate polymers ranging from homopolymers, such 
as starch [112] and cellulose (Fig.  3b) [113], to highly 
branched and chemically heterogeneous substrates, such 

as pectins [24, 114]. At the time of publication, GHs have 
been classified into 168 sequence-based families in the 
CAZy database [115].

PLs cleave polysaccharide chains with a β-elimination 
reaction, resulting in a terminal hexenuronic acid [108, 
110]. PLs are typically involved in the cleavage of acidic 
substrates, such as pectins (e.g., HG; (Fig. 3B)), chondroi-
tin, xanthan, and alginate [116]. At the time of publica-
tion, 40 different PL families have been assigned within 
the CAZy database [115].

CE families are currently classified into 18 different 
families [115]. These enzymes catalyze the de-O- or de-
N-acetylation of esterified sugars through a variety of 
mechanisms, whereby the sugar can either act as the acid 
(e.g., pectin methyl esters) or the alcohol (e.g., acetylated 
xylan) (Fig.  3b; [110]). Removal of carbohydrate esters 
increases the access of GHs and PLs to their substrates, 
and therefore is an important event in the catabolism of 
chemically complex polysaccharides.

AAs are the most recently described CAZyme class and 
deploy a redox reaction to fragment structural polysac-
charide and lignin substrates [109]. AAs are currently 
divided into 16 families, encompassing 9 families of ligni-
nolytic enzymes, and 6 families of lytic polysaccharide 
monooxygenases (LPMOs), and while first [20] discov-
ered to target chitin [117], LPMOs have demonstrated 
activity on common plant cell wall polysaccharides 
including cellulose. (Fig. 3b). Many AA enzymes are met-
alloenzymes, requiring copper to catalyze the digestion 
of lignocellulosic biomass [118, 119].

Cellulose‑active CAZymes
Cellulose is the most homogeneous and abundant source 
of glucose in agricultural biomass. Despite its simple 
β-1,4-linked glucose repeating structure, the crystalline 
higher-order structure of cellulose limits the access to 
cellulose-degrading CAZymes [120]. However, synergis-
tic effects are observed when multiple enzymes are used 
in combination on intact cellulose, which can help over-
come poor enzyme efficacy [121, 122]. Combined strate-
gies, involving several different exo- and endo-acting GHs 
are used for efficient saccharification [123–126]. Endo-β-
1,4-glucanases (enzyme class (EC) 3.2.1.4) cleave inter-
nal bonds within the cellulose chains and represent most 
enzymes used for the hydrolysis of glucosidic linkages in 
cellulose, while cellobiosidases (EC 3.2.1.91) processively 
release disaccharides from cellulose chains. Cellobiose 
and cellooligosaccharides released are further depolym-
erized by endo-β-glucosidases (EC 3.2.1.21), cellodex-
trinases (EC 3.2.1.74), and cellobiose phosphorylases 
(2.4.1.20). Cellodextrinases are preferentially active on 
longer substrates and hydrolyze terminal, non-reducing 
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Fig. 3 CAZyme depolymerization mechanisms and specificities. a Simplified reaction schematics are shown of a glycoside hydrolase (GH), 
polysaccharide lyase (PL), carbohydrate esterases (CEs) acetyl (top) and methyl (bottom), and the auxiliary activities (AA) of LPMOs active on C1 and 
C4. b CAZyme-targeted bonds of plant cell wall polysaccharides homogalacturonan (HG), cellulose, and corn GAX [28]) are shown, with example 
CAZy family and enzyme class (EC) numbers as indicated
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β-d-glucosyl residues from cellulose in a step-wise fash-
ion [127].

GH5, GH6, GH7, GH9, GH12, and GH45 CAZy fami-
lies contain most cellulose-active hydrolases [115, 128, 
129]. GH5 is one of the largest polyspecific GH families 
in the CAZy database. Once known as “cellulase family 
A,” it is now known to contain a variety of catalytic specif-
icities, including endo-glucanase, as well as many others, 
including endo-mannosidase (EC 3.2.1.78), endo-xylanase 
(EC 3.2.1.8), and endo-β-1,6-glucosidase (EC 3.2.1.75). As 
such, the GH5 family has been further subdivided into 
sequence-related subfamilies to better classify conserved 
specificities [130] (Fig.  4a). The GH6 family consists 
solely of endo-glucanases and cellobiohydrolases, which 
also compose most of the GH7 family. GH9 is the second 
largest family of cellulase enzymes, comprised primar-
ily of endo-glucanases. Endo-glucanases are found in the 
GH12 family, among xyloglucan endo-transglycosidase 
and xyloglucan endo-hydrolase activities. Finally, GH45 
family members function as endo-glucanases; however, 
some are specific to xyloglucan.

Weak endo-glucanase activity was seen in the GH61 
and CBM33 family. However, both these families are now 
understood to be LPMOs, which target cellulose through 
oxidative cleavage. GH61 has been reclassified as AA9 
[131], while CBM33 has been reclassified as AA10 and is 
known to possess enzymes active on cellulose or chitin 
[117].

Hemicellulose‑ and pectin‑active CAZymes
Due to the abundance of xylan in plant cell walls, there 
has been a concerted effort to understand xylan and het-
eroxylan digestion by endo-β-1,4-xylanases (EC 3.2.1.8), 
β-1,4-xylosidases (EC 3.2.1.37), arabinan endo-α-1,5-l-
arabinanases (EC 3.2.1.99), and non-reducing end α-l-
arabinofuranosidases (EC 3.2.1.55).

GH10 and GH11 predominantly contain endo-β-1,4-
xylanases, and enzymes from these families work syner-
gistically to break down xylan and heteroxylan. GH11s 
are active on xylans at least seven sugars in length, while 
GH10s are better suited to the hydrolysis of xylosyl link-
ages close to arabinosyl-substitutions [132]. As well, in 
highly substituted wheat bran AX, GH10 xylanases are 
able to accommodate arabinose decorated xylose resi-
dues, whereas GH11 xylanases do not [133].

AX is a large component of monocot hemicellulosic 
polysaccharides and thus a common substrate for arab-
inofuranosidases and arabinanases. GH43 is a polyspe-
cific family divided into many subfamilies [134] (Fig. 4b) 
and contains many α-l-arabinofuranosidases and α-l-
arabinanases active on AX. Arabinofuranosidases have 
been classified based on substrate determinants [132]:: 
(1) type A, active on pNP-α-l-arabinofuranosides and 

short arabinooligosaccharides; (2) type B, active on short 
oligosaccharides and longer polysaccharides, such as 
arabinan and AX; and (3) AX arabinofuranohydrolases. 
Recent studies have shown that rumen fungi are adept 
at producing GH43 enzymes for the breakdown of com-
plex hemicelluloses, and these enzymes may represent 
the most abundant fungal glycoside hydrolases for these 
reactions [135].

a

b

Fig. 4 Polyspecific CAZy families GH5 and GH43. Phylogenetic trees 
were built using SACCHARIS [195] with characterized sequences 
for a GH5 and b GH43 CAZy families. Annotations were generated 
using ITOL [228]. Enzyme activities, for example, subfamilies, are 
labeled with the corresponding EC numbers, and targeted substrates 
are illustrated by cartoons following the Symbol Nomenclature for 
Glycans [227]
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CE enzymes (e.g., acetyl xylan esterase EC 3.1.1.72, 
feruloyl esterase EC 3.1.1.73, CE families 1 through 7) 
can facilitate accessibility of hydrolytic enzymes to their 
substrates, as large modifications, substitutions, and 
cross-linking of carbohydrate residues impede enzymatic 
catalysis. For example, corn bran is highly recalcitrant 
to enzymatic digestion [136, 137], likely due to ferulate 
cross-links within AX [138], but the inclusion of acetyl 
xylan esterases (CE1) and feruloyl esterases (CE1), along-
side xylanases (GH10), xylosidases (GH3), and arabino-
furanosidases (GH43, GH51) significantly increased the 
release of total monomeric xylose [28]. The cooperation 
between the different enzyme activities of CEs and GHs 
may be necessary for the complete hydrolysis of heav-
ily modified hemicellulosic and pectic polysaccharides. 
Interestingly, there is some recent evidence to suggest 
that LPMOs are also active on xylans and xyloglucans 
and contribute to the large array of catalytic strategies 
evolved to dismantle these complex substrates [139].

Modifying plant genetics to reduce recalcitrant residues
Glycosyltransferases (GTs) are responsible for the syn-
thesis of structural polysaccharides, storage polysaccha-
rides, and other complex glycans [140]. The formation of 
glycosidic bonds involves the transfer of a carbohydrate 
moiety from sugar donors to acceptor molecules [110], 
and cascading glycosylation by downstream GTs results 
in increasingly complex carbohydrates. For example, bio-
synthesis of plant pectic polysaccharides requires hun-
dreds of glycosyltransferases to produce the extensive 
variety of glycosidic linkages and adducts [141]. Genetic 
manipulation of these biological processes can reduce 
the number of recalcitrant residues in the plant cell wall 
[17], namely cellulosic [142] and hemicellulosic [18] bio-
mass. Initial attempts have been made as an alternative to 
enzymatic treatment, such as the downregulation of GT8 
family pectin biosynthetic genes in switchgrass which 
leads to decreased lignocellulose and pectin cross-link-
ing, thereby reducing the recalcitrance of biomass [143, 
144].

Strategies for CAZyme‑catalyzed digestion 
of lignocellulosic biomass
Interactions between cellulose, hemicellulose, pectin, and 
lignin leads to a complex network that is highly recalci-
trant to enzymatic deconstruction. Studies have begun to 
look at the hydrolysis of these interactions by enzymes, 
such as AA family LPMOs [131]. Additionally, AA 
lignin-modifying enzyme families may have a role; lac-
cases, manganese peroxidases, and lignin peroxidases all 
potentially contribute to the modification of cross-links 
and subsequent delignification, exposing the underlying 

polysaccharides for further modification by GH and CE 
enzymes [145]. Along with feruloyl esterase, CE15 glu-
curonyl esterases also contribute to the disassembly of 
lignin–carbohydrate complexes via the cleavage of ester 
bonds between alcohol and 4-O-methyl-glucuronoyl 
moieties of lignin and xylan, respectively (Fig. 3b) [146]. 
Degradation of lignocellulosic biomass has improved 
using cellulolytic enzyme cocktails [147] and combin-
ing lignin-active enzymes with polysaccharide-specific 
enzymes may be the best strategy for the optimal diges-
tion  of complex lignocellulose [148]. Tailoring the mix-
ture to the agricultural residues of interest, and the 
specific polysaccharides and glycosidic linkages, may be 
optimal for converting these biological residues into val-
uable products.

Lignocellulose deconstruction in bioethanol produc-
tion employs extensive heat treatments to expose bio-
mass for efficient enzymatic attack, often at temperatures 
above 55 °C [127]. Thus, enzymes are often sourced from 
thermophilic microbes as they are the most likely to 
retain properties beneficial for bioprocessing. For exam-
ple, a GH5 endo-glucanase from Talaromyces emersonii 
was found to have optimal activity at pH 4.8 and 80  °C, 
but retains activity for 15  min at temperatures up to 
100 °C [149]. Furthermore, non-enzymatic processes that 
decrease the crystallinity of cellulose typically involve low 
pH, organic solvents, chemical and oxidative reagents, 
and detergents [127]. Some enzymes, such as two ther-
mostable cellulases of Melanocarpus albomyces, are more 
active on crystalline cellulose than amorphous  cellulose 
[150]. These conditions and enzymatic properties need to 
be taken into consideration when selecting enzymes for 
the treatment of biomass residues.

‑Omic and bioinformatic approaches to elucidate 
CAZyme function
Extensive research has been invested toward identify-
ing CAZymes, microorganisms, and microbial commu-
nities that are capable of saccharifying lignocellulose to 
reduce the cost and increase the yield of biofuel pro-
duction. Commonly, organisms selected for fermenta-
tion (e.g., Saccharomyces cerevisiae) lack the ability to 
metabolize lignocellulose [151]. Fungi and bacteria, 
including the well-studied T. reesei and Clostridium 
spp., are used to produce lignocellulosic CAZymes 
[152, 153], as they can secrete large quantities of endog-
enous cellulolytic CAZymes (i.e., endo-glucanases, 
exo-glucanases, glucosidases [152], and LPMOs [154]). 
These CAZymes have greatly increased the efficiency 
of ethanol production, but the cost of producing and 
purifying enzymes can make the process economi-
cally untenable [19]. To provide affordable solutions 
for optimized lignocellulose degradation, it is common 
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to bioprospect microbial ecosystems of biodigester 
systems involved in plant biomass saccharification to 
identify lignocellulose-degrading microorganisms and 
their endogenous CAZymes. Promising microbes and/
or CAZyme targets have been discovered in crop soil 
[155], compost [156], wastewater sludge [157], and her-
bivorous animal microbiomes [158, 159]. Significantly, 
the anaerobic environment of the ruminant digestive 
tract and the termite hindgut has led to the discovery 
of novel species and microorganisms, including the 
obligate anaerobic fungi phylum Neocallimastigomy-
cota in cattle rumen [160] and lignocellulosic microor-
ganisms found in and cultivated by termites [159, 161]. 
Microbial analysis of anaerobic environments is of par-
ticular interest to the bioethanol and biogas industries 
due to the parallels that exist between these environ-
ments. Moreover, biogas biodigesters are enriched with 
lignocellulose-degrading organisms as they are opti-
mized for biomass metabolism. Microorganisms and/
or CAZymes identified within biodigesters can be used 
as supplements to further increase the valorization of 
biodigester feedstocks (Fig.  5). Crop residues, includ-
ing corn stover [162], barley straw [163], rice straw 
[164], and wheat straw [165], are commonly used as 
biodigester feed stocks. However, microbial community 
composition can vary greatly between systems depend-
ing on pH, temperature, and feed substrates [2, 166].

Lignocellulose-metabolizing microorganisms can 
exhibit varied growth conditions depending on their 
taxonomy and the environment they were isolated from 
[167], making the cultivation of organisms and discov-
ery of novel CAZymes encoded within their genomes 
difficult. However, with the recent advances in -omics 
technologies and decreases in associated costs, the study 
of complex communities has become more accessible. 
Metagenomics [168–170], metatranscriptomics [163, 
166, 171], and metaproteomics [162, 172, 173] have dem-
onstrated the utility of -omics technologies for the dis-
covery of lignocellulose microorganisms and CAZymes. 
When combined with reference genomes or metagen-
omes, metatranscriptomics and metaproteomics allow 
for accurate functional assignment of genes and pro-
teins, respectively [174]. Recent advances in metagen-
omic sequencing and contig binning have ushered in a 
new era of metagenomic-assembled genomes, allow-
ing for increased understanding of microbial function 
within and between microbial ecosystems [175, 176]. For 
example, a large-scale metagenomic study demonstrated 
the diversity of species between anaerobic digesters and 
the importance of generating metagenomic assembled 
genomes  to study and standardize a core and accessory 
digester microbiome, allowing for efficient optimization 
of biogas production [177]. Metagenomics and associated 

software for annotation and functional prediction have 
also aided in the assembly of eukaryotic genomes in com-
plex environments, which overcomes the historical chal-
lenge of sequencing eukaryotic genomes [178]. Genomic 
and metagenomic databases have rapidly expanded and 
will continue to do so as the affordability and accessibility 
of second- and third-generation sequencing technologies 
increase. Unfortunately, subsequent biochemical char-
acterization of annotated genes has been unable to keep 
pace with sequencing data. Therefore, accurate and auto-
mated annotation of these sequences has become a prior-
ity for streamlining CAZyme discovery.

CAZyme annotation and curation
Wide-ranging guidelines have been proposed for unify-
ing how metagenomic studies are performed, covering 
aspects from sample collection and metagenomic bin-
ning [179, 180] to standards for metagenomically gen-
erated genomes [175]. Additionally, there are renowned 
software pipelines for the prediction and annotation of 
prokaryotic and eukaryotic genes, including PROKKA 
[181], RAST [182], MAKER2 [183], AUGUSTUS [184], 
and the NCBI online annotation platforms [185]. Anno-
tation platforms, such as COG [186], SEED [187], Pfam 
[188], and KEGG [189], have also been instrumental for 
predicting gene function. However, these platforms are 
not specialized for CAZyme annotation, nor are they 
designed to differentiate between the rapidly expanding 
lists of CAZyme families.

The CAZy database was launched in 1999, and is the 
single source for CAZyme curation [20]. In addition, it 
provides links to relevant publications and other online 
resources, such as CAZypedia [190] and the polysac-
charide utilization loci (PUL) database PULDB [191]. 
These resources have enabled  other external platforms 
to assist with CAZyme discovery and characteriza-
tion. For example, the CAZyme annotation tool dbCAN 
[192] provides hidden Markov models (HMMs) gener-
ated from the CAZy database to facilitate user sequence 
annotation. dbCAN identifies sequence boundaries to 
improve prediction accuracy, creating profile HMMs 
based on homologous sequence alignments. Alterna-
tively, the CAZyme analysis toolkit [193], currently 
unmaintained, implements Pfam-defined profile HMMs 
which were recently shown to identify > 98% of GHs in 
the CAZy database [194]. These profile HMMs provide 
valuable protein domain prediction, especially helpful 
in determining boundaries in multi-modular CAZymes 
and/or attached CBM modules [195], and are currently 
used by an expanding list of pipelines and software tools 
[195–197]. However, it should be noted that due to dif-
fering thresholds between profile HMMs, there may be 
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discrepancies between Pfam and dbCAN annotations 
when compared to those of CAZy [20].

The addition of subfamily designations to large, poly-
specific families in the CAZy database and the subse-
quent profile HMMs generated by dbCAN have greatly 
improved functional prediction of novel sequences for 
CAZy families GH5 [130], GH13 [198], GH16 [199], 
GH30 [200], and GH43 [134]. However, there are still 
inherent limitations with family- and subfamily-based 

classifications. While members with CAZy families pos-
sess the same fold and catalytic mechanisms, assign-
ment of a sequence to a CAZy family is not necessarily 
definitive of enzyme specificity. Functional differences 
between members of the same subfamily and polyspe-
cific families without subfamily delineations convolute 
prediction of CAZyme activity. As well, sequence-based 
CAZyme prediction is hampered by the low abundance 
of characterized sequences in the database and variability 

Fig. 5 Combinatorial assessment of cell wall structure and investigation of microbial CAZyme function. The integration of analytical methods 
can be implemented to provide a comprehensive experimental workflow to improve bioconversion of agriculture residues. Crop residues can be 
studied prior to or after processing using total cell wall analysis. Information on the structure of waste residues can be compared to starting material 
to determine recalcitrant structures that are limiting the efficiency of bioconversion. The microbial ecosystem of biodigesters can be studied using 
-omics techniques, such as metagenomics, metatranscriptomics, and metaproteomics, to define the structure and function at the community, 
microbe, and CAZyme levels. Information gathered using these techniques can inform optimized conditions or identify lacking catalytic functions 
in the reaction cascade. Microbial communities, microorganisms, and CAZymes can be deployed back into production processes to augment 
inefficent or absent catalytic reactions and improve biofuel production. Surface representation of enzyme structure (white) was generated using 
PyMOL [229] (PDB ID: 2CKR), with cellotetrose ligand illustrated in sticks (blue)
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in substrate libraries used to biochemically characterized 
enzymes. In this regard, a standardized approach using 
similar substrates and kinetic parameters to report rate 
would be beneficial. Fortunately, there is a growing list 
of novel software packages designed to aid in the anno-
tation (PULpy [201], DRAM [202], and dbCAN-PUL 
[203]), curation (dbCAN-PUL [203]) and high-resolution 
phylogeny (SACCHARIS [195], CUPP [196]) of unchar-
acterized CAZymes.

Both PULpy and DRAM software packages use profile 
HMMs sourced from both dbCAN and Pfam to identify 
CAZymes. PULpy focuses heavily on identifying poly-
saccharide utilization loci (PULs) within metagenomes, 
demonstrated in ruminants [169], and DRAM extrapo-
lates CAZyme annotation to predict carbohydrate utiliza-
tion of identified taxonomic units. Recently, dbCAN-PUL 
was developed for the curation of PULs by substrate, tax-
onomy, and characterization method. The repository can 
also be downloaded and used as a database to BLASTX 
against novel CAZymes. Alternatively, SACCHARIS is a 
pipeline that streamlines identification and phylogenetic 
analysis of CAZyme sequences. Sequences collected from 
the CAZy database, as well as user input sequences, are 
trimmed to the predicted catalytic domain using dbCAN, 
aligned [204], and a best-fit Newick tree is generated 
[205–207] (Fig.  4). SACCHARIS is a real-time software 
which enables the functional prediction of CAZymes 
based upon tree topologies generated using the current 
state of knowledge [80, 208, 209]. The Conserved Unique 
Peptide Patterns (CUPP) downloadable software uses 
peptide pattern recognition to find conserved peptide 
motifs within CAZyme families to develop strict CUPP 
groups or subfamilies, and a recent web server allows for 
annotation of user sequences [210]. CUPP has been used 
to elucidate sequence function in pectin and alginate 
lyase families [211, 212], as well as using fungal CAZyme 
secretomes to predict fungal phylogenies [213]. Together 
with -omics-based technologies, CAZyme prediction 
tools will aid in the interpretation of sequence datasets at 
the microbe, community, and gene level. Ultimately, this 
interpretation is necessary to inform CAZyme discovery 
and characterization, which can be used to improve bio-
fuel production (Fig. 5).

Glycomic and multi‑omic integration
Methods to resolve the fine chemistry of biofuel feed-
stocks and to optimize the valorization of feedstocks 
through discovery of microorganisms and CAZymes have 
led to significant advances in biofuel production. Com-
bining these approaches will help unlock further solu-
tions for optimizing the synthesis and saccharification 
of recalcitrant biomass. Comparative genomics of plant 
cell wall biosynthetic loci is a complementary approach 

to glycomics to help illuminate the structural diversity of 
cell walls that exists between species [30]. Plants employ 
a wide variety of CAZymes to synthesize, remodel, and 
saccharify plant cell walls during growth and develop-
ment [214, 215], and -omics can be used to identify func-
tional orthology between cell wall biosynthetic genes 
[216]. A multi-tiered approach that includes plant cell 
wall profiling and CAZyme gene mining has been pro-
posed to better understand cell wall variability between 
plant species [215]. Recently, CAZyme phylogeny and 
characterization have been supplemented with analytical 
methods to investigate acetyl xylan synthesis [217], and 
variable expression of xylan synthesis glycotransferases 
between species [218]. This combinatory approach of gly-
comics and -omics will prove to be crucial in the genera-
tion of “designer” biofuels [18].

Additionally, the combination of glycomics and multi-
omics provides direct and indirect insights into plant cell 
wall structure and saccharification of recalcitrant bio-
mass. The use of glycomics in conjugation with -omics 
has been used to determine the activity and saccharifi-
cation products of CAZymes in a variety of fields (e.g., 
human health [219], soil health/carbon sinks [220], novel 
enzyme discovery [221], and recalcitrant biomass sac-
charification [222]). However, this strategy is challenged 
by the complexityof host dynamic microbial ecosys-
tems, CAZymes, and complex carbohydrate structures. 
Although many researchers have expanded their focus 
to study CAZymes from anaerobic digesters, leading to 
an expansion of -omic datasets [157, 177], and likewise, 
perform glycomic research on biomass saccharification 
in anaerobic digesters or animal digestive organs [51, 
52], there are few studies which combine these tools to 
fully understand the complexity of anaerobic digest-
ers. Using metatranscriptomics, researchers determined 
CAZyme expression profiles in Aspergillus niger grown 
on wheat straw with different pre-treatment methods 
[223]. The pre-treated wheat straw and resulting growth 
cultures were analyzed using HPAEC-PAD to determine 
which CAZymes induced the differential expression pat-
terns between pre-treatment methods. Furthermore, the 
combination of MAPP, linkage analysis, and metagenom-
ics has recently been used to determine the CAZymes 
responsible for the digestion of non-soluble polysaccha-
rides in chickens—an approach highly portable to anaer-
obic digesters [224]. As the field of biofuels progresses, a 
multi-disciplinary approach will be  needed to fine-tune 
and standardize methods to optimize production, as 
diversity in microorganisms in combination with feed-
stocks and feedstock pre-treatments can drastically alter 
saccharification and fermentation efficiencies.
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Conclusion
Improving biofuel production from crop residues is a 
promising avenue for increasing the value of agricul-
tural waste streams. Although there has been substan-
tial progress made toward understanding the cell wall 
structure of crop residues, structural variation that 
exists between plant species and tissues, and chemical 
modifications resulting from pre-treatments impacts 
their efficient use in biofuel production. State-of-the-
art glycomic methods can be used to provide a high-
resolution picture of plant cell wall structure in crop 
residues, and previous studies have emphasized the 
importance of using this structural knowledge to detect 
inefficiencies in biomass fermentation [52, 53] (Fig. 5). 
Intensified research of crop residue cell wall structure 
and composition will be informative for designing tai-
lored approaches for individual plant sources. As well, 
with the advancement of -omics technologies, avail-
ability of sequence datasets, and bioinformatic tools 
developed to interpret metadata, it has become more 
feasible to discover and deploy novel CAZymes biocat-
alysts, saccharolytic microbial species, and microbial 
communities tuned for specific crop residues (Fig.  5). 
Together, elucidation of biomass cell wall structure and 
innovations in CAZyme technologies will help stream-
line future efforts to improve the efficiency of biofuel 
production, helping unlock the energy potential of agri-
cultural crop waste streams and next-generation biofuel 
feedstocks.
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