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Abstract

Background: Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell
wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise
dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the
modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition,
which provide flexibility to the complex and determine its overall architecture.

Results: Using a synthetic biology approach, we systematically investigated the spatial organization of the
scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent
designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The
positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic
set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero

(no linkers), 5 (short linkers) and native linkers of 27-35 amino acids (long linkers). Of the 72 possible scaffoldins, 56
were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant
42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C.
thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and
pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin
combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels
of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed
for the three enzymes used in this study, indicating that they could be integrated at any position in the designer
cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the
long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker
scaffoldins.

Conclusions: The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin
linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the
increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a
general basis for improved designer cellulosome systems as a platform for bioethanol production.
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Background

Cellulose is the major component of the plant cell wall
and is the most abundant renewable source of carbon
and energy on Earth. One of the most potent cellulose-
degrading microorganisms is the well-studied bacterium,
Clostridium thermocellum. This anaerobic thermophilic
cellulolytic bacterium secretes a multi-enzymatic com-
plex called the cellulosome, first discovered in 1983
[1,2]. Since then, other cellulosomal organisms have
been discovered and characterized, which possess an
array of cellulosomal architectures [3-16].

Cellulosome architecture is primarily dictated by the
non-catalytic scaffoldin subunit. In C. thermocellum the
scaffoldin is composed of nine repeating cohesin mod-
ules, each of which can bind cohesively to a complemen-
tary dockerin-module, borne by a cellulosomal enzyme.
The scaffoldin targets the cellulosome complex to the
cellulose substrate by virtue of an integral carbohydrate-
binding module (CBM) [17-19] and attaches to the
bacterial cell wall via an alternative type of cohesin-
dockerin interaction [20,21]. Enhanced synergism among
the catalytic units and close association between the
cell-bound cellulosome and substrate serve to minimize
diffusion of the enzymes and their hydrolytic products,
thus providing the bacterium with a competitive advan-
tage over other organisms [22].

Cellulosome systems in bacteria show great diversity
and can be divided into simple and complex systems.
Some cellulolytic bacteria, for example, C. thermocellum,
Bacteroides cellulosolvens and Acetivibrio cellulolyticus,
have a complex cellulosome system. They produce sev-
eral types of scaffoldins organized in a scaffoldin gene
cluster, in which the genes encoding for the major scaf-
foldins are clustered together on the chromosome and
the genes encoding the cellulosomal enzymes are scat-
tered across the chromosome [23,24]. Another resem-
blance among these bacteria is that the intermodular
linker segments in their primary scaffoldin are relatively
long, reaching 20 to 40 residues in length and more, and
are rich in proline and threonine residues [25]. In
contrast, other clostridial cellulosome-producing bac-
teria, such as C. cellulovorans, C. cellulolyticum, C. josui,
and C. acetobutylicum, have a simple cellulosome system
[4,26-28]. The simple systems contain a single scaffoldin
and genes for cellulosomal enzymes are encoded down-
stream of the scaffoldin gene. The scaffoldins of the sim-
ple systems possess markedly shorter linkers than those
of the complex systems. For example in C. cellulovorans
the linkers of scaffoldin CbpA range between five and
eight residues. Interestingly, in some scaffoldins - even
those of complex systems - neighboring cohesins may
not be separated by linkers at all, such as the first and
second or the third and fourth cohesins in ScaB from B.
cellulosolvens. At the other extreme are linkers as long

Page 2 of 18

as 100 to 700 residues [25]. The lengths and compos-
ition of the intermodular linker segments are not arbi-
trary, and their content and disposition likely play a
relevant role in cellulosome function.

The position of the CBM in the scaffoldins also differs
between the cellulosome systems. In the simple systems
the CBM is invariably positioned at the N-terminus of
the scaffoldin and is followed by one or more X2 mod-
ules [29]. In contrast, the complex systems are charac-
terized by an internal CBM, surrounded on both the
N- and C-terminal sides by cohesins.

Designer cellulosomes are composed of an artificial
chimaeric scaffoldin, and a set of cellulases [20,30]. The
synthetic scaffoldin consists of a CBM module, which
targets the entire complex to the cellulosic substrate,
together with several cohesin modules, derived from dif-
ferent species, that have divergent specificities. In turn,
the cellulases each have a complementary and specific
dockerin-module, which binds selectively to one of the
divergent cohesins [31-33]. Unlike native cellulosome
systems, the use of designer cellulosomes thus enables
control over the composition and the positions of
the chosen cellulases within a given mini-cellulosome,
thereby allowing the production of homogeneous com-
plexes. In this context, the controlled incorporation of
cellulases into artificial designer cellulosomes was shown to
induce enhanced synergism between cellulases via their
targeting to the substrate by the family-3a scaffoldin-borne
CBM module, or by the proximity of the cellulases in the
complex [34-43]. In this study, we employed a synthetic
biology (SynBio) approach by preparing an extensive com-
binatorial library of appropriate trivalent chimaeric scaffo-
dins in order to address the question of whether enzyme
position within the cellulosome complex and/or length of
intermodular linker contribute/s to cellulosome perform-
ance. The latter scaffoldins enabled precise integration of
three different cellulases in distinct spatial and positional
arrangements relative to an integral CBM. The resultant
designer cellulosomes were examined for activity on recal-
citrant microcrystalline cellulose and pretreated cellulose-
enriched wheat-straw substrates.

Results

Design and construction of designer-cellulosome subunits
Chimaeric scaffoldins

In this work, we designed a basic scaffoldin template
with three divergent cohesin modules of different speci-
ficities and a CBM module, in which all of the modular
components are separated by linker segments (Figure 1;
Additional file 1: Table S1). The origins of the modules
that were used to create the scaffoldin library included
the second cohesin and the CBM3a of CipA from C.
thermocellum, (designated T and c respectively, the third
cohesin of ScaB from B. cellulosolvens (designated B)
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Figure 1 Schematic representation of the recombinant proteins used in this study. The modular notation, structure and molecular mass of
each protein are indicated. Red, yellow and light blue indicate C. thermocellum-derived cohesin/dockerin, carbohydrate binding module (CBM)
and enzyme-related components, respectively. Dark blue indicates A. cellulolyticus-derived cohesin/dockerin modules, and green indicates B.
cellulosolvens-derived modules. (@) The basic chimaeric scaffoldin containing three divergent cohesins: the third cohesin of scaffoldin ScaC from A.
cellulolyticus (A), the third cohesin of ScaB from B. cellulosolvens (B), the second cohesin of the CipA scaffoldin from C. thermocellum (T) plus a
CBM3a module of the same scaffoldin (c). See Additional file 1: Table S1 for the molecular weights of the respective chimaeric scaffoldins. (b) The
length of each module and its C-flanking linkers in amino acid residues. (c) Recombinant cellulases used in this study. In the modular notation of
the enzymes, the number indicates the GH family of the catalytic domain. S, K and A indicate the original name of the enzyme (Cel48S, Cel9K
and Cel8A, respectively). The chimaeric Cel9K includes a CBM4 and Ig domain on the N-terminal portion of the enzyme. Lowercase t, a and b
indicate the source of the dockerin module (C. thermocellum, A. cellulolyticus and B. cellulosolvens respectively).
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and the third cohesin of ScaC from A. cellulolyticus
(designated A). All three of these bacteria produce a
complex cellulosome system, bearing several intercon-
necting scaffoldin subunits.

In order to study the importance of the spatial
organization of the cellulases in the scaffoldin we used
different intermodular linker lengths between the
cohesin and the CBM modules, thereby imitating the
diversity that exists in nature - long 27 to 35 amino-
acid intermodular linkers (simulating the native linkers
of C. thermocellum, A. cellulolyticus, B. cellulosolvens
and R. flavefaciens), short 5 amino-acid linkers (emu-
lating the linkers of C. cellulovorans, C. cellulolyticum,
C. josui, and C. acetobutylicum) or without such
linkers (designated no or none) (Figure 1b).

In order to produce long-linker scaffoldins, each of the
modules (CBMs and cohesins) was cloned together with
its C-terminal native linker (approximately 30 residues),
except for the (third) B. cellulosolvens cohesin, which
lacks such a linker. Since we have used this particular B.
cellulosolvens cohesin-dockerin pair routinely and suc-
cessfully in our lab for designer-cellulosome studies, we
thus attached another B. cellulosolvens linker (C-ter-
minal to the fourth cohesin in the native scaffoldin) in
its stead. For the short linkers, we used only the first five
residues of each of the native linkers, and for scaffoldins
that lack linkers, the modules were simply combined
without them. The amino-acid content of the different
linkers used in this work is shown in Table 1.

The four modules (three divergent cohesin modules
and a CBM) could thus be shuffled, resulting in twenty-
four different arrangements, each with linkers of three
different lengths separating the modules. Therefore,
from the basic scaffoldin template, 72 possible combina-
tions could potentially be produced. The cloning of this

Table 1 The set of inter-modular linkers used for cloning

Page 4 of 18

scaffoldin set, however, proved to be a challenging task,
mainly due to the repetitive composition of the inter-
modular linkers, the length of the DNA encoding the
recombinant scaffoldins (approximately 2,100 bp), and
the relatively large number of constructs.

Two different approaches were used for cloning: in the
first approach, a computer-aided, automated method for
combinatorial DNA library design and production was
employed for construction and cloning of the scaffoldins
that either lacked intermodular linkers or contained
short intermodular linkers. The design and synthesis of
scaffoldins using this approach were performed using
computer-aided methods for specifying, visualizing,
planning and executing the actual production of the
desired DNA libraries [44,45]. This approach, however,
ultimately proved inadequate for cloning the scaffol-
dins containing the long intermodular linkers, presum-
ably due to the highly repetitive nature of the DNA
sequence of these constructs.

We therefore applied a second approach for cloning
the scaffoldins with long intermodular linkers that
involved restriction-free multi-component assembly of
the DNA segments. Plasmids for 16 long-linker triva-
lent scaffoldins were thus constructed by employing
simultaneous restriction-free cloning [46]. For con-
struction of each scaffoldin, eight primer pairs were
designed. A His-tag was added at the C terminus of
each construct to promote subsequent purification
using a Ni-nitrilotriacetic acid (NTA) column (Qiagen
GmbH, Hiden, Germany). The four modules were
amplified by PCR with 25- to 30-bp overhangs on both
the 5 and 3’ ends, corresponding to the adjoining
regions (either with another adjoining insert gene or
with the expression vector as needed). Next, the PCR
products served as mega-primers for simultaneous

Source organism  Scaffoldin  Module C-terminal linker Length (a.a) Sequence Accession code
A. cellulolyticus ScaC Coh A Long 29 PTPTQSATPTVTPSATATPTQSATPTVTP AAP48996
Short 5 PTPTQ
None — —
B. cellulosolvens ScaB Coh B Long 27 TPTNTISVTPTNNSTPTNNSTPKPNPL AAT79550
Short 5 TPTNT
None — —
C. thermocellum CipA Coh T Long 35 PTKGATPTNTATPTKSATATPTRPSVPTNTPTNTP  ABN54273
Short 5 PTKGA
None — —
CBM (¢ Long 31 VWPSTQPVTTPPATTKPPATTKPPATTIPPS ABN54273
Short 5 VWPST
None — —

The preceding module of each linker is indicated. Coh A: the third cohesin of ScaC from A. cellulolyticus, Coh B: the third cohesin of ScaB from B. cellulosolvens,
Coh T: The second cohesin of CipA from C. thermocellum, CBM (c): the carbohydrate binding module CBM3a of CipA from C. thermocellum.
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assembly of the vector and inserts by linear amplifica-
tion. The assembly of a representative scaffoldin with
the following modular arrangement: Scaf- ABcT, bear-
ing long linkers is depicted in Figure 2. This particular
scaffoldin gene is herein designated scaf4L, where the
number indicates the arrangement of modules as it
appears in Figure 3, and the letter L indicates the
length of the intermodular linkers (L indicates long
linker, S short, and N no linkers).

In the end, 56 of the 72 scaffoldins were successfully
cloned using the two approaches, and of these, 45 were
expressed successfully in an E. coli host-cell system
(Figure 3). Special efforts were spent in attempts to
complete full sets, although certain sets were eventually
abandoned after numerous trials. Specifically, sets 3 and
17 remained unfinished, owing to difficulties in cloning
or expression of the residual constructs. The final scaf-
foldin library used for further study included 14 full sets,
consisting of 42 different trivalent chimaeric scaffoldins
(Figure 3). In seven of these sets the CBM was located
in an internal position: in sets 5, 6, 11, 12, and 18 the
CBM occupied the second position, and in sets 4 and 10
the CBM was in the third position. In the remaining

Page 5 of 18

seven completed sets, the CBM was located at the ex-
tremities: that is, the C-terminal position in set 9 and
the N-terminal position in sets 19 to 24. The latter sets
with the CBM at the N terminus represented a complete
collection of six scaffoldins with the different cohesins
located in all possible combinations.

Matching dockerin-bearing cellulases

Three prominent cellulases from C. thermocellum were
used in combination with the chimaeric scaffoldins: an
exoglucanase Cel48S, an endoglucanase Cel8A and the
multimodular endoglucanase Cel9K [47-55]. The Cel48S
exoglucanase was used together with its native dockerin.
For subsequent self-assembly of designer cellulosomes
using the library of chimaeric scaffoldins, the catalytic
module of C. thermocellum endoglucanase Cel8A was
fused to the divergent B. cellulosolvens ScaA dockerin
and the three Cel9K modules were fused to the diver-
gent A. cellulolyticus ScaB dockerin. For the purposes of
the present work, the resultant cellulases were desig-
nated 48S-t, 8A-b and 9K-a, respectively, where 48S, 8A
and 9K represent the catalytic module of the corre-
sponding enzyme (9K also includes the CBM4 and Ig
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b PCR products
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e —_— —_— .
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Figure 2 Multi-component assembly of a chimaeric scaffoldin - ‘Scaf4L’. (a) Schematic representation of the four components that were
amplified in the first PCR reaction: A. cellulolyticus cohesin (A) and C-terminal linker segment, B. cellulosolvens cohesin (B) and linker, carbohydrate
binding module (CBM) (¢) and linker and C. thermocellum cohesin (T) but without the C-terminal linker. (b) Resultant PCR products. (c) The PCR
products were then used as mega-primers for the restriction-free reaction with the pET28a plasmid. The sequences that form base-pairing due to
flanking regions designed in the primers of each module are indicated by the coloring of the PCR products and by connecting lines. (d) The
resulting linear plasmid pET28a-scaf4l. Ligation occurs spontaneously in E. coli.
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Figure 3 Schematic representation of the scaffoldins in the final scaffoldin library. Twenty-four different arrangements of the cohesin (A, B
and T) and carbohydrate binding module (CBM) (¢) modules are shown in three sub-libraries: no-linker, short-linker and long-linker versions of the
given chimaeric scaffoldins. The left column indicates the number of each scaffoldin set according to its composition (position of CBM and diver-
gent cohesins). The 45 successfully cloned and expressed scaffoldins included in the final library are shown as colored pictograms. An additional
11 scaffoldins were cloned but not expressed (shown as gray pictograms); 16 additional scaffoldins were not expressed (gray background); 14 full
sets, representing 42 cloned and expressed scaffoldins, were finally achieved for further study.

module) and ¢, b and a represent the bacterial source of
the dockerin module (see Figure 1c). The specificity of
the cohesin-dockerin interaction was verified by affinity-
based ELISA (Figure 4). Each enzyme was shown to
interact exclusively with its matching cohesin and not
with the two other divergent cohesins that are present in
the designer scaffoldin set (Figure 4b-d). The resultant
recombinant enzymes were then tested for their ability
to degrade phosphoric acid-swollen cellulose (PASC) or
Avicel, and their activities were comparable to those of
the wild-type enzymes. In addition, the enzymes were
interacted with beaded cellulose and found to bind
cellulose either by their dockerin-fused catalytic module
alone (8A-b, 48S-t) and/or by an inherent CBM4 mod-
ule in the case of 9K-4, known to bind non-crystalline
(PASC) and microcrystalline forms of cellulose [56]
(Additional file 2: Figure S1).

Purification schemes

A general method for the expression and purification of
the 42 scaffoldins was designed based on a scheme de-
vised initially for one of the chimaeric scaffoldins
(Scaf9S). Interestingly, a heat-treatment step during the
purification protocol, which precipitated the bulk of the
native E. coli proteins, did not damage the scaffoldin
even though two of the cohesin modules, which account

for half of the cohesins in the chimaeric scaffoldin (that
is, A. cellulolyticus and B. cellulosolvens) were of meso-
philic origin. The scaffoldin was further subjected to a
two-stage affinity purification procedure, based on its
binding to cellulose via the CBM module and to an Ni-
NTA column by virtue of its His-tag. This two-step
strategy allowed us to purify mostly intact scaffoldins,
since almost all of the scaffoldins (apart from scaffoldin
9, 10 and 4) had the CBM module at the N-terminus or
relatively close to the N-terminus of the protein, whereas
the His-tag was appended to the scaffoldin on the op-
posite C-terminus part. In this manner we avoided
purifying scaffoldins that were proteolytically cleaved
during expression, since the truncated forms lost one of
the tags that was used for purification. Subsequently, the
remaining 41 scaffoldins were expressed and purified
accordingly in batch, 2 to 4 scaffoldins at a time.

The purity of the scaffoldins was analyzed using SDS-
PAGE. In initial purification experiments, two of the
scaffoldins seemed to be truncated, since they migrated
as two separate bands on the gel. Scaffoldin ‘OL" with the
following modular composition: Scaf- TBAc showed 72-
and 55-kDa bands (data not shown). The 72-kDa band
corresponded to that of the intact scaffoldin, and the 55-
kDa band was consistent with a scaffoldin without the
first C. thermocellum cohesin. Indeed, non-denaturing
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Figure 4 Specificity of the cohesin-borne scaffoldin for its matching dockerins (a) and of the dockerin-bearing enzymes for their target
cohesins (b-d). The interaction between scaffoldin 19L (Scaf19L) and its matching dockerins was examined (a) using a standardized matching
fusion-protein system [73]. Scaf19L was coated onto the wells of a microtiter plate and was subjected to interaction with Xyn-Doc fusion proteins,
Xyn-Doc t (red), Xyn-Doc a (blue), Xyn-Doc b (green), and a non-matching control Xyn-Doc f the divergent dockerin of which was derived from a
cellulosomal component of the rumen bacterium, Ruminococcus flavefaciens (black). Anti-xylanase antibodies were used, together with a second
antibody-conjugated enzyme system to promote a chromogenic reaction. Similarly, the interaction between the enzymes via their dockerin mod-
ule to matching and non-matching cohesins was examined. In this case, 9K-a (b), 485-t (c) and 8A-b (d), which bear an A. cellulolyticus, C. thermo-
cellum and B. cellulosolvens dockerin, respectively, were coated onto the wells of microtiter plates and subjected to interaction with the
designated carbohydrate binding module (CBM)-fused cohesin modules, Coh T (red), Coh A (blue) and Coh B (green).

PAGE of the complex of this scaffoldin showed a shifted
band corresponding to the designer-cellulosome com-
plex and a lower band of excess 48S-t, which could not
bind to the C. thermocellum that lacked the matching
cohesin. The second truncated scaffoldin, Scafl10L (Scaf-
TBcA), showed a similar pattern. In order to overcome
this problem, we transferred the His-tag of these two
scaffoldins from the C to the N terminus. In this manner
we could purify the intact scaffoldins, because in the first
step the full-length scaffoldin is bound to cellulose via its
C-terminal CBM and in the second step via its N-terminal
His-tag to the nickel column. Using this approach, all of
the purified scaffoldins showed a principal band, which cor-
responded to the full-length uncleaved protein (Additional
file 3: Figure S2). The specificity of the cohesin-dockerin in-
teractions was then verified by affinity-based ELISA. For ex-
ample, scaffoldin19L was shown to interact with its three
matching dockerins C. thermocellum, B. cellulosolvens and
A. cellulolyticus but not with the non-matching R. flavefa-
ciens dockerin (Figure 4A).

Analysis of designer-cellulosome assembly

The formation of designer-cellulosome complexes was
initially analyzed in each case by non-denaturing PAGE.
Molar ratios for complete interaction of each enzyme
were first determined with several representative scaffol-
dins from the scaffoldin set (data not shown). These pre-
determined molar ratios were used for the interaction of
the three enzymes with the entire 42-scaffoldin set, and
non-denaturing PAGE was used to evaluate the resultant
complexes. Each complex migrated on the gel as a major
band, shifted from the bands of the individual compo-
nents of the designer cellulosome, indicating a product-
ive near-complete or complete interaction in each case.
A representative example for chimaeric scaffoldin set 19
(cATB) is shown in Figure 5.

In addition, the designer cellulosome complexes were
analyzed by size exclusion chromatography (Figure 6),
whereby each of the single components was assessed separ-
ately, and their retention volume was used as markers for
analysis of the designer cellulosome complexes. The order
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(81.6 kDa) and 8A-b (51.6 kDa). However, their elution 30
profiles were retarded in comparison to their absolute 20
calculated molecular weights. This property has been re- 10 \\
ported earlier, and the impeded mobility was suggested to N .

stem from the presence of the dockerin module, as the
catalytic module by itself elutes as expected [34,57,58].
Scaffoldins 19N, 19S and 19L (66, 67.5 and 75.3 kDa,
respectively), however, eluted at a higher retention volume
than expected (before 9K-a), possibly due either to ex-
tended non-globular folding or to dimerization [34,57,58].
The designer cellulosome complexes eluted signifi-
cantly faster than the single enzymes and scaffoldins
as a major peak with a small shoulder that may indicate
an excess of an enzyme or a scaffoldin, or, alterna-
tively, a population of designer cellulosomes in which
an enzyme is missing. The elution of the 19L designer
cellulosome assembled with the long-linker scaffoldin
was faster than that of the designer cellulosome assem-
bled with the no-linker and short-linker scaffoldins
(19N and 19S), which eluted at similar volumes (not
shown). Fractions from the designer cellulosome com-
plexes were pooled and concentrated and then ana-
lyzed by SDS-PAGE (Figure 6, bottom). The major
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Figure 6 Superdex 200 gel filtration fast protein liquid
chromatography (FPLC) elution profile of a designer-cellulosome
complex composed of three chimaeric C. thermocellum enzymes,
9K-a, 48S-t and 8A-b, assembled on a trivalent chimaeric scaffoldin
(Scaf19N) without intermodular linkers. The elution profile of each of
the single components was used as a marker. The curves are labeled as
follows: (@) 8A-b: green, 516 kDa, (b) 485-t: red, 81.6 kDa, (c) 9K-a: blue,
1014 kDa, (d) scaffoldin 19N: magenta, 66 kDa, and (e) designer cellulo-
some complex: black with gray filling. The gel on the bottom shows the
SDS-PAGE analysis of the designated elution fractions of the designer
cellulosome complexes.

peak was shown to consist of all three enzymes together
with the chimaeric scaffoldin.

Activity of designer cellulosomes with selected C.
thermocellum cellulases

Kinetics, synergy, proximity and targeting of the C.
thermocellum enzymes Cel48S, Cel8A and Cel9K

The three enzymes used in this study, Cel48S, Cel9K and
Cel8A are major components in the C. thermocellum
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cellulosome and are up-regulated when C. thermocellum is
grown on crystalline cellulose as a carbon source [47-54].
Consequently, we employed as substrates the commonly
used commercially available Avicel and a pretreated,
cellulose-enriched wheat straw preparation. The final com-
position of the pretreated wheat straw was determined to
be 90% cellulose, 5% hemicellulose and 5% lignin.

In order to determine the endpoint for the cellulose hy-
drolysis reaction on either substrate, we initially performed
kinetics assays (Figure 7). Enzyme kinetics were tested with
three representative scaffoldins of the following modular
composition: Scaf-cTAB (Scaf21), with the three different
linker lengths (none, short and long linkers). In addition, a
control scaffoldin lacking a CBM module, with long inter-
modular linkers and the same modular composition (Scaf -
TAB), was used as a substrate-targeting control. The free
enzymes, not attached to a scaffoldin, were also used as a
control. The kinetics of hydrolysis were determined with
pretreated wheat straw and Avicel at three timepoints (24,
48 and 72 h for Avicel (Figure 7a) and 3, 6 and 24 h
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Figure 7 Kinetics of Avicel (a) and pretreated cellulose-enriched wheat straw (b) hydrolysis by designer-cellulosome complexes and
free enzymes. The graphs show degradation by scaffoldin-set 21 with the following modular organization ¢TAB: long-linker scaffoldin-based
designer-cellulosome (red), the short linker-based designer cellulosomes (blue), and the designer cellulosomes based on the scaffoldin without
intermodular linkers (green). Controls include degradation by a designer cellulosome containing a scaffoldin that lacks a carbohydrate binding
module (CBM) (gray) and degradation by the free enzymes (orange). Enzymatic activity was defined by release of reducing sugars (mM) as deter-
mined by a glucose standard curve. All reactions were carried out in triplicate. Standard deviations from three separate experiments are indicated.
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(Figure 7b) for the wheat-straw substrate) until the hydroly-
sis reaction reached 7.8% degradation of Avicel after 72 h
and 40% of the pretreated wheat straw after 24 h. We ori-
ginally suspected that emplacement of the CBM module
may have an effect on the level of activity. Therefore, in
addition to designer cellulosomes assembled using Scaf-
¢TAB (Scaf21) with an N-terminal CBM (Figure 7), we also
examined two additional scaffoldin sets, Scaf- TBAc (Scaf9)
with a C-terminal CBM and Scaf- TcBA (Scaf12) with an
internal CBM (data not shown). The kinetics of the three
full sets were very similar with respect to yields and slope.
On this basis, we used the same endpoint for the rest of the
scaffoldins.

The activity of the individual enzymes was tested on both
substrates and was compared to that of the combined en-
zymatic activity in order to determine the apparent synergy
between them (Additional file 4: Table S2). The three en-
zymes displayed 2-fold synergistic activity on pretreated
wheat straw but no synergy was observed on Avicel. The
overall enhancement in activity of the free enzymes com-
pared to the enzymes bound to a long-linker designer scaf-
foldin was 1.82-fold for Avicel and 1.93-fold for pretreated
wheat straw. The activities of the designer scaffoldins
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increased with the increase in linker length on both sub-
strates, by 1.4-fold from the no-linker to the long-linker
scaffoldin-mediated complex. The proximity effects were
determined by comparing the activity of the combined free
enzymes to the enzymes with the control scaffoldin, and
were 1.17 and 1.14 for Avicel and pretreated wheat straw,
respectively. The targeting effect was determined to be
1.56-fold for Avicel and 1.7-fold for pretreated wheat straw
by comparing the activities of the enzymes with a designer
scaffoldin with the long intermodular linkers, to the activity
of the control scaffoldin lacking the CBM (Figure 7).

Effect of spatial organization of the scaffoldin on activity

Next, we tested for cellulose hydrolysis by designer
cellulosomes composed of each of the scaffoldins in the
library, at a single timepoint (pre-determined by the kin-
etics assay). For Avicel, activity was tested at 72 h, since
shorter incubation times had lower than 5% conversion
rates. For pretreated wheat straw the kinetics reaction
reached a conversion of about 20% after 3 h; thus longer
incubation times were unnecessary. Designer cellulo-
somes, comprising members of the fourteen different scaf-
foldin arrangements (sets), were tested on Avicel and
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Figure 8 Comparative hydrolysis of Avicel by the 14 sets of designer cellulosomes. The modular composition of each set and the
scaffoldin number is denoted on the x-axis. Upper panel: the carbohydrate binding module (CBM) of the designer scaffoldin is at one of the ter-

minal positions (N or C terminus). Lower panel: the CBM module of the designer scaffoldin is in an internal position. Each designer-cellulosome
set is assembled either without intermodular linker scaffoldin (light brown), with short intermodular linker scaffoldin (medium brown), and with

long intermodular linker scaffoldin (dark brown). Controls: Free: corresponds to the combined activity of 485-t, 9K-a and 8A-b. CBM-Coh represents
a cellulose-targeting control, corresponding to the activity of the three dockerin-bearing enzymes, each attached separately to its matching cohe-
sin module fused to a CBM. Reactions were carried out for 72 h. Enzymatic activity was defined by mM reducing sugars as determined by a glu-
cose standard curve. All reactions were carried out in triplicate and repeated three times. Standard deviations of at least three experiments
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pretreated wheat straw for their activities in combination
with the three cellulases; for each arrangement we
tested three scaffoldins that vary in the length of the
intermodular linkers from 0 (no linkers), 5 (short
linkers) to an average of 30.5 (27 to 35, long-linker)
amino acids, respectively (Figure 1).

The results are displayed in Figure 8, using Avicel as a
commercially available model microcrystalline cellulose
substrate, and in Figure 9, using pretreated wheat straw
as a cellulose-enriched substrate from a natural source.
In both Figures 8 and 9, the upper panels provide the re-
sults of cellulosomes with scaffoldins bearing CBMs at
the extremities and the lower panels show the activities
of the cellulosomes having scaffoldin sets with internal
CBM:s.

All of the designer cellulosomes synthesized in this work
acted synergistically and showed substantially higher activ-
ities on both substrates compared to those of the combined
free dockerin-bearing enzyme systems, whether fitted with
matching CBM-fused cohesins (CBM-Cohs) or not. When
the three enzymes were in the free state, they degraded
Avicel (Figure 8) at a level that produced about 4.0 mM re-
ducing sugars (glucose equivalents); when each enzyme
was combined with a matching CBM-Coh for substrate
targeting, the observed Avicel-degrading activity increased
to about 4.8 mM glucose equivalents. In contrast, the ob-
served activities of the designer cellulosomes ranged from
approximately 5.8 to approximately 7.7 mM glucose equiv-
alents after a 72-h reaction period. The lowest value was
observed for the designer cellulosome based on the short-
linker scaffoldin Scaf-7cAB (ScafllS, set 11) with an in-
ternal CBM, and the highest value was achieved for the de-
signer cellulosome with the long-linker scaffoldin
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Scaf - ¢cTAB (Scaf21L, set 21). The substantial increase
in cellulolytic activity on the microcrystalline cellulose
substrate indicates that all of the different combina-
tions of designer cellulosomes exhibited enhanced syn-
ergistic activities among the enzymes, irrespective of
the position of the enzyme or CBM in the complex.

Equivalent results were observed on the pretreated
wheat-straw substrate (Figure 9). The observed activities
on this substrate ranged from approximately 2.1 to
3.5 mM reducing sugars following a 3-h reaction period,
compared to 1.5 and 2.0 of the free enzymes without and
with matching CBM-Cobhs, respectively. The lowest value
was observed for the no-linker scaffoldin Scaf-cABT
(Scaf20N, set 20, N-terminal CBM), and the highest value
for the long-linker scaffoldin Scaf-cTAB (Scafl12L, set 12,
internal CBM).

The results (Figures 7, 8 and 9) also revealed a trend
of increased activity on both substrates, as the intermod-
ular linker length increased from no linkers at all to
short 5-residue linkers, and from short to long linkers.
Two-way analysis of variance (ANOVA) with interaction
was used for statistical verification with length and the
14 scaffoldin arrangements as factors; no interaction was
found for either substrate (P = 0.16 for Avicel; P = 0.0595
for pretreated wheat straw), indicating that linker length
indeed had a significant effect on activity. The activities
exhibited by the long, short and no-linker scaffoldins
were thus observed to be significantly different from
each other in the majority of the sets for both substrates.
Of the 14 sets, 9 exhibited this general trend on Avicel,
and 12 of the 14 sets on pretreated wheat straw.

Unlike the apparent dependence of activity on inter-
modular linker length of the scaffoldins, no clear trend
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Figure 9 Comparative hydrolysis of pretreated cellulose-enriched wheat straw by the 14 sets of designer cellulosomes. Reactions were
carried out for 3 h on pretreated cellulose-enriched wheat straw. All other details are provided in the legend to Figure 8.
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could be discerned for position of the CBM or the cohe-
sins (and consequent position of the respective enzymes
used in this study). Designer cellulosomes based on
scaffoldins having internal CBMs (Figures 8 and 9, top)
exhibited similar levels of activity on the cellulosic sub-
strates when compared to those based on scaffoldins
with CBMs at their N or C termini (Figures 8 and 9,
bottom). Likewise, the order of the cohesins in the
scaffoldin and their nearest neighbor(s) did not have a
perceptible effect on cellulolytic activity, using the three
particular enzymes selected for this study.

Discussion

The integration into a cellulosome system of cellulases
and associated polysaccharide-degrading enzymes pro-
duced by anaerobic bacteria can facilitate their synergis-
tic activity. However, it might also cause an opposite
effect (anti-proximity) due to conformational restraint
and steric clashes between the cellulases [59]. Our un-
derstanding of cellulosome architecture and its implica-
tions for cellulose hydrolysis is still limited due to the
incredible heterogeneity of the cellulosome complex
[25]. However, we are steadily gaining insight into the
arrangement of the cellulosome complex and its func-
tional consequences.

It appears that cellulosomal components exhibit diverse
strategies that increase the plasticity of the complex and its
interaction with its plant cell-wall polysaccharide substrates.
This kind of flexibility may have a role in allowing en-
hanced access of the cellulases to the crystalline-cellulose
substrate, which is interwoven together with hemicellulose,
pectin and lignin components of the plant cell-wall. For
example, the C. thermocellum type-1 dockerin module
displays internal sequence and structural symmetry that
provide a dual mode of binding resulting in two different
orientations of the dockerin-borne enzyme [60,61]. This
type of plasticity would thus enable the enzyme to rapidly
assume an alternative conformation for interaction with an
untouched portion of its complex substrate.

In the past several years, selected studies have ad-
dressed the conformational flexibility of the cellulosome
and its possible significance to biomass degradation.
Early on, it was evident that isolated cellulosomes could
attain an overall tight or loose conformation [1,62].
More recently [63], ultrastructural studies of a homoge-
neous mini-cellulosome containing three cohesin mod-
ules attached to three matching cellulases suggested that
the flexibility of the linkers connecting consecutive
cohesin modules could control structural transitions and
thus regulate substrate recognition and degradation. In
addition, the cellulases were found to be alternately pro-
jected from the scaffoldin in numerous directions, as
was previously proposed based on the crystal structure
of cohesins together with their adjacent linker segments

Page 12 of 18

[64,65]. This property of the scaffoldin can prevent steric
clashes between neighboring catalytic modules.

The conformational events that occur upon integration
of an enzyme into a cellulosome complex have been
studied by examining the interaction between cellulosomal
enzymes and cohesins by small-angle x-ray scattering
(SAXS) [66,67]. Using this approach, the linker connecting
the catalytic module of the C. cellulolyticum cellulosomal
enzyme Cel48F to its dockerin was found to be extended
and flexible when the enzyme is in its free form, but
acquired a packed and rigid conformation upon binding to
the matching cohesin. In another study [65], crystallo-
graphic evidence revealed the flexible nature of an extended
intermodular linker of an A. cellulolyticus scaffoldin
subunit. Combined SAXS and molecular dynamics studies
revealed that the inter-cohesin linkers in binary and ternary
complexes are intrinsically disordered, thereby resulting in
extensive structural flexibility [66,68]. In addition, computa-
tional biology implementing a coarse-grained model was
employed to study self-assembly and flexibility of cellulo-
somes [69]. In this work, the shape and modularity of the
enzyme CbhA, was suggested to account for its tendency
to bind more frequently to the scaffoldin due to its flexible
nature and multimodularity that allowed a longer residence
time around the scaffoldin.

The role of the intermodular linkers was further evalu-
ated in a detailed study [70] wherein a cohesin dyad was
employed for fabrication of hybrid cellulosomes with two
model cellulases, Cel48F and Cel9G, derived from the
mesophilic bacterium C. cellulolyticum. Several scaffoldin
arrangements were used to form mini-cellulosome com-
plexes, each of which contained two cohesins separated by
various linker lengths, ranging from 4 to 128 residues, and
various linker compositions, but without a CBM. All of the
mini-complexes displayed similar activities on Avicel and
PASC, and induced a similar 2-fold proximity between the
two cellulases. Thus, in this case, the intermodular linker-
length did not substantially affect the synergistic action of
the two enzymes used in this study.

In the present study, we employed a synthetic biology
(SynBio)-based strategy and strove to design a trivalent
scaffoldin, which would serve as a basis for establishing
a combinatorial library of scaffoldins. This library was
then used for functional analysis of the position of the
resident module and the length of the linkers between
them. In doing so, we thus increased the level of com-
plexity by adding a third cohesin, and hence a third cel-
lulase, together with a supplementary CBM module that
targets the scaffoldin to the substrate. This strategy would
potentially allow 24 different modular arrangements of the
scaffoldin. In addition to the native intermodular linkers,
reduced linker length would enable examination of the ef-
fects of linker length on CBM-mediated targeting of the
complex and enzyme proximity within the complex and
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their contribution to the overall deconstruction activity on
cellulosic substrates. Owing to this broad design, we were
able to overcome obstacles of cloning, expression and
scaffoldin continuity, which limited the number of scaffol-
dins included in the final library. We thus succeeded in
obtaining complete sets of scaffoldins, which contained all
combinations of the desired positions of the modules and
incremented lengths of their respective linker segments.
Consequently, out of the 24 possible scaffoldin arrange-
ments originally attempted, 14 complete sets were finally
obtained, and their respective degradative capacity on
cellulosic substrates was compared.

These 14 sets emulate the types of scaffoldin arrange-
ments that occur in nature. For example, in simple
cellulosome systems the CBM is positioned at the N
terminus of the scaffoldin. We were thus able to express
a complete set of six scaffoldins (scaffoldins 19 to 24 in
Figure 3) that represent scaffoldins with an N-terminal
CBM, with all of the possible permutations of the three
cellulases. This scaffoldin set allowed us to determine if
the position of a given enzyme in a trivalent designer
cellulosome, relative to the other two, would appreciably
influence the overall level of activity. An additional group
of four scaffoldins carries the same arrangement of cohesins
for all of the scaffoldins (7, B, A) with the CBM module at
different positions in each of the scaffoldins: that is, a
C-terminal position in scaffoldin 9, an internal position in
scaffoldins 10 and 12, and N-terminal position in scaffoldin
22. The latter set allowed us to examine whether the
position of the CBM would have a significant effect on the
degradative capacity of the resultant designer cellulosome.
Notably, the position of a C-terminal CBM has yet to be
observed in a native multi-modular scaffoldin. The results
indicated a lack of preferred scaffoldin arrangement using
the specific C. thermocellum cellulases and cellulosic sub-
strates described in this study - including the non-native
scaffoldins (scaffoldin set 9, with the CBM at the C
terminus) - which were fully functional in their contribu-
tion to degradation of cellulosic substrates. These results,
however, do not necessarily indicate that other combina-
tions of enzymes will not be affected by their location in a
cellulosome. The combinatorial scaffoldin library can there-
fore be used as a platform to study the activities of other
enzymes derived from different glycoside-hydrolase families
or from different organisms, as well as other types of
enzymes.

The results of the present study demonstrated that the
use of native long intermodular linkers (average of 30.5
amino acids) between the scaffoldin-borne modules con-
sistently resulted in higher cellulose-degrading activities.
In addition, the designer cellulosome assemblies resulted
in enhanced degradation of cellulose, due to the proxim-
ity between the enzymes and the targeting effect induced
by the CBM3a module of the scaffoldin. The attachment
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of the CBM to the insoluble substrate may, however, re-
strict accessibility of the enzymes to the substrate due to
attachment of the designer cellulosome on the surface of
the cellulose [71]. In this context, the cohesin dyad-
based hybrid-cellulosome [70] was free in the reaction
solution and lacked the targeting function. Interestingly,
in simple cellulose systems with short intermodular
linkers, the CBM is positioned at the N terminus of the
scaffoldin together with an X2 module, so the freedom
of movement of enzymes attached to cohesins on the
C-terminus of the scaffoldin is less compromised. In
contrast, in complex cellulosome systems, with scaffol-
dins that are characterized by long intermodular linkers,
the CBM module is typically positioned in an internal
position in the polypeptide chain. The long linkers can
thus compensate for the restricted movement induced
by the CBM. The flexibility of the intermodular linker
segments thus provides cooperativity among the cellulo-
somal glycoside hydrolases and results in synergy and in-
creased cellulolytic activity [68]. Nevertheless, reduction
of the intermodular linker length to 5-residues, or even
their complete removal, failed to abolish the observed
enhanced activity of the designer cellulosomes, thus
underscoring the robust nature of cellulosome structure
and architecture.

The different arrangements of the three enzymes on
the designer cellulosome and the position of the CBM in
the scaffoldin did not have a significant effect on the
observed activity. In fact, we should consider that
the designer cellulosomes are three-dimensional flexible
complexes and not strings of cohesins bound to cellu-
lases. What appears to be a different arrangement of
cohesins in the designer scaffoldin would not necessarily
result in a markedly different organization of the cellu-
lases, owing to the flexibility or packing of the complex.
Indeed, natural cellulosome complexes are intrinsically
heterogeneous, since within a given species the cohesins
of a given scaffoldin do not exhibit striking differences
in specificity for the various dockerin-bearing enzymes,
such that individual enzymes can bind to each of the
scaffoldin-borne cohesin modules.

Conclusions

A combinatorial library of a relatively simple designer-
cellulosome system composed of three enzymes was pre-
pared using a synthetic biology approach for examining
the contribution of enzyme position, CBM location and
intermodular linker length to cellulose-degrading activ-
ity. Longer intermodular scaffoldin linkers were shown
to enhance the activity of the complex, whereas the pos-
ition of the three particular enzymes selected for this
study was of no apparent consequence. The high intrin-
sic flexibility of the intermodular linkers may be a major
factor for refinement and optimization of the synergistic
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activity of the cellulosomal enzymes and may facilitate sub-
strate targeting and binding of the scaffoldins, thereby
maximizing the effectiveness of the cellulosome system as a
cellulose-degrading machine. The scaffoldin library that we
present in this paper can serve as a tool both to study the
contribution of specified components of designer cellulo-
some assemblies and to explore unknown properties of
cellulosome architecture, organization and action on plant-
derived biomass.

Materials and methods

Cloning of cellulases

The recombinant wild-type family-48 exocellulase, Cel48S
(48S-t), was amplified from C. thermocellum ATCC 27405
genomic DNA with the following forward and reverse
primers, 5° CAGTCCATGGGTCCTACAAAGGCACCT
AC 3" and 5° CGCGAAGCTTTTAATGGTGATGGT
GATGGTGG 3, respectively (Ncol and HindIlI restriction
sites in boldface), that allow their incorporation into
pET28a. Similarly, the recombinant wild-type family-8
endocellulase, Cel8A (8A-z), was cloned from the genomic
DNA of C. thermocellum with the following forward and
reverse primers, 5" CAGTCCATGGGTGTGCCTTTTAA-
CACAAA 3’ and 5° CACGCTCGAGATAAGGTAGGT
GGGGTATGC 3’ respectively, (Ncol and Xhol restriction
sites in boldface). Likewise, the recombinant wild-type
family-9 endocellulase, CI9K (9K-t), was amplified from
the C. thermocellum genomic DNA and cloned into
pET28a vector using the restriction-free (RF) method [46]
with the following forward and reverse primers, 5° GT
TTAACTTTAAGAAGGAGATATACCATGGGCCATC
ACCATCACCATCACTTAGAAGACAAGTCTCCAAAG
TTGCCGGAT 3’ and 5" GAGTGCGGCCGCAAGCTT
GTCGACGGAGCTCTTATTTATGTGGCAATACATCTA
TCTCTTTAAG 3’ respectively, (gene-specific sequences
are italicized, plasmid-specific sequences are shown in
plain font, His-tag in bold). For the cloning of 9K-a with
the divergent dockerin from A. cellulolyticus, the dockerin
was amplified from the genomic DNA of A. cellulolyticus
and used for the simultaneous insertion of the divergent
dockerin and deletion of the wild-type dockerin into the
wild-type 9K-¢ plasmid using the RF cloning method with
the following forward and reverse primers, 5° CTCGAT
GAAATTGACTTAATAACACCGCCAGGTACCAAATT
TATATATGGTGATGTTGATGGTAATG 3" and 5° GAG
TGCGGCCGCAAGCTTGTCGACGGAGCTCTTATTC
TTCTTTCTCTTCAACAGGGAATAAAAATATC 3’ re-
spectively (gene-specific sequences are italicized, plasmid-
specific sequences are not). For the cloning of the
chimaeric enzyme 8A-b with the C. thermocellum
Cel8A catalytic module and a divergent dockerin from
B. cellulosolvens, the catalytic module of Cel8A was
amplified from C. thermocellum ATCC 27405 genomic
DNA with the following forward and reverse primers,

Page 14 of 18

5" ATTCAACCATGGGTGTGCCTTTTAACACAAA
ATAC 3’ and 5" ATATTGCTCGAGTAATGTGGTA
CCAATGAAGGTGTCGGATTCGACG 3’ respectively
(Ncol, KpnlI and Xhol restriction sites in boldface). The
PCR product was cloned into a pET28a plasmid linear-
ized with Ncol and Xhol restriction enzymes to yield
p8A-CD. The dockerin was amplified from B. cellulo-
solvens genomic DNA with the following forward and
reverse primers, 5" ACTTTAGGTACCTCCAAAAGG-
CACAGCTAC 3" and 5" ATTAATCTCGAGCGCTT
TTTGTTCTGCTGG 3’ respectively (Kpnl and Xhol
restriction sites in boldface). The resultant DNA was
cloned into p8A-CD that was linearized with Kpnl and
Xhol to yield p8A-b.

High-throughput computer-aided cloning of short- and
no-linker scaffoldins
The core recursive construction step in this method re-
quired four basic enzymatic reactions: phosphorylation,
elongation, PCR and Lambda exonucleation, and was
performed as previously described by Linshiz et al. [44]
using the primer sets listed in Additional file 5: Table S3.
The PCR product was amplified in order to yield suffi-
cient amounts of DNA for subsequent cloning, by the fol-
lowing upper and lower primers, according to the modules
that were located at the 5" and 3’ of each scaffoldin
construct: CtCohA2-Upper: 5° CGCGAGCCATGGGGT
CCGACGGTGTGGTAGTAG 3’, AcCohC3-Upper- 5' CG
CATGCCATGGGATCCGATTTACAGG 3’, CtScaACB
M-Upper- 5° CGACTCCCATGGCAAATACACCGGTA
TC 3’, BcCohB3-Upper- 5" CGCAGGCCATGGGTAGTT-
CACCAGGAAATA 3’, CtCohA2-Lower- 5 CGCACG
CTCGAGTGTTGCATTGCCAACG 3’, AcCohC3-Lower:
5" GGGCCGCTCGAGACTTGCAATTACCTC 3’, CtSc
aACBM-Lower- 5° CTGTCGCTCGAGACTGCCACCGG
GTTC 3’ and BcCohB3-Lower- 5° GGACGGCTCGA
GATTAGTTACAGTAATG 3" (Ncol and Xhol restriction
sites in boldface). The amplified product was digested by
Nceol and Xhol, and ligated with Ncol-Xhol linearized
pET28a vector (Novagene, Madison, WI, USA). Positive
clones were selected by colony PCR and verified by sequen-
cing. The approach was also attempted for production of
long-linker scaffoldins with negative outcomes.

Restriction-free (RF) cloning of long-linker scaffoldins

The trivalent long-linker scaffoldins were cloned in pET28a
expression vector applying the RF method [46], using a
simultaneous multi-component assembly approach. The as-
sembly is described in detail in the Results section. Primer
sets were designed for PCR amplification (Additional file 6:
Table S4) and subsequent RF reactions were carried out
using Phusion polymerase (Thermo Scientific, Hudson,
NH, USA).
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Expression and purification of cellulases and designer
scaffoldins

Escherichia coli BL21 (DE3) cells overproducing pET28a-
scaffoldin genes or cellulases were grown at 37°C in Luria-
Bertani broth supplemented with 50 pg/ml kanamycin
(Sigma-Aldrich Chemical Co, St. Louis, MO, USA) to Aggo
=0.8 to 1.0. The cultures were cooled to 16°C, and protein
expression was induced by the addition of 0 to 1 mM
isopropyl-1-thio-p-D-galactoside - IPTG (Fermentas UAB
Vilnius, Lithuania), based on the results of predetermined
optimization experiments. The cultures were incubated at
16°C for an additional 16 h, the cells were harvested by cen-
trifugation (3500 g, 15 minutes), resuspendend in Tris-
buffered saline (TBS, 137 mM NaCl, 2.7 mM KCl, 25 mM
Tris—HCl, pH 7.4) supplemented with 5 mM imidazole
(Merck KGaA, Darmstadt, Germany) and disrupted by son-
ication. The sonicate was heated for 20 minutes to 60°C
and centrifuged (20,000 g, 30 minutes). The supernatant
fluids were mixed with 4 ml of Ni-NTA beads for 1 h on a
20-ml Econo-pack column for batch purification at 4°C.
The column was washed by gravity flow with 100 ml wash
buffer (TBS, 50 mM imidazole) and elution was performed
with 14 ml of elution buffer (TBS, 250 mM imidazole). For
purification of the scaffoldins an additional affinity-
purification step was applied: the eluted fractions were in-
cubated in a 50-ml tube with 10 ml PASC (0.75 mg/ml) for
1 h at 4°C to allow binding of the CBM. The matrix was
washed three times with TBS, containing 1 M NaCl, and
three times with TBS without added salt. The scaffoldin
was eluted with 1% triethylamine and neutralized with 1 M
2-(N-Morpholino) ethanesulfonic acid (MES) buffer pH 5.
For both scaffoldin and cellulases the buffer was exchanged
by dialysis against TBS, and the scaffoldin sample was con-
centrated using Amicon Ultra 15 ml 50,000 MWCO
concentrators (Millipore, Bedford, MA, USA). Protein con-
centrations were estimated by the absorbance at
280 nm. The extinction coefficient was determined
based on the known amino-acid composition of each
protein using the ProtParam tool on the EXPASY server
(http://www.expasy.org/tools/protparam.html) [72].

Analysis of cohesin-dockerin specificity
The procedure of Barak et al. [73] was followed with
minor modifications. Maxisorp ELISA plates (Nunc A/S,
Roskilde, Denmark) were coated with 1 pg/ml each of
the dockerin-containing enzymes 48S-t, 9K-a and 8A-b,
and then interacted with 0.1 to 1,000 ng/ul of its match-
ing CBM-cohesin (CBM-Coh T, CBM-Coh A and CBM-
Coh B) counterpart. Rabbit-anti-CBM (diluted 1:3,000 in
blocking buffer) was used as the primary antibody for
detection of the interaction.

For analysis of the chimaeric scaffoldins, Maxisorp
ELISA plates were coated with 1 pg/ml of the chimaeric
scaffoldin and then interacted with 0.1 to 1,000 ng/pl of
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matching Xyn-Doc proteins which were prepared as de-
scribed in Barak et al. [73]. These proteins are composed
of xylanase T-6 from Geobacillus stearothermophilus
fused to a dockerin module of appropriate specificity.
Rabbit anti-xylanase T-6 antibody (diluted 1:10,000 in
blocking buffer) was used as primary antibody for detec-
tion of the interaction. A secondary antibody preparation
of goat-horseradish peroxidase (HRP)-labeled anti-rabbit
antibody diluted 1:10,000 was added. The interaction was
detected using TMB Substrate-Chromogen (Dako A/S,
Glostrup, Denmark), and the reaction was terminated by
the addition of 1 M sulfuric acid (H,SO,). Absorbance was
measured at 450 nm.

Non-denaturing PAGE

Equimolar concentrations of scaffoldins and matching
enzymes (4 to 8 pg each protein) were mixed and added
to similar volumes of interaction buffer (TBS with
10 mM calcium chloride (CaCl,) and 0.05% Tween20).
Double-distilled water (DDW) was added to a final vol-
ume of 30 pl. The proteins were incubated at 37°C for
2 h to allow complex formation. Non-denaturing sample
buffer (192 mM glycine, 25 mM Tris) was added, and a
total of 15 pl/lane was subjected to PAGE (7.5 to 9.0%
acrylamide gels), using a Bio-Rad Laboratories (Hercules,
CA, USA) power pack 300. Single components (scaffol-
din and enzymes) were used as markers. The remaining
15 pl were used for analysis on SDS-PAGE.

Size-exclusion high performance liquid chromatography
(HPLC)

Equimolar protein concentrations (450 picomoles scaf-
foldin or enzyme) were diluted in 300 pl of loading buf-
fer (TBS, pH 7.4), supplemented with 2 mM of CaCl,.
For the formation of designer cellulosome complexes,
equimolar concentrations of a scaffoldin and enzymes
were incubated at 37°C for 2 h with similar volumes of
interaction buffer (TBS with 10 mM CaCl, and 0.05%
Tween20), and loading buffer was added to a final
volume of 300 pl. The reactions were injected onto an
analytical Superdex 200 HR 10/30 column using an
AKTA fast-performance liquid chromatography system
(GE Healthcare, Uppsula, Sweden) and loading buffer at
a flow rate of 0.5 ml-min™. Eluted proteins were de-
tected at 280 nm and fractions (0.5 ml) concentrated
and analyzed using SDS-PAGE gels.

Preparation of cellulose-enriched (pretreated)

wheat straw

Wheat-straw sections were cut with shears into pieces 2 to
5 ¢cm and subsequently ground with a knife mill (Waring
Products Inc., Torrington, CT, USA) at 15,000 rpm for 1 mi-
nute. The resultant powder was passed through a sieve with
mesh =10 to obtain a final biomass powder having an
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average particle size of 1 to 3 mm. A sample (20 g) of the
resultant powder was treated with 85 ml of 5% (v/v) nitric
acid for 1 h at 115°C. The acid-treated biomass was washed
with DDW and treated further with 150 ml of 1.5% v/v so-
dium hydroxide (NaOH) for 1 h at 100°C and washed with
DDW, yielding a cellulose-enriched substrate.

Determination of wheat-straw substrate

chemical composition

The chemical composition of the samples was deter-
mined according to the following improvement of the
Technical Association of the Pulp and Paper Industry
(TAPPI)-method [74]. For hemicellulose content, sam-
ples were boiled with 2% HCl for 2 h, washed with
DDW and ethanol and dried at 105°C to constant weight
(about 2 to 3 h). For cellulose content, samples were
boiled with an ethanolic nitric acid (HNOs3) solution for
1 h, washed with DDW and ethanol, and dried at 105°C to
constant weight (about 2 to 3 h). For lignin content, sam-
ples were swollen in 72% H,SO, at room temperature for
2 h, diluted with DDW to 8 to 10% acid, hydrolyzed with
boiling diluted H,SO, (8 to 10%) for 2 h, washed with
DDW and ethanol, and dried at 105°C to constant weight
(about 2 to 3 h). Total solid content was determined by
drying the samples at 105°C for 2 h.

Activity assays

The hydrolysis reactions were carried out in a total volume
of 200 pl, and consisted of reaction buffer (100 mM sodium
acetate buffer pH 5.5, 24 mM CaCl,, 4 mM ethylenedi-
aminetetraacetic acid (EDTA)), 0.5 uM of each protein and
2% w/v Avicel (Sigma-Aldrich) or 3.5 g/L pretreated
(cellulose-enriched) wheat straw. Prior to the addition of
the substrate, each scaffoldin was incubated with equimolar
quantities of the three enzymes for 2 h at 37°C with a
similar volume of interaction buffer (TBS with 10 mM
CaCl, and 0.05% Tween 20). The reaction was carried out
for 24 to 72 h (Avicel) or 3 to 24 h (pretreated wheat straw)
at 50°C and terminated by immersion in ice water. The
substrate was pelleted by centrifugation at maximum speed
(20,800 x g, 10 to 15 minutes), and 100 pl of the super-
natant was transferred to a new tube. Dinitrosalycylic acid
(DNS, 150 pl) was added, and the samples were boiled for
10 minutes. The absorbance was measured at 540 nm and
the reducing sugars were determined according to a glu-
cose calibration curve. Each assay was repeated three times
in triplicate.

Additional files

Additional file 1: Table S1. Molecular weights of the different
chimaeric scaffoldins produced in this work.

Additional file 2: Figure S1. Demonstration of cellulose-binding ability
of cellulases and scaffoldin used in this work. Cellulose-binding assays
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were performed as described earlier [30]. The enzymes and scaffoldin
(5-20 mg) were incubated with Avicel, the suspension was centrifuged,
and the supernatant fluids with the unbound fraction (S) and pellet with
the bound fraction (P) were subjected to SDS-PAGE analysis. Left: Cel485-t
(lane 1 and 2), Cel9K-a (lane 3 and 4), Cel8A-b (lane 5 and 6), and the
positive control scaffoldin 17L bearing a CBM3a module (lane 7 and 8).
Mw - Molecular weight markers (kDa).

Additional file 3: Figure S2. SDS-PAGE analysis of the 42 scaffoldins in
the final scaffoldin library. Each scaffoldin (2.5 to 3.0 pg) was subjected to
10% SDS-PAGE. The modular composition of each set and the scaffoldin
number is denoted at the bottom of each gel (as described in Figure 3
of the main text of the article). Scaffoldins His-10L and His-9L refer to
Scaf10L and Scaf9l in the manuscript and were modified so that the
histidine-tag was transferred to the N terminus of the scaffoldin. The mi-
gration pattern of an additional control scaffoldin, No CBM (Scaf20ACBM),
is also shown. All of the scaffoldins display a major band corresponding
to their calculated molecular weights (Table S2). Mw, molecular mass
marker.

Additional file 4: Table S2. Enzymatic activity measured as reducing
sugars (mM) released by the various enzyme combinations used in this
study when tested on A) Avicel after 24, 48 and 72 h and tested on B)
pretreated wheat straw after 3, 6 and 24 h. All reactions were carried out
in triplicate. Standard deviations from three separate experiments are
indicated.

Additional file 5: Table S3. Primer sequences used for the cloning of
the no inter-modular linker and short inter-modular linker scaffoldins.

Additional file 6: Table S4. Primer sequences used for the cloning of
the long inter-modular linker scaffoldins. Modules are color-coded: plas-
mid sequences (red), Coh T (black), carbohydrate binding module (CBM)
(c)(brown), Coh B (green), Coh A (magenta). Primer sequences that appear
in boldface are primers that already appear in the list in the primer set of

a former scaffoldin.

Abbreviations

Bp: base pairs; CBM and c: the family 3a carbohydrate binding module of the
CipA scaffoldin from C. thermocellum; 8A-b: chimaeric enzyme consisting of
the catalytic module of Cel8A from C. thermocellum fused to a divergent
dockerin from B. cellulosolvens; 9K-a: chimaeric enzyme consisting of the
catalytic module of Cel9K from C. thermocellum fused to a divergent
dockerin from A. cellulolyticus; 485-t: recombinant wild-type cellulosomal en-
zyme from C. thermocellum consisting of the catalytic module and dockerin;
Coh A: A. cellulolyticus cohesin C3 module fused to CBM3a from C.
thermocellum CipA scaffoldin; Coh B: B. cellulosolvens cohesin B3 module
fused to CBM3a from C. thermocellum CipA scaffoldin; Coh T: C. thermocellum
cohesin A2 module fused to CBM3a from C. thermocellum CipA scaffoldin; no
linkers: Scaffoldin without intermodular linkers; short linkers: Scaffoldin with
short intermodular linkers; long linkers: Scaffoldin with long intermodular
linkers; DDW: double-distilled water; DNS: dinitrosalycylic acid;

ELISA: enzyme-linked immunosorbent assay; NTA: Ni-nitrilotriacetic acid;
PASC: phosphoric acid-swollen cellulose; PCR: polymerase chain reaction;

RF: restriction-free; Scaf4N: Scaffoldin number 4 without intermodular linkers
(the numbers in the terminology change according to the given scaffoldin
set); Scaf4S: Scaffoldin number 4 with short intermodular linkers;

Scaf4Ll: Scaffoldin number 4 with long intermodular linkers; TBS: Tris-buffered
saline; Xyn-Doc: xylanase T-6 from Geobacillus stearothermophilus fused to a
dockerin module of an appropriate specificity.
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