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Abstract

Background: Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass
into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic
monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing.
In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for
rendering biomass more amenable to processing for biofuel production.

Results: In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring)
moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling,
producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with
a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%)
that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded
up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls.

Conclusions: It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled
into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification.
Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent
benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester
intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG
for incorporation into lignin would be a promising plant genetic engineering target for improving the
delignification and saccharification of biomass crops.
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Background
Lignin serves a vital role as an inter- and intra-molecular
glue strengthening plant cell walls, but it hinders numer-
ous agro-industrial processes such as the chemical pulping
of woody crops, forage digestion by livestock, and the en-
zymatic saccharification and fermentation of lignocellulo-
sic biomass into liquid biofuels. As a result, considerable
effort has been directed towards reducing or altering the
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reproduction in any medium, provided the or
biosynthesis of lignin in plants to permit more efficient
utilization of plant cell walls [1-7]. In angiosperms, lignin
is normally formed by the oxidative copolymerization of
monolignols, principally coniferyl alcohol (CA) and sina-
pyl alcohol (SA), Figure 1. Perturbing single or multiple
genes in the monolignol pathway can lead to massive
structural changes in the polymer due to dramatic shifts
in the deposition of normal monolignols [8-11], and/or in-
corporation of pathway intermediates and other phenolic
compounds [12-16]. The inherent malleability of plant lig-
nification is further illustrated by the natural incorporation
of various γ-acylated monolignols [13,17,18] and ferulate
arabinoxylan esters [19,20] into lignin and the recent dis-
covery of a seed-coat lignin surprisingly formed solely from
caffeyl alcohol [21]. These findings support the notion that
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Structures of conventional monolignols, coniferyl alcohol (CA) and sinapyl alcohol (SA), and flavonols and gallate derivatives
used in this study, epigallocatechin gallate (EGCG), epigallocatechin (EGC), and ethyl gallate (EG)..
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plants could be genetically engineered to make use of pre-
cursors from alternate phenolic pathways to form lignins
that are more amenable to processing [20,22-30].
In order to identify the most promising genetic engin-

eering targets for modifying lignin, we have used a
biomimetic cell wall model system to test a variety of
plant-derived phenolics as alternative precursors for lig-
nification [31-34]. These studies have demonstrated that
copolymerization of hydroxycinnamate conjugates such
as coniferyl ferulate [34] and rosmarinic acid [31] with
normal monolignols dramatically improves the alkali ex-
tractability of lignin and the subsequent enzymatic hy-
drolysis of fiber. Accompanying in vitro lignification
studies demonstrated that these conjugates readily par-
ticipate in peroxidase-catalyzed copolymerization reac-
tions with normal monolignols. The resulting lignin
contains readily cleaved ester linkages in the backbone
of the polymer which permit lignin depolymerization
under mild alkaline conditions [31]. Subsequent cell wall
studies revealed that several flavonoid and gallate deriva-
tives hold promise as monolignol substitutes for modu-
lating the adverse effects of lignin to enhance the
inherent fermentability of cell walls [32,33]. Among
these, epigallocatechin gallate (EGCG, Figure 1) was par-
ticularly attractive because it readily formed wall-bound
polymers with normal monolignols and enhanced the
fermentability of non-pretreated cell walls by 25% [32].
Similarly to the aforementioned hydroxycinnamate con-
jugates, incorporation of EGCG could introduce easily
cleaved ester linkages into the lignin backbone via oxida-
tive coupling of its epigallocatechin and gallate moieties
with monolignols. However, the involvement of these
EGCG moieties in coupling reactions with monolignols
is not known. It is also not known whether EGCG in-
corporation into lignin could enhance the delignification
of cell walls by chemical pretreatment and/or their sac-
charification by hydrolytic enzymes.
Therefore in the present study, we examined the

copolymerization of EGCG and CA into dehydrogenation
polymers (synthetic lignins, DHPs), utilizing an in vitro
horseradish peroxidase (HRP)-catalyzed polymerization
system that models lignin polymerization in vivo [35-38].
Two-dimensional nuclear magnetic resonance (NMR)
experiments with the DHPs revealed one major cross-
coupling mode between CA and both epigallocatechin
and gallate moieties of EGCG. We then subjected cell wall
dehydrogenation polymers (CWDHPs) formed by artifi-
cially lignifying maize cell walls with CA, SA, and EGCG
[32] to alkaline pretreatment and enzymatic hydrolysis.
Wet chemical and NMR analyses of CWDHPs, alkali-
insoluble residues, and enzyme hydrolysates revealed that
EGCG incorporation into lignin dramatically enhanced the
delignification and enzymatic saccharification of cell walls.

Results and discussion
In vitro lignin polymerization with EGCG
In these experiments, we examined HRP/H2O2-mediated
coupling reactions of EGCG and simplified models of its
gallate and gallocatechin moieties with CA, a conven-
tional plant monolignol (Figure 1). To avoid excess for-
mation of insoluble polymers that are difficult to analyze
by NMR, most copolymerization reactions were quickly
quenched after 10 min of reaction time. Soluble fractions
consisting mainly of low molecular weight polymerization
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products were then extracted with ethyl acetate or acet-
one in yields ranging from 42-55% for subsequent NMR
analysis (see Materials and Methods). Based on thin layer
chromatography, the soluble fractions contained only
coupling products and no unreacted monomers.
Detailed chemical structures of the polymerization pro-

ducts were elucidated by 2D NMR methods. The HSQC
spectra resolved signatures of the various inter-unit link-
age types in the oxidation products and clearly revealed
the participation of EGCG, epigallocatechin (EGC), and
ethyl gallate (EG) in lignin polymerization with CA
(Figures 2A-D). In agreement with literature data [39,40],
the polymerization products prepared only with CA con-
tained mainly phenylcoumaran units II with moderate
levels of β-aryl ether units I and resinol units III
(Figure 2A). Signals from the complete side-chains of
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Figure 2 (A-D) Short-range 13C–1H correlation (HSQC) NMR spectra of
coniferyl alcohol only (A), and from coniferyl alcohol with epigallocat
(E and F) Short-range 13C–1H total correlation (HSQC-TOCSY) spectra of the
coniferyl alcohol with epigallocatechin gallate (F)..
these units were seen in the 2D HSQC-TOCSY spectrum
(Figure 2E). Such typical lignin units, representing these
standard linkage types, were also visible in the spectra of
the oxidation products prepared with EGCG, but the
most striking difference was the appearance of benzo-
dioxane units IV (Figure 2B), which were totally absent
in the control (Figure 2A). The α-, β-, and γ-correlations
from trans-benzodioxane-ring units could be assigned by
comparison with literature data of analogous benzodiox-
anes [21,31] and were further authenticated by TOCSY
(Figure 2F). Less pronounced correlations from pre-
sumed cis-benzodioxane-ring units were also visible.
Benzodioxane structures were also evident in oxidations
carried out with EG and EGC (Figure 2, C and D), dem-
onstrating that both epigallocatechin and gallate moieties
comprising EGCG could participate in cross-coupling
90

80

70

60

50

D

ppm
13C

1H.0 5.0 4.0 3.0 6.0 5.0 4.0

90

80

70

60

50

ppm
13C

Iβ

Iγ

Xγ

IIα

IIβ IIIβ

IIIα

IIγ

IVγ

IVα
IVβ

cis

trans

cis

cis
trans

trans

Iα
IIIγ IIIγ

Iα
IIIγ IIIγ

IIβ IIIβ

Iγ
IVγ

cis

trans
Xγ

IIγ

IIα
IIIα

IVα
IVβ

cis

cis
trans

trans

EC6

EC8

EC2

EC3

GA1

III
resinol

O

O

α

β

γ

II
phenylcoumaran

O
HO

5
β

αγ

I
β-aryl ether

α
β O

HO

HO

OMe

γ

4
β

CA/EG
HSQC

CA/EGC
HSQC

EC
O

O

O

O

OH

O

OH

OH

HO

EC
O

O

O

OH

OHOH

HO

OH

GA

GA

O

O

O

O O

O

O
O

HO
γ αβ

IV
benzodioxane

OH

X
coniferyl alcohol

end-unit

epigallocatechin gallate
(EGCG) units

epigallocatechin
(EGC) units

ethyl gallate
(EG) units

not assigned,
solvent, etc.

methoxyl

in vitro peroxidase-catalyzed polymerization products from
echin gallate (B), epigallocatechin (C), and ethyl gallate (D).
polymerization products from coniferyl alcohol only (E), and from



Elumalai et al. Biotechnology for Biofuels 2012, 5:59 Page 4 of 13
http://www.biotechnologyforbiofuels.com/content/5/1/59
reactions with CA. It is likely that the gallate moiety par-
ticipated in lignin polymerization primarily via the ben-
zodioxane pathway, because EG polymerization products
contained only benzodioxane signals besides the typical
lignin signals from CA (Figure 2C). On the other hand,
the spectrum of EGC polymerization products (Figure 2D)
was complex with numerous unidentified signals (colored
in grey), suggesting that the epigallocatechin moiety in
EGCG might be involved in several cross-coupling modes
besides the pathway to benzodioxanes. In both EGCG and
EGC spectra, the two signals from unreacted free resorcinol
A rings (EC6 and EC8) were especially prominent, sug-
gesting that reactions of pyrogallol B and gallate rings far
exceed reactions of the resorcinol A-ring. Previous stud-
ies examining chemical and enzymatic oxidations of fla-
vonols in the absence of monolignols reported lower
reactivity of A-ring in comparison to B-ring for EGCG
and analogous compounds [41-44].
We also examined synthetic lignins (DHPs) prepared

by the conventional in vitro lignin polymerization
method (end-wise polymerization method), in which the
monomers and hydrogen peroxide solutions were slowly
added (~20 h) to the peroxidase solution to facilitate
polymer chain elongation [45,46]. These experiments
produced DHPs from CA and EGCG (10–20 mol%, in
the monomer feed) in good yields (70-80%) but, unlike
traditional DHPs prepared only with CA, DHPs prepared
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with EGCG were mostly insoluble in common lignin sol-
vents used for solution-state NMR. Nevertheless, the
HSQC spectrum of the DHP acquired in a suspension-
state in dimethylsulfoxide-d6/pyridine-d5 (4:1, v/v) con-
tained signals diagnostic of EGCG aromatic rings and
benzodioxane units (Additional file 1: Figure S1); weak
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precursors with o-diphenolic structures such as caffeyl
alcohol [16,21], 5-hydroxyconiferyl alcohol [14,15,24,49],
and rosmarinic acid [31], either in vivo or in vitro,
or both. Overall, the data presented here support our
earlier contention that EGCG readily undergoes oxidative
coupling reactions with monolignols to produce polymers
with readily cleavable ester linkages in the polymer
backbone [32,33]. Extensive formation of benzodioxane
structures should also block the formation of lignin-
carbohydrate cross-links formed via lignin quinone
methide intermediates because quinone methide inter-
mediates are readily trapped internally by the ortho-OH
(Figure 3) and are therefore not available for trapping by
external nucleophiles such as water or hydroxyls on poly-
saccharides [19,50].

Alkaline delignification of cell walls lignified with EGCG
To examine the impact of EGCG on the formation of
lignin in cell walls and its removal by alkaline pretreat-
ments, we prepared cell wall-dehydrogenation polymer
(CWDHP) complexes by adding dilute H2O2 and lignin
precursors to non-lignified primary walls of maize con-
taining natively bound peroxidase. When added, EGCG
comprised about 45% by weight of the precursor mixture.
The resulting CWDHP control prepared with CA and SA
and the CWDHP-EGCG complex prepared with CA, SA,
and EGCG contained similar amounts of lignin (averaging
of 19.3%) as determined by the acetyl bromide method
(Table 1). Comparable lignin concentrations were previ-
ously obtained by the Klason lignin procedure and by
mass balance calculations [32], indicating that EGCG
readily formed wall-bound polymers with normal mono-
lignols. Both CWDHPs contained about 30% glucose
Table 1 Composition of cell-wall dehydrogenation polymers (

CWDHP Alkaline
pretreatment (°C)

Conc

Lignin Glu

Control None 20.2aa 29

70 16.2b 3

100 17.6b 3

130 16.9b 3

EGCG None 18.4ab 30

70 8.9c 4

100 6.5d 4

130 5.5d 4

Analysis of variance

CWDHP †

Pretreatment ***

CWDHP X Pretreatment Interaction ***

The CWDHP were formed with monolignols (control) or with monolignols plus epig
(15% w/w loading) at various temperatures.
a Means within columns with unlike letters differ (P < 0.05).
† P < 0.1; * P < 0.05; ** P < 0.01, *** P < 0.001.
(derived mainly from cellulose) and high proportions of
the non-cellulosic sugars (xylose, arabinose, and galactose)
that are characteristic of primary cell walls in grasses [51].
To assess EGCG effects on cell wall delignification

and carbohydrate recovery, CWDHPs were subjected to
pretreatment with aqueous NaOH (15% w/w loading on
CWDHPs) at 70, 100, and 130°C and alkali-insoluble
residues were analyzed by wet-chemical methods and by
gel-state 2D NMR. Alkaline pretreatments substantially
decreased lignin and non-cellulosic sugar concentrations
and increased glucose concentrations in residues recov-
ered from CWDHP-EGCG, whereas comparatively mod-
est compositional shifts were observed following alkaline
pretreatment of the CWDHP control (Table 1).
Recovery of alkali-insoluble residues from CWDHP-

EGCG was 15 to 20 percentage points lower than from
CWDHP-control (Table 2). Based on the recovery of resi-
dues and their composition, the incorporation of EGCG
increased the extractability of lignin at each pretreatment
temperature by an average of 32 percentage points com-
pared to the control (Table 2). Thus ECGC incorporation
into lignin permitted more extensive delignification of
cell walls under milder conditions that what would be
possible for cell walls lignified with normal monolignols.
For example, alkaline pretreatment at 130°C removed
62% of the lignin from CWDHP controls, while a less se-
vere alkaline pretreatment at 70°C removed 72% of the
lignin from CWDHP-EGCG. Increasing pretreatment
temperature to 100 or 130°C boosted delignification of
CWDHP-EGCG to about 90%, far in excess of that rea-
lized for CWDHP controls.
Gel-state NMR of CWDHPs and their alkali-insoluble

residues confirmed that copolymerization of monolignols
CWDHPs) and their alkali-insoluble residues

entration in CWDHP or alkali-insoluble residues (%)

cose Xylose Arabinose Galactose

.6 g x11.5b 16.2b 7.3bc

2.0f 11.4b 16.5b 8.0a

4.0e 11.4 b 16.5b 7.1d

5.9d 12.9a 18.3a 5.6e

.4 fg 11.5b 16.0b 7.4b

0.9c 11.6b 14.9 c 7.1 cd

3.5b 9.9c 12.3d 7.2 cd

8.8a 9.7c 10.8e 4.4f

*** *** *** ***

*** ** ** ***

*** *** *** ***

allocatechin gallate (EGCG) and pretreated with 0.075 M sodium hydroxide



Table 2 Proportion of lignin removed and recovery of alkali-insoluble residues and cell wall sugars from cell wall
dehydrogenation polymers (CWDHPs)

CWDHP Alkaline
pretreatment (°C)

Lignin
extracted

(%)

Recovered (%)

Residue Glucose Xylose Arabinose Galactose Total sugars

Control 70 43.7d 70.4a 76.0a 69.7a 72.2a 77.8a 74.2a

100 49.7d 57.6b 66.1b 56.7b 59.1b 56.2b 61.6b

130 61.9c 45.6c 55.2c 51.1c 51.7c 35.2c 51.5c

EGCG 70 72.4b 56.7b 76.4a 57.5b 52.7c 54.5b 64.9b

100 87.1a 36.3d 52.1c 31.2d 28.0d 35.2c 40.7d

130 92.4a 25.6e 41.2d 21.6e 17.2e 15.3d 29.0e

Analysis of variance

CWDHP * *** *** *** *** *** ***

Pretreatment *** *** *** *** *** *** ***

CWDHP X Pretreatment Interaction NS * ** *** *** NS **

The CWDHP were formed with monolignols (control) or with monolignols plus epigallocatechin gallate (EGCG) and pretreated with 0.075 M sodium hydroxide
(15% w/w loading) at various temperatures.
a Means within columns with unlike letters differ (P < 0.05).
NS not significant; * P < 0.05; ** P < 0.01, *** P < 0.001.
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with EGCG dramatically enhanced the alkaline extractabil-
ity of lignin (Figure 4). Alkaline pretreatment slightly
reduced all visible lignin signals in the CWDHP-control
spectra (Figure 4 A and B), but substantially reduced lignin
signals in CWDHP-EGCG spectra (Figure 4 C and D).
Sliced 1D F2 (1H) spectra showing relative signal intensities
of syringyl lignin (S2/6) and glucans (β-D-Glcp1) more
clearly illustrates the enhanced extraction of lignin relative
to alkali-insoluble cellulosic glucose in CWDHP-EGCG vs
CWDHP controls (Figure 4 E-J). In addition, EGCG-
derived aromatic signals (EC6, EC8, and GA200/600), which
were apparent (but perhaps underestimated as noted
below) before alkaline pretreatment (Figure 4C), are no
longer visible after pretreatment (Figure 4D). This implies
that EGCG-rich lignin fractions might be preferentially
removed during alkali pretreatment of cell walls. As we
previously observed [33], EGCG units were under-
represented in gel NMR spectra of CWDHPs; poor NMR
responses might be attributed to poor dissolution of
EGCG-containing lignin (as we observed for DHPs) or
dispersion of signals due to couplings at the 6,8-positions
of the epigallocatechin moiety that was targeted in our
13C–1H correlation NMR experiments [32].
Overall, these results provide compelling evidence that

EGCG incorporation into lignin substantially improves
the delignification of cell walls during alkaline pretreat-
ment, even under relatively mild conditions. The most
plausible explanation is that EGCG enhances lignin
depolymerization via cleavage of the ester linkage be-
tween its epigallocatechin and gallate moieties. Improved
alkaline solubility of lignin could also be attributed to
less frequent cross-linking of lignin to carbohydrate due
to EGCG’s inherent ability to readily trap quinone
methide intermediates to form benzodioxane structures
(Figure 3). Ionization of abundant hydroxyl groups on
EGCG might also contribute to lignin dissolution in al-
kali. Thus if successfully bioengineered into plants, a
modified lignin containing EGCG could be very desirable
for reducing input costs for delignifying lignocellulose
during the chemical pulping of paper or the chemical
pretreatment of biomass for biofuel production.
Incorporation of EGCG into lignin also enhanced the

extraction of carbohydrates from the cell walls with al-
kali; the recovery of total sugars in alkali-insoluble resi-
dues of CWDHP-EGCG was approximately 9, 21, and
23 points lower than that of CWDHP-control after alka-
line pretreatment at 70, 100, and 130°C (Table 2). Both
types of CWDHPs had similar glucose recovery at 70°C,
but CWDHP-EGCG had lower glucose recovery than
CWDHP-control at higher pretreatment temperatures.
By contrast, CWDHP-EGCG always had lower recoveries
of xylose, arabinose, and galactose in alkaline insoluble
residues than CWDHP controls, but differences were
again more pronounced at higher pretreatment tempera-
tures. Thus high pretreatment severity (temperature)
enhanced the extraction of carbohydrates, particularly
from CWDHP-EGCG where more efficient removal of
lignin likely aided carbohydrate exposure to and dissol-
ution in alkali. It is also reasonable that the incorpor-
ation of EGCG reduced the level of chemical linkages
between lignin and hemicelluloses and made the hemi-
celluloses easier to remove. It must, however, be
emphasized that the alkaline extractability of carbohy-
drate from primary-walled CWDHPs containing high
proportions of hemicelluloses and pectin will likely be
more extensive than from normal plant biomass
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containing secondary cell walls enriched in alkali-
insoluble cellulose.

Cell wall saccharification
Finally, the enzymatic saccharification of CWDHPs, before
and after alkaline pretreatment, was evaluated with cellu-
lases supplemented with β-glucosidase and hemicellulases.
The relative abundance of sugars released during sacchari-
fication was always in the order of glucose > arabinose >
galactose > xylose (data not shown). Typical enzymatic
hydrolysis profiles were obtained for non-pretreated and
alkali-pretreated CWDHPs; saccharification was rapid
during the first 3 to 6 h of hydrolysis, and continued incu-
bation released comparatively small amounts of additional
sugar (Figure 5). As illustrated in Figure 5, glucose and
total sugar yields were influenced by a pretreatment X
hydrolysis time interaction, with greater and more rapid
sugar production from alkali-insoluble residues than from
non-pretreated CWDHPs. Prior to pretreatment, average
glucose and total sugar yields in the 6 to 24 h time period
of maximal saccharification were similar for both types of
CWDHPs (Table 3). Following pretreatment, however,
glucose and total sugar yields from CWDHP-EGGC resi-
dues exceeded those from CWDHP-control residues by
10 to 21 percentage points, with the greatest differences
occurring following 100 and 130°C pretreatments. Based
on linear regression analysis of data in Tables 1 and 3,
acetyl bromide lignin concentration on average accounted
for 97% of the variation in glucose and total sugar yields
from CWDHP-EGCG and their alkaline insoluble resi-
dues (P < 0.05); thus EGCG clearly improved saccharifi-
cation by enhancing lignin removal by alkali. In contrast,
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sugar yields were poorly related to the lignin content
of CWDHP-controls and their alkali-insoluble resi-
dues (P > 0.10). Removal of lignin (and possibly
hemicelluloses) by alkali probably enhanced the ex-
posure of structural polysaccharides to hydrolytic
Table 3 Enzymatic and alkali-soluble (AS) glucose and total s
(CWDHPs)

CWDHP Alkaline
pretreatment (°C)

Enzymatic (%)1

Glucose Total sugar

Control None 37.9d 26.4d

70 60.7c 45.9c

100 66.6bc 52.3bc

130 73.0b 54.9bc

EGCG None 42.5d 30.2d

70 72.9b 56.1b

100 86.3a 67.3a

130 92.4a 76.2a

Analysis of variance

CWDHP *** *

Pretreatment *** **

CWDHP X Pretreatment Interaction * *

The CWDHPs were formed with monolignols (control) or with monolignols plus epi
(15% w/w loading) at various temperatures. Data are averaged over enzymatic hyd
1 Based on the concentration of glucose or total sugars in CWDHPs or their alkaline
2 Based on the concentration of glucose or total sugars originally contained in CWD
a Means within columns with unlike letters differ (P < 0.05).
NS not significant; † P < 0.1; * P < 0.05; ** P < 0.01, *** P < 0.001.
enzymes and reduced non-productive binding of
these enzymes to lignin [52-56].
When data are expressed as a proportion of sugars ori-

ginally contained in CWDHPs, maximal glucose yields
from alkali-insoluble residues were obtained following a
ugars released from cell wall dehydrogenation polymers

Enzymatic (%)2 Enzymatic +AS (%)2

s Glucose Total sugars Glucose Total sugars

37.9c 26.4bc 37.9e 26.4d

46.1b 34.1ab 70.2d 59.9c

44.0bc 32.2ab 77.9c 70.6b

40.3bc 28.3abc 85.1b 76.8b

42.5bc 30.2abc 42.5e 30.2d

55.6a 36.5a 79.3bc 71.6b

44.9bc 27.4bc 92.9a 86.7a

38.0c 22.1c 96.9a 93.1a

NS NS *** *

* NS *** ***

* *** † *

gallocatechin gallate (EGCG) and pretreated with 0.075 M sodium hydroxide
rolyses conducted for 6, 12, and 24 h.
insoluble residues.
HPs (prior to pretreatment).
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mild 70°C pretreatment (Table 3). Under these condi-
tions, glucose yields from CWDHP-EGCG residues
exceeded those from CWDHP-control residues by 9.5
percentage points; both CWDHPs had a similar recovery
of glucose in alkali-insoluble residues (Table 2), so yield
differences were due to more extensive saccharification
of CWDHP-EGCG residues (Table 3). This pretreatment
also tended to maximize total sugar yields from residues,
but differences between CWDHP treatments were not
significant because gains in residue saccharification were
offset by a lower recovery of carbohydrate in residues.
More severe alkaline pretreatments at 100 and 130°C
decreased glucose and total sugars yields from both
CWDHPs, because gains in residue saccharification were
more than offset by losses of alkali-soluble carbohydrate.
If, however, alkali-soluble carbohydrate could be recov-
ered and utilized with enzymatically released sugars,
then yields of glucose and total sugars increased with
pretreatment temperature and yields from CWDHP-
EGCG exceeded the CWDHP-control by 9 to 16 per-
centage points (Table 3). Thus optimal pretreatment
conditions were dependent on whether alkali-soluble
carbohydrate could be utilized along with enzymatically
released sugars. Optimal pretreatment conditions for a
biomass crop would also likely differ from CWDHPs,
but our results provide compelling evidence that EGCG
incorporation into lignin substantially enhanced the ease
of cell saccharification following pretreatment.

Conclusions
In the first study, we examined the compatibility of EGCG
in in vitro HRP-catalyzed polymerizations with CA to
model how EGCG undergoes oxidative copolymerization
with conventional monolignols. These studies revealed
that EGCG readily copolymerized with CA to become in-
tegrally cross-coupled into the lignin polymer. Additional
copolymerization studies with ethyl gallate and epigallo-
catechin, used to model the gallate and flavonol moieties
in EGCG, suggested the former coupled with CA to
mainly form benzodioxane structures, while the latter
possibly participated in several coupling modes in
addition to the pathway for benzodioxanes. In the second
study, we artificially lignified primary maize cell walls to
investigate the impact of EGCG on the lignification of cell
walls and their subsequent delignification by alkali and
saccharification by hydrolytic enzymes. When added with
CA and SA, EGCG readily formed wall-bound lignin that
was much more extensively removed by alkaline pretreat-
ment (73 to 90%) than lignin formed only with normal
monolignols (44 to 62%). Improved delignification may be
attributed to cleavage of ester intra-unit linkages within
EGCG, and therefore in the backbone of the modified lig-
nin polymer, and to efficient internal trapping of quinone
methide intermediates by EGCG to out-compete benzyl
ether cross-linking of lignin to structural polysaccharides.
Incorporation of EGCG into lignin did not influence the
degradability of cell walls prior to pretreatment. Following
pretreatment, alkali-insoluble residues from EGCG-
lignified walls yielded up to 30% more glucose and up to
40% more total sugars than lignified controls during en-
zymatic saccharification. Overall, our results suggest that
genetic engineering of plant metabolic pathways to permit
EGCG incorporation into lignin could significantly im-
prove the effectiveness of alkaline pretreatments and the
subsequent saccharification of biomass crops.

Methods
General
EGCG and EGC were obtained from Biopurify (Chengdu,
China) and EG was from MP Biomedicals (Solon, OH,
USA). CA and SA were synthesized according to literature
methods [57]. HRP (Type II, 188 purpurogallin units/mg)
was from Sigma-Aldrich (St. Louis, MO, USA). Novozymes
(Franklinton, NC, USA) generously provided cellulase
(NS50013), β-glucosidase (NS50010), a multi-carbohydrase
complex (NS50012), and xylanase (NS50030) for cell wall
hydrolyses. Other chemicals were purchased from Sigma-
Aldrich or Fisher Scientific (Pittsburgh, PA, USA) and were
used as received.

NMR Methods
NMR spectra were acquired on Bruker Biospin (Billerica,
MA, USA) AVANCE 500 (500 MHz) or AVANCE 700
(700 MHz) spectrometers fitted with cryogenically-cooled
gradient probes having inverse geometry, i.e., with the pro-
ton coils closest to the sample. Spectra were processed with
Bruker’s Topspin 3.1 (Mac) software, using the central solv-
ent peaks as internal references [δH/δC: acetone, 2.04/29.8;
dimethylsulfoxide, 2.49/39.5 ppm]. Adiabatic 2D-HSQC
(‘hsqcetgpsisp2.2’) and 2D-HSQC-TOCSY (‘hsqcetgpml’)
experiments for DHP samples in the solution-state [58,59],
and maize cell wall samples in a gel-state [60,61], were
carried out as described previously. Processing used typical
matched Gaussian apodization in F2 (LB = −0.3, GB =
0.001), and squared cosine-bell and one level of linear pre-
diction (32 coefficients) in F1. The TOCSY mixing time
was 60 ms.

HRP-catalyzed polymerization
Monolignol solutions were prepared by dissolving CA
(108 mg, 0.6 mmol) or CA (72 mg, 0.4 mmol) plus
EGCG (46 mg, 0.1 mmol), EGC (61 mg, 0.2 mmol), or
EG (40 mg, 0.2 mmol) in acetone-water (50 ml, 1:4, v/v).
After adding HRP (2 mg), monolignols in each solution
were polymerized by the dropwise addition of aqueous
0.1 M hydrogen peroxide (7.2 ml, 0.72 mmol) for 1 min
followed by stirring for 9 min at room temperature. Re-
action mixtures from CA or CA plus EG reactions were
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acidified with 0.1 M HCl (10 ml) and extracted with
ethyl acetate (200 mL) to recover low molecular weight
synthetic lignins (DHPs). Extracts were washed with
brine (3 × 50 mL), dried over sodium sulfate, and evapo-
rated under reduced pressure to give brownish solid
residues in 42% yield from the CA oxidation and 55%
yield from the CA plus EG oxidation. Oxidation pro-
ducts from CA plus EGCG or CA plus EGC reactions
were poorly soluble in ethyl acetate, so these products
were quenched with ethanol (200 ml) and evaporated to
dryness. Recovered solids were stirred in acetone
(100 ml), filtered, and the filtrate was evaporated to re-
cover low molecular weight DHPs as brownish solids in
55% yield from the CA plus EGCG oxidation and 50%
yield from the CA plus EGC oxidation. The DHPs were
dissolved in acetone-d6 for NMR analysis (500 MHz). A
high molecular weight DHP was also prepared by the
“end-wise” polymerization method as described previ-
ously [59]. Polymerization conditions was as follows: CA
(0.8 mmol) and EGCG (0.2 mmol) in 240 ml of acetone/
sodium phosphate buffer (0.1 M, pH 6.5) (1:9, v/v) and a
separate solution of hydrogen peroxide (1.44 mmol) in
240 ml of water were added by peristaltic pump over a
20 h period at 25°C to 60 ml of buffer containing HRP
(5 mg), and further stirred for 4 h. The reaction mixture
was then acidified (pH ~2) with 0.1 M HCl and the pre-
cipitates were collected by centrifugation, washed with
0.01 M HCl (100 ml x 3) and ultrapure water (100 ml),
and lyophilized to afford DHPs (77.6% yield, w/w). The
DHP was poorly soluble in general organic solvents and
NMR (700 MHz) was acquired in a suspension-state
(~30 mg DHP in 600 μl DMSO-d6:pyridine-d5, 4:1, v/v).

Cell wall lignification
As described previously [32], CWDHPs were prepared by
adding separate monolignol and hydrogen peroxide (1.1 eq)
solutions over a 9 h period to peroxidase-containing maize
cell walls (125 g fresh weight, ~3.2 g dry weight) stirred in
water. A normal lignin control (CWDHP-control) was pre-
pared by adding a two-component equimolar mixture of
CA (1.3 mmol) and SA (1.3 mmol) to cell walls. Similarly,
an EGCG-containing lignin (CWDHP-EGCG) was pre-
pared by adding a three-component mixture of CA
(0.75 mmol), SA (0.75 mmol) and EGCG (0.5 mmol) to cell
walls. After formation, CWDHPs were washed with 9:1
(v/v) acetone: water to remove non-bound dehydrogenation
products, dehydrated with acetone, and then air dried.
Both treatments were replicated twice in independent
experiments.

Alkaline pretreatment
Duplicate CWDHP samples (200 mg) in 50 ml Oak
Ridge thermal resistant tubes were soaked for 2 h at
25°C in 0.075 M sodium hydroxide (15% w/w loading
on cell wall, 50:1 v/w liquid to cell wall ratio). Tubes
were then heated at 70, 100, or 130°C for 1 h, cooled,
and centrifuged (1500 × g; 15 min) to collect alkaline
insoluble residues. Residues were thoroughly washed
by repeated suspension in water followed by centrifu-
gation (1500 × g; 15 min) and then freeze-dried for
analysis.

Cell wall analyses
For carbohydrate analyses, CWDHPs and alkaline insol-
uble residues (10 mg) were treated with 0.5 ml of 72%
H2SO4 at room temperature (2°C) for 2 h, and then the
mixture was diluted to 3% acid concentration followed
by autoclaving (121°C, 15 psi) for 1 h. After cooling to
room temperature, the hydrolysate was analyzed for
neutral sugars by High-performance Ion Chromatog-
raphy (HPIC) [62]. In brief, the sugars were qunatified
on a Dionex (Sunnyvale, CA) ICS-3000 system equipped
with an integrated amperometry detector using Dionex
PA1 analytic column and PA1 guard column under the
conditions of column temperature 20°C, eluent flow rate
0.7 mL/min with gradient (0 ! 25 min, 100% water;
25 ! 35 min, 40% water and 60% 0.1 M NaOH; 35 !
40 min, 100% water), and post-column eluent (0.5 M
NaOH) flow rate 0.3 mL/min for maintaining detector
cell pH > 12.5. Lignin content was determined by the
acetyl bromide method [63]. Briefly, cell wall samples
(~10 mg) were treated with 25% acetyl bromide/glacial
acetic acid solution (v/v, 1.5 mL) at 50°C for 2 h in a
sonicator. After heating, the samples were ice cooled for
few minutes following centrifugation at 12,000 rpm for
5 min. About 0.5 mL of the clarified supernatant was
transferred to a 10-mL glass tube with stopper that con-
tained 2 mL of 2 M NaOH, 2.4 mL of glacial acetic acid
and 350 μL of 0.5 M hydroxylamine. Finally, each sam-
ple was expanded to total 10 mL with glacial acetic acid
followed by vortex for few minutes. The lignin content
was determined with absorption at 280 nm using
17.7 L�cm-1�g-1 as the extinction coefficient. For gel-state
NMR analyses, dried CWDHPs (100 mg) were ball
milled in ZrO2 vessels (50 ml) containing ZrO2 ball
bearings (10 mm × 10) using a Retsch PM100 ball mill
vibrating at 600 rpm (four cycles of 5 min milling fol-
lowed by 5 min of cooling). The recovered ball-milled
CWDHPs were then transferred into NMR tubes, swol-
len in DMSO-d6:pyridine-d5 (4:1, v/v), and subjected to
2D HSQC NMR (700 MHz) experiments [60,61].

Enzymatic hydrolysis
Prior to enzymatic hydrolysis, duplicate CWDHPs and
alkali-insoluble residues were shaken in 10 ml Falcon tubes
at 300-rpm for 24 h at 50°C with 50 mM sodium acetate
buffer (pH 4.8, 0.2%, w/v cell wall to liquid ratio). The hy-
drolysis was then carried out in duplicate over a 24 h period
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by adding a mixture of cellulase (15 filter paper unit/g
glucan), β-glucosidase (30 cellobiose unit/g glucan), multi-
carbohydrase complex (15 fungal β-glucanase unit/g
CWDHP), and xylanase (15 Farvet xylan unit/g CWDHP).
Tetracycline (0.16%, w/v) was added to prevent microbial
contamination. To create enzymatic hydrolysis time profile,
sample of the hydrolysate at 1, 3, 6, 12 and 24 h was taken,
respectively, and supernatant was collected after cen-
trifugation (1500 × g; 5 min) and analyzed for neutral
sugars by HPIC.

Statistical analysis
Data from compositional analyses, alkali pretreatment,
and enzymatic hydrolyses were subjected to an analysis
of variance by the PROC mixed procedure (SAS Institute
Inc., NC). Differences among treatment means were tested
by the pdiff procedure at P = 0.05.

Additional file

Additional file 1: Figure S1. NMR spectrum of a dehydrogenation
polymer from CA and EGCG.
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