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Abstract

Background Soybean is a major oil crop; the nutritional components of soybean oil are mainly controlled

by unsaturated fatty acids (FA). Unsaturated FAs mainly include oleic acid (OA, 18:1), linoleic acid (LLA, 18:2), and lino-
lenic acid (LNA, 18:3). The genetic architecture of unsaturated FAs in soybean seeds has not been fully elucidated,
although many independent studies have been conducted. A 3V multi-locus random single nucleotide polymor-
phism (SNP)-effect mixed linear model (3VmrMLM) was established to identify quantitative trait loci (QTLs) and QTL-

by-environment interactions (QEls) for complex traits.

Results In this study, 194 soybean accessions with 36,981 SNPs were calculated using the 3VmrMLM model.
As a result, 94 quantitative trait nucleotides (QTNs) and 19 QEls were detected using single-environment (QTN)
and multi-environment (QEIl) methods. Three significant QEls, namely rs4633292, rs39216169, and rs14264702, over-

lapped with a significant single-environment QTN.

Conclusions For QTNs and QFls, further haplotype analysis of candidate genes revealed that the Glyma.03G040400
and Glyma.17G236700 genes were beneficial haplotypes that may be associated with unsaturated FAs. This result pro-
vides ideas for the identification of soybean lipid-related genes and provides insights for breeding high oil soybean

varieties in the future.
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Background

Soybean [Glycine max (L.) Merr.], a major oil crop, is
commonly used in cooking oil [1]. Soybean oil is mainly
composed of saturated fatty acids (FAs) and unsaturated
FAs. Among them, saturated FAs include palmitic and
stearic acids, and unsaturated FAs include oleic (OA),
linoleic acid (LLA), and linolenic acids (LNA) [2, 3].
Unsaturated FA is the main component of vegetable oil,
accounting for more than 80% [4]. The increase in the
content of OA, a monounsaturated FA, can improve
oxidative stability and prevent oxidation [4]. LLA and
LNA are polyunsaturated FAs and are very beneficial to
human health [5]. However, the LLA and LNA show poor
stability at a high temperature and are easily oxidized
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[6]. Thus, an important goal of soybean breeders is to
increase the OA level and reduce the LLA and LNA
content [7, 8].

Genome-wide association study (GWAS) mapping can
identify the genetic basis of a variety of complex traits
[9]. To date, the single-locus GWAS method has been
widely applied to mine genetic loci underlying important
agronomic traits, including 100-seed weight in soybean
and oil content and yield-related traits in maize [2, 10,
11]. However, quantitative trait nucleotides (QTNs) have
been detected using the single-locus GWAS method,
which has limited ability to detect QTNs because
quantitative traits are affected by a polygenic background
[12].

Currently, the mixed linear model (MLM) method can
correct population structure and family relationships
and is widely used [13]. Based on the MLM method,
single-locus GWAS methods have been widely proposed,
including EMMAX, FaST-LMM and GEMMA [12, 14,
15]. However, single-locus GWAS methods generally
require Bonferroni correction and can be affected by
a polygenic background. To overcome this problem
in single-locus GWAS methods, multi-locus GWAS
methods have been applied, in which statistics are applied
to all loci [16]. These multi-locus GWAS methods mainly
include FASTmrEMMA, FASTmrMLM, FarmCPU,
and pLARmEB [17-20]. However, these methods have
a high calculation burden, and the advantages of QTN-
by-environment interactions (QEIs) have not been fully
considered.

To address this, a new multi-locus GWAS model, the
3 V multi-locus random-SNP-effect mixed linear model
(3VmrMLM), has been presented [21]. This method
improves the QTL detection capability and can analyze
the genetic variation of complex traits. It provides a new
method for the gene discovery of complex traits.

Table 1 Statistical analysis of oleic, linoleic, and linolenic acid traits
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In this study, a dataset of 194 soybean accessions
with 36,981 SNPs was applied [2]. We analyzed the
unsaturated FA content in this population of 194 soy-
bean accessions based on the multi-locus GWAS model
(3VmrMLM). Our aim was to detect significant QEIs and
stable QTNs compared with the results of our previous
study and other independent studies and to further iden-
tify candidate genes related to unsaturated FA content.

Results

Phenotypic variation of three soybean unsaturated FA
compositions

The distribution of unsaturated FA content (including
OA, LLA, and LNA) in the 194 soybean accessions is
shown in Table 1. The coefficient of variation (CV%)
differed among the three years. In 2013, the unsaturated
FA content had the highest CV at 51% (OA), 48%
(LLA), and 52% (LNA). In 2014, the CVs of OA, LLA,
and LNA were relatively consistent at 28%, 25%, and
29%, respectively. In 2015, the CV of unsaturated
FAs was basically the same as in 2014 (Table 1). The
heritabilities of OA, LLA, and LNA were 0.41, 0.36, and
0.35, respectively (Table 1). The above results showed
that the content of unsaturated FAs was affected by the
environment.

The correlation coefficient of the unsaturated FA con-
tent was calculated. As shown in Fig. 1, OA, LLA, and
LNA content had a high correlation within the same year.
However, the OA, LLA, and LNA content was not high
between different years. In 2013, OA was positively cor-
related with LLA and LNA (0.92 and 0.83, respectively).
In 2014, OA was positively correlated with LLA and LNA
(0.84 and 0.65, respectively). In 2015, OA was positively
correlated with LLA and LNA (0.79 and 0.64, respec-
tively). These results show that unsaturated FAs affect
soybean oil accumulation.

Trait Years Min Max Mean SD CV (%) Heritability
Oleic acid content 2013 10.96 29.91 17.46 8.89 51 041
2014 15.26 31.51 20.09 573 28
2015 14.86 34.81 18.19 49 26
Linoleic acid content 2013 47.08 63.29 44.52 21.76 48 0.36
2014 47.36 586 50.89 13.21 25
2015 44.06 60.68 5335 12.59 23
Linolenic acid content 2013 44 1291 6.38 334 52 0.35
2014 444 11.46 7.62 222 29
2015 423 13.34 8.72 229 26
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Fig. 1 Distribution of oleic, linoleic, and linolenic traits in soybean
and Pearson coefficients

Identification of QTNs for unsaturated FA-related traits
using 3VmrMLM

In this study, the unsaturated FA content was reanalyzed
using the single-environment QTN model (3VmrMLM).
A total of 94 significant QT Ns were associated with the
unsaturated FA content (LOD score >3.0). Among them,
30, 34, and 30 QTNs were associated with OA, LLA, and
LNA content, respectively (Table 2).

In 2013, 2014, and 2015, 12, 10, and eight QTNs
were associated with OA content, with LOD scores of
4.55-25.92, 6.25-23.29, and 3.37-9.57, respectively. A
total of 17, 10, and seven QTNs associated with LLA
content were identified with LOD scores of 4.43-24.14,
3.42-20.76, and 4.98-17.08 in 2013, 2014, and 2015,
respectively. In 3 years (2013, 2014, and 2015), 10, eight,
and 12 QTNs associated with LNA content were detected
with LOD scores of 4.17-22.53, 5.07-10.72, and 6.46—
20.27, respectively (Table 2, Additional file 1: Fig. S1).

Detection of QEls for unsaturated FA content using
3VmrMLM with multiple environments

The unsaturated FA content was reanalyzed in 3 years
(2013, 2014, and 2015) using the multiple-environment
QEI model (3VmrMLM) for identifying QEIs. A total of
19 significant/suggested QEIs were identified (Table 3,
Fig. 2). Three significant QEIs overlapped with the above
QTNs. In these QEIs, the r? value was between 2.01 and
14.67, and the variance value was between 0.03 and 1.33
(Table 3).

Candidate gene prediction of significant QTNs associated
with unsaturated FA in soybean

There were 1246 genes identified in the flanking
genomic region of each significant QTN using the
3VmrMLM method (Additional file 1: Table S1). We
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further conducted the Kyoto Encyclopedia of Genes
and Genomes (KEGQG) analysis. As shown in Additional
file 1: Fig. S2A, 201 genes were significantly enriched
in  metabolism, genetic information processing,
environmental  information  processing,  cellular
processes, and organismal systems, including lipid
metabolism, amino acid metabolism, energy metabolism,
transport, and catabolism. The results of the above
enrichment analysis showed that some candidate genes
around QTN were found in different processes.

The same methods mentioned above were used to
analyze candidate genes in the flanking regions of the
QEIs. A total of 301 candidate genes were found in the
linked regions of significant QEIs (Additional file 1:
Table S2). KEGG analysis found that 53 genes were
significantly enriched in metabolism, genetic information
processing, environmental information processing, and
organismal systems, including carbohydrate metabolism
and lipid metabolism (Additional file 1: Fig. S2B). In
the multiple-environment QEI model, five known SNP
markers were identified. In addition, some new SNP
markers, including rs6528670, rs1902760, rs4633292,
1s2457629, and rs48948953, were related to FA synthesis.
Moreover, some known markers were identified in the
multiple-environment QEI model, including rs14264702,
rs34595703, rs44492166, rs23852645, and rs26951255.
Three significant QEIs, namely rs4633292, rs39216169,
and rs14264702, overlapped with significant QTN in a
single year, of which rs14264702 has been reported [22].

Transcriptomic analysis of HUFA and LUFA soybean seeds
RNA-seq analysis was conducted to reveal the
transcriptional regulation of unsaturated FA metabolism
in HUFA (high unsaturated fatty acid) and LUFA (low
unsaturated fatty acid) soybean seeds. Three comparison
groups were analyzed: a comparison group of five
HUFA and five LUFA varieties (FHUFA vs. FLUFA); a
comparison of 10 HUFA and 10 LUFA varieties (THUFA
vs. TLUFA); and a comparison of 15 HUFA and 15 HUFA
varieties (HUFA vs. LUFA) (Additional file 1: Table S3).

There were 4013, 3504, and 2546 DEGs in the FHUFA
vs. FLUFA, THUFA vs. TLUFA, and HUFA vs. LUFA
groups, respectively (Fig. 3A, B). In each comparison
group, the number of upregulated DEGs was higher
than the number of downregulated DEGs. As shown in
Fig. 3C, 1160 common DEGs were upregulated, while
183 common DEGs were downregulated.

Identification of candidate genes by integrating GWAS

and RNA-seq analysis

To further identify candidate genes, DEGs were iden-
tified by integrating GWAS and RNA-seq analy-
sis and by analyzing potential candidate genes. In
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Table 2 (continued)

References

Known QTL

(%)  p-value

Variance

Dominant effect

Year SNP Chr Position (bp) LOD Additive effect

Trait

58E-10

6.82
4.86
593
53

0.08
0.06
0.07
0.06
0.05
0.09
0.04
0.08

2.23
-0.14

0.12
0.51
-047
—-0.01
-0.26

9.24
20.28

5660143

3
6
8
10
12
14
14
14

5660143

53E-21

32069131

rs32069131
rs38597109
1518435729
139609078
rs2599191

8.6E-21

18.99
6.46
6.66

10.61
9.71

10.54

38597109

3.5E-07

7

243

18435729
39609078
2599191

3.1E-08

429

2.5E-11
2E-10

7.78
3.58
6.90

-0.06
-0.21
-0.66

0.33
032
0.30

9834940

9834940
126951252

[22,25]

Seed oleic 6-10;

29E-11

26951252

Seed oleic 7-3

42E-08
9E-16

5.98

0.07
0.07
0.03

2.56
0.58
-0.18

0.05
-040

7.38
15.05
12.77

21822969
30575841

15
15

17

rs21822969
rs30575841
1s35024325

5.56
2.78

(2024) 17:43

[2,22]

1s35024325; Seed oleic 6-9

1.7E-13

037

35024325
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the single-environment QTN model, 91, 85, and 61
DEGs were found in the FHUFA vs. FLUFA, THUFA
vs. TLUFA, and HUFA vs. LUFA groups, respec-
tively (Additional file 1: Table S1). A total of 30
DEGs were found in all three comparison groups.
Among them, Glyma.10G079500, Glyma.19G163600,
Glyma.09G033600, and Glyma.02G068900 genes were
upregulated (Log2FC>3), and Glyma.07G205400,
Glyma.09G053700, and Glyma.06G175100 genes were
downregulated (Log2FC < —1) (Table 4, Additional file 1:
Fig. S3A).

In the multiple-environment QEI model, 26, 28,
and 20 DEGs were found in the FHUFA vs. FLUFA,
THUFA vs. TLUFA, and HUFA vs. LUFA groups,
respectively (Additional file 1: Table S2). Among these
candidate genes, nine were simultaneously detected
by GWAS and common DEGs in all three comparison
groups. These nine genes included those encoding
an Acyl-CoA-binding protein (Glyma.17G236700),
Ankyrin repeat family protein (Glyma.09G053700),
Nodulin MtN3 family protein (Glyma.08G025100),
Integrase-type  DNA-binding superfamily protein
(Glyma.18G206600),  Calmodulin-domain  protein
kinase 9 (Glyma.14G023500), ARM repeat superfamily
protein (Glyma.03G036700), Protein kinase superfamily
protein (Glyma.03G036000), BRI1 kinase inhibitor 1
(Glyma.06G039100), NAC domain-containing protein
73 (Glyma.13G234700), and unknown function protein
(Glyma.18G205700, Glyma.18G205400) (Table 5,
Additional file 1: Fig. S3B). The expression of these
genes was further determined by qRT-PCR and was
basically consistent with that of the transcriptome data
(Additional file 1: Fig. S4).

Metabolic profiling analysis of MHUFA and MLUFA soybean
seeds

To determine the unsaturated FA regulatory network at
the seed development stage, a non-targeted metabolic
profiling analysis was applied. There were 15 high
unsaturated FA (HUFA) and 15 low unsaturated FA
(LUFA) soybean varieties applied in this study (Additional
file 1: Table S3). Multiple metabolites were detected
using non-targeted metabolomics, including secondary
metabolites, lipids, amino acids, and flavonoids.

To explore the differences in metabolites between dif-
ferent varieties, three comparison groups were studied:
five high-unsaturated FA (FMHUFA) and five low-unsat-
urated FA (FMLUFA) varieties (FMHUFA vs. FMLUFA);
10 high-unsaturated FA (TMHUFA) and 10 low-unsatu-
rated FA (TMLUFA) varieties (TMHUFA vs. TMLUFA);
and 15 high-unsaturated FA (MHUFA) and 15 low-unsat-
urated FA (MLUFA) varieties (MHUFA vs. MLUFA). The
OPLS-DA analysis showed that the model accurately
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Fig. 2 Manhattan plots of the multi-environment analysis for the oleic, linoleic, and linolenic acid content in soybean seeds

described each sample and was suitable for subsequent
analysis (Fig. 4A). According to the OPLS-DA model, 70
differentially abundant metabolites (DAMs) were upreg-
ulated, and 291 DAMs were downregulated in FMHUFA
vs. EMLUFA (Fig. 4B). These metabolites included lipids,
secondary metabolites, and unknown metabolites. In
addition, 202 and 322 DAMs were identified in TMH-
UFA vs. TMLUFA and MHUFA vs. MLUFA, respectively
(Fig. 4B). As shown in Fig. 4C, four common upregu-
lated DAMs and 29 common downregulated DAMs were
identified.

Differential accumulation of metabolites with MHUFA

and MLUFA content

In this study, the metabolic changes of high and low
unsaturated FA content in 30 soybean varieties during
the R6 period were studied. In FMHUFA vs. FMLUFA,
29 DAMs were annotated into the KEGG pathway.
Among them, the isoflavone pathway had the most
DAMs, including Genistein, 8-C-glucosylnaringenin,
genistin, and biochanin A (Additional file 1: Fig. S5A).
In TMHUFA vs. TMLUFA, 16 DAMs were annotated
into the KEGG pathway; among them, the TCA

cycle had the most DAMs. 1-Pyrroline-4-hydroxy-
2-carboxylate, 5-amino-6-ribitylamino uracil, and
2-(acetamidomethylene) succinate were differentially
accumulated in TMHUFA vs. TMLUFA (Additional
file 1: Fig. S5B). In MHUFA vs. MLUFA, 39 DAMs
were annotated into the KEGG pathway, including
the TCA cycle, LLA metabolism, and biosynthesis of
amino acids. LysoPC (22:2(13Z,16Z)), (2S,5S)-trans-
carboxymethylproline, and quercetin 3-sambubioside
were differentially accumulated in MHUFA vs. MLUFA
(Additional file 1: Fig. S5C).

Co-expression analysis of candidate genes and DAM
metabolites

Candidate genes and metabolite networks were
analyzed. In the single-environment model, the
co-expression network of 30 candidate genes and
DAMs in three comparison groups was constructed.
In the FHUFA vs. FLUFA network, the results
indicated that the 75 subnetworks were significantly
correlated (|r|>0.5, p<0.05). PE (22:5) was positively
associated with Glyma.14G216100 (r>0.51, p<0.02),
Glyma.03G040000 (r>0.51, p<0.01), Glyma.02G210300
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(r>0.51, »<0.02), Glyma.17G236200 (r>0.52,
p<0.01), Glyma.11G100600 (r>0.59, p<0.006), and
Glyma.09G157500 (r>0.68, p<0.0007). Quinone
was positively associated with Glyma.17G236700
(r>0.53, p<0.01) and Glyma.03G040400 (r>0.67,
p<0.001) (Fig. 5A). In the THUFA vs. TLUFA
network, 1-pyrroline-4-hydroxy-2-carboxylate
was positively associated with Glyma.09G051900
(r>0.88, p<5.53E—14) and Glyma.03040400 (r>0.88,
p<2.35E-14). Glyma.17G236700 was  positively
associated with 2-(acetamidomethylene) succinate
(r>0.51, p<0.0007), 5-amino-6-ribitylamino uracil
(r>0.69, p<6.85E—07), and 1-pyrroline-4-hydroxy-2-
carboxylate (r>0.69, p <6.09E—07) (Fig. 5B). In the HUFA
vs. LUFA network, 1-pyroline-4-hydroxy-2-carboxylate
B was significantly associated with Glyma.03G040400
(r>0.84, p<3.69E—17) and Glyma.09G051900 (r>0.85,
p<8.61E—18). Glyma.17G236700 was significantly
associated ~ with  LysoPC(22:2(13Z,16Z))  (r>0.64,
p<3.04E—08) and 1-pyrroline-4-hydroxy-2-carboxylate B
(r>0.64, p<2.01E-08) (Fig. 5C).

In the multiple-environment QEI model, a co-
expression network of nine candidate genes and DAMs
was constructed for three comparison groups. In the

FHUFA vs. FLUFA network, the 22 subnetworks were
significantly correlated (|7|>0.5, p<0.05). Quinone
was positively associated with Glyma.08G025100
(r>0.88, p<2.14E-07) and Glyma.17G236700 (r>0.53,
p<0.01) (Fig. 6A). In the THUFA vs. TLUFA network,
Glyma.18G205400 was positively associated with
5-amino-6-ribitylamino uracil (r>0.90, p<9.27E—16)

and  1-Pyrroline-4-hydroxy-2-carboxylate  (r>0.92,
pP<2.96E-17). Glyma.17G236700 was significantly
associated with 2-(acetamidomethylene) succinate

(r>0.51, p<0.0007), 1-pyrroline-4-hydroxy-2-car-
boxylate (r>0.69, p<6.09E—-07), and 5-Amino-6-ribi-
tylamino uracil (r>0.69, p<6.85E-07) (Fig. 6B). In
the HUFA vs. LUFA network, Glyma.17G236700 was
significantly associated with LysoPC (22:2(13Z,16Z))
(r>0.64, p<3.04E-08) and 1-pyrroline-4-hydroxy-
2-carboxylate B (r>0.649, p <2.01E-08) (Fig. 6C).

Gene-based association and haplotype analysis

of candidate genes

To further determine the relationship between candi-
date genes and traits, the SNPs of the candidate genes
were applied for the gene-based association and hap-
lotype analysis of the candidate genes. According to
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Gene ID Gene function Arabidopsis homologs FHUFA vs. FLUFA THUFA vs. TLUFA HUFA vs. LUFA
Glyma.02G068900  Xyloglucan endotransglucosylase/hydrolase 5 AT5G13870.1 4.86 6.48 393
Glyma.02G210300 Unknown protein AT2G14095.1 2.84 3.01 2.75
Glyma.03G006700  cysteine synthase 26 AT3G03630.1 1.26 132 1.02
Glyma.03G040000 lipid transfer protein 2 AT2G38530.1 4.86 3.01 1.93
Glyma.03G040100  lipid transfer protein 1 AT2G38540.1 4.01 4.67 263
Glyma.15G087200  Aldolase-type TIM barrel family protein AT5G01410.1 1.54 1.59 1.33
Glyma.03G040500 Unknown protein AT2G40435.1 2.24 145 1.16
Glyma.04G102400 Unknown protein AT1G78170.1 2.19 2.37 211
Glyma.04G102700 Major facilitator superfamily protein AT1G34580.1 273 284 1.71
Glyma.04G209200 Amino acid permease 2 AT5G09220.1 1.05 2.19 1.61
Glyma.06G175100 Leucine-rich repeat protein kinase family AT2G31880.1 -151 -1.26 -1.11
protein
Glyma.07G205400 Cysteine proteinases superfamily protein AT3G49340.1 —361 —2.88 —2.75
Glyma.09G032100 myb domain protein 78 AT5G49620.1 2.1 240 1.72
Glyma.09G033500  Unknown protein AT5G49525.1 3.02 2.50 1.58
Glyma.09G033600 Unknown protein no 9.01 517 518
Glyma.09G051900 VQ motif-containing protein AT4G20000.1 2.70 395 323
Glyma.17G236700 Acyl-CoA-binding domain 3 AT4G24230.6 1.62 1.96 1.24
Glyma.09G053700  Ankyrin repeat family protein AT3G54070.1 -6.18 -5.18 -4.86
Glyma.09G157500  Unknown protein no 1.94 203 1.39
Glyma.10G079500  Unknown protein AT1G32120.1 832 6.32 643
Glyma.11G100600 Peptidoglycan-binding LysM domain- AT5G23130.1 251 1.94 1.16
containing protein
Glyma.14G216100  Protein kinase superfamily protein AT5G37790.1 254 218 1.50
Glyma.03G040400 Lipid transfer protein 1 AT2G38540.1 126 1.94 142
Glyma.15G088900 GDSL-like lipase/acylhydrolase superfamily AT1G29670.1 2.01 1.95 1.58
protein
Glyma.16G161500 DNAse I-like superfamily protein AT1G71710.1 1.61 1.77 1.20
Glyma.17G220100 Pentatricopeptide repeat (PPR) superfamily AT2G13600.1 -159 —-1.41 -1.08
protein
Glyma.17G236200 Salt tolerance zinc finger AT1G27730.1 2.77 312 1.19
Glyma.18G239700 Wall-associated kinase-like 2 AT1G16130.1 343 3.05 328
Glyma.18G239900 Cytochrome P450, family 97, subfamily A, AT1G31800.1 1.67 149 .11
polypeptide 3
Glyma.19G163600 RING/U-box superfamily protein AT1G04360.1 5.88 7.34 537
Table 5 Candidate genes are identified in the transcriptome and QEls detection model
Gene ID Gene function Arabidopsis homologs FHUFA vs FLUFA THUFA vs HUFA
TLUFA Vs
LUFA
Glyma.09G053700 Ankyrin repeat family protein AT3G54070.1 -6.18 -5.18 -4.86
Glyma.13G234700 NAC domain containing protein 73 AT4G28500.1 -1.56 -1.14 -1.08
Glyma.18G206600 Integrase-type DNA-binding superfamily protein AT2G40340.1 1.21 1.85 124
Glyma.17G236700 Acyl-CoA-binding domain 3 AT4G24230.6 1.62 1.96 1.24
Glyma.14G023500 Calmodulin-domain protein kinase 9 AT3G20410.1 1.66 1.86 1.32
Glyma.03G036000 Protein kinase superfamily protein AT5G01850.1 1.85 1.90 1.35
Glyma.03G036700 ARM repeat superfamily protein AT5G01830.1 2.21 1.70 1.37
Glyma.08G025100 Nodulin MtN3 family protein AT4G10850.1 243 1.67 1.24
Glyma.18G205400 Unknown protein AT3G51750.1 243 4.03 6.30
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Fig. 4 Multivariate statistical analysis of the metabolome data in the soybean samples. A OPLS-DA model analysis. B Number of differential
metabolites. The green and yellow columns represent the number of genes that were upregulated and downregulated, respectively. C Upsetplot

diagram showing the overlapping DAMs in the three comparison groups

the results of candidate gene screening based on gene
expression data from qRT-PCR and transcriptomics,
Glyma.03G040400 and Glyma.17G236700, as the can-
didate genes of QTNs and overlapping SNPs of QTNs
and QEIs, were studied to understand the gene varia-
tions affecting soybean unsaturated FAs and to further
determine beneficial haplotypes. Three SNPs were found
in the promoter and CDS regions of Glyma.03G040400
(Additional file 1: Table S4). SNP markers 39,188,954,
39,189,172, and 39,190,333 showed an association with
LLA (Fig. 7A, Additional file 1: Table S4). Among the
three haplotypes of Glyma.03G040400, Hap 3 and Hap
2 had a significantly higher LNA content than Hap 1 in
2013 and 2014 (Fig. 7B and C).

For candidate gene Glyma.17G236700, seven SNPs
were found in the promoter and CDS region. Of
these, SNP markers 5,048,564, 5,048,670, 5,048,842,
5,049,415, 5,049,422, 5,049,438, and 5,050,845 were sig-
nificantly associated with LLA content in 2013 and 2014

(—logl0(P) >2) (Additional file 1: Table S4, Fig. 7D). Four
haplotypes of Glyma.17G236700 were defined by the
seven SNPs (Fig. 7E and F). Among the four haplotypes,
Hap 3 and Hap 4 had a significantly higher LNA content
(2013 and 2014) than Hap 1 and Hap 2.

Discussion

Soybean is an important oil crop. However, different
proportions of FAs may play an important role in
soybean oil. Therefore, it is of great significance to
improve the content and quality of soybean oil. The
single locus method has been widely used to detect
genetic variation in crops, including GLM and MLM
[23, 24]. However, single-locus GWAS methods
generally need Bonferroni correction and can be
affected by a polygenic background. In this study, 194
soybean accessions were analyzed using the 3VmrMLM
method (Additional file 1: Figure S1, Table 2). We
identified 12, 10, and eight significant/suggested SNPs
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for OA, 17, 10, and seven significant/suggested SNPs
for LA, and 10, eight, and 12 significant/suggested
SNPs for LLA in 2013, 2014, and 2015, respectively
(Table 2). In addition, we compared 3VmrMLM
with a single-locus MLM method by Zhao et al. We
detected 63 SNPs using the MLM method. Hence, the
3VmrMLM method detected more significant SNPs
than the MLM method. Among these SNPs, four SNPs
were found using the MLM and 3VmrMLM methods
simultaneously, including rs4953186 rs52833743,
rs35024325, and rs6481810, and the discovery of
rs35024325 and rs6481810 SNPs has been reported [2,
22].

Environmental changes have an important impact
on the quality and yield of crops; analysis of multiple

environments can increase the detection capability of
SNPs. In this study, six, five, and eight QEIs were found
for OA, LA, and LLA, respectively (Fig. 2, Table 3).
Among these SNPs, five have been reported [22, 25,
26]. A total of 1246 genes around the significant/sug-
gested QTNs were predicted in this study; of them, 40
genes were involved in lipid synthesis (Additional file 1:
Table S1). For example, the MYB transcription factor
has been reported to affect oil accumulation [27]. The
OsLTP gene is involved in the transport of lipid mol-
ecules in rice [28]. In this study, Glyma.03G040400
(GmLTPI), located on chromosome 3, was signifi-
cantly related to LNA using the GLM method based on
gene-based association (Additional file 1: Table S4). In
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addition, the GmLTP1 gene was a beneficial haplotype
(Fig. 7).

A total of 301 genes around the significant/suggested
QEIs were detected in this study (Additional file 1:
Table S2). Three significant QEIs, namely rs4633292,
rs39216169, and rs14264702, overlapped with
significant single-environment QTNs. Among the
overlapping SNPs, genes related to FA synthesis and
seed development, such as ACBP and FTSH, were
identified. ACBPs can play an important role in
maintaining lipid homeostasis [29]. In addition, we
found that the Glyma.17G236700 (ACBP) gene had a
beneficial haplotype (Fig. 7).

Conclusion

The 3VmrMLM method was more comprehensive for
GWAS. This method overcame the huge computational
burden of traditional models. In this study, 94 QTNs
and 19 QEIs were identified. Five major candidate genes
were found. The gene expression data from different
soybean tissues and transcriptome data were used to
identify Glyma.03G040400 and Glyma.17G236700 as
key candidate genes around the SNPs. The beneficial
haplotypes of Glyma.03G040400 and Glyma.17G236700
may be helpful for further application in soybean
breeding.

Methods

Plant materials, field trials, and phenotypic evaluation

An association panel of 194 soybean germplasm
resources was planted at Harbin (162.41° E, 45.45° N) in
2013, 2014, and 2015. Field trials were conducted using
single-row plots (2 m long and 0.65 m between rows) and
a randomized complete block design with three replicates
per experimental site. The unsaturated FA content of
each sample was determined using gas chromatography
(GC-14C, Shimadzu Company, Japan), according to our
previous method [30]. The OA, LLA, and LNA content
were applied in single-environment (QTN) and multi-
environment (QEI) analyses.

Genotypic data

A genotypic dataset consisting of 36,981 SNPs from 194
soybean germplasm resources was generated by Spe-
cific-Locus Amplified Fragment Sequencing (SLAF-seq),
which was reported in Han et al. and Zhao et al. [2, 31].
The 36,981 SNPs were distributed on 20 soybean chro-
mosomes, with minor allele frequencies >0.04 and miss-
ing data of < 10% (Fig. 8).

GWAS
The 36,981 SNPs and unsaturated FA content of 194
soybean accessions were used for association analysis
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via the 3VmrMLM method in 3VmrMLM software [21].
QTNs for OA, LLA, and LNA content were calculated
from a single environment (3 years of phenotypic data
from 2013, 2014, and 2015). QEIs for OA, LLA, and LNA
content were calculated using a joint analysis of multiple
environments. The threshold of significance for QTNs
and QEIs was set at p=0.05 and LOD score > 3.0.

Differential expression analysis based on RNA-seq

At the R6 stage, 30 soybean varieties with a high content
of three unsaturated FAs and a low content of three
unsaturated FAs were collected for RNA sequencing
(RNA-seq) with two biological replicates. Total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA). The cDNA sequencing libraries of 18 RNA samples
were constructed and sequenced, and RNA-seq data
were generated using the Illumina platform. Differentially
expressed genes (DEGs) were identified using the edgeR
package in R software [32]. The significance level was set
as follows: |log2(fold change)|> 1.

Identification of candidate genes

The 100-kb flanking region of each identified QTN and
QEI was defined to search for candidate genes according
to linkage disequilibrium decay analysis, as described
in Zhao et al. [2]. Candidate genes for unsaturated FAs
were extracted in the following steps. According to
previous reports, known genes related to FA content
in Arabidopsis were considered references to screen
their homologous genes in the soybean genome. The
new candidate genes were identified using DEGs for
unsaturated FAs.

Metabolite profiling

The non-targeted metabolome was completed by
Bioacme Biotechnology Co., Ltd. (Wuhan, China).
Briefly, a 100 mg soybean sample was loaded into a 2-mL
centrifuge tube, and 300 puL 75% methanol/water was
added. The tubes were centrifuged at 12,000 rpm for
15 min at 4 °C. Metabolites were screened and identified
using the Metlin database. The differential metabolites
were calculated using an orthogonal partial least squares-
discriminant analysis (OPLS-DA) model, with a variable
importance in the projection (VIP) score of>1 and a
|log2 (fold change)| of > 1.

Haplotype analysis and gene-based association analysis

of candidate genes

The SNP variation of candidate genes was analyzed based
on genome sequencing data. These SNPs were located
at the full length of the gene, including exons, intronic
regions, and upstream and downstream of the gene.
Therefore, in this study, phenotypic data, including high
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Fig. 8 Density distribution of single nucleotide polymorphisms (SNPs)

and low total unsaturated FA content, from 50 soybean
germplasm resources were used over 3 years to conduct
an association analysis. A general linear model (GLM)
was used to further determine the association between
the SNP variation of candidate genes and unsaturated
FA content using TASSEL software [33]. Significant SNP
variation in candidate genes was considered when the P
value was less than 0.01.

Quantitative real-time PCR (QRT-PCR)

Soybean seeds with high and low unsaturated FA
content were collected at the R6 stage. Total RNA was
extracted using the TRIzol method, and cDNA was
generated using the ReverTra Ace qPCR RT Master Mix
(TOYOBO, Osaka, Japan). Real-time quantitative PCR
(qRT-PCR) was performed on an ABI 7500 fast real-
time PCR platform with SYBR Green (TOYOBO, Osaka,
Japan). GmACTIN4 was used as an internal control,
and the primer sequences for candidate genes are listed
in Additional file 1: Table S5. The L-13 soybean seed
samples were used as a calibrator. The results of qRT-
PCR were calculated using the 2724¢T method [34].

Co-expression analysis
The correlation coefficient was calculated between can-
didate genes and DAM metabolites, and a Pearson

correlation cutoff value of 0.5 was generated. Data were
visualized using the Cytoscape package [35].

Statistical analysis

Statistical significance was evaluated using Student’s
t-test performed with SPSS 22.0 software (IBM Corp.,
Armonk, NY, USA). “*” and “**” represent a significance
level of p<0.05 and p<0.01, respectively. The mean and
standard deviation (mean + SD) were calculated using the
data from three biological replicates.
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