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Abstract

Background: In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive
years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to
identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of
accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments
with field-grown germplasm through sound statistical design and analysis.

Results: Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic
sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study.
The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation
and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly
allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and
laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately
represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in
each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of
this design and approach.

Conclusions: The importance of accounting for both field and laboratory variation, as well as the cultivar by
trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the
changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction
resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence
between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any
multi-phase and multi-environment population-based genetic experiment.
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Background

Second generation lignocellulosic biofuels can be made
from biomass of dedicated energy crops (for example
Miscanthus and willow) that are able to grow on low
grade non-arable land, or from co-products of food
crops such as cereal straw [1]. The efficiency of processing
lignocellulosic materials to produce biofuel will depend, in
part, on the accessibility of cell wall polysaccharides to en-
zymatic breakdown that releases fermentable sugars, a
process known as saccharification. For this reason, many
lignocellulosic biofuel research initiatives include large-
scale screening of the saccharification properties of wide
germplasm collections of crops with potential use for
second generation biofuel production. Cultivars with a
greater genetic capacity for releasing sugars are desir-
able as this would mean a reduction in production
costs. Such screens typically involve large numbers of
individuals with biological and technical replication,
and several bespoke high-throughput saccharification
assay platforms have been developed to handle large
sample numbers and provide the necessary phenotypic
data [2-6]. However, to date, little attention has been
focused on the challenge of ensuring that the statistical
design and analysis of these large and lengthy experiments
are sufficiently robust to guarantee meaningful data that
identifies the best performing genotypes/cultivars in a re-
producible way. Achieving such rigour is essential when
the phenotypic data is intended to underpin subsequent
genetic dissection of the genes and loci controlling sac-
charification as a quantitative trait, or identifying better
cultivars for biofuel applications.

The saccharification yield of any group of cultivars
under testing will depend on both genetic and non-
genetic factors. As the primary interest of population-
based genetic studies is focused on the impact that genetic
sources of variation have on sugar release, an accurate
measure will only be possible if the non-genetic sources of
variation can be accounted for and removed from the ana-
lysis. Such non-genetic sources may be substantial and
may include variation introduced in the field during
growth, during harvesting and sampling, and in the la-
boratory during saccharification testing. These can be
quantified and accounted for by appropriate experi-
mental design and subsequent statistical analysis.

We have been taking a genetic approach that involves
screening barley straw from many hundreds of cultivars
to identify genes and genotypes that have high sacchari-
fication potential. The experiment involves both field
and laboratory phases. In the field, the level and com-
position of the lignocellulose in the straw, and therefore
saccharification potential, may be affected by a range of
external factors including water gradients, ultraviolet
(UV)-B radiation, wind, and temperature [7,8], all of which
vary in different years. The impact of these environmental
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factors will also vary depending on the spatial position of
the cultivars in the field. Controlling for these extraneous
sources of variation will ensure more accurate cultivar esti-
mates are found [9]. Variation can also be introduced in
the laboratory by different operators during sampling of
harvested material, and the amount of sugar released by
cultivars may depend on, among other things, differences
in reagent concentration and batches, reagent contact time,
heating temperatures, and gradients. Also, for a large-scale
screening experiment that employs a high-throughput
platform where thousands of samples are compared,
processing may extend across many batches and can
continue over weeks or even months. As the impact of
these factors on sugar release can be sizeable, being
able to control for them through appropriate design
and analysis is vital.

The importance of experimental design, which gener-
ally includes replication and randomisation, in a single
phase experiment (for example a field experiment) has
been widely accepted since its introduction [10]. How-
ever, multi-phase experiments where the field samples
are subsequently processed in the laboratory offer add-
itional challenges. The need for laboratory duplicates,
sample re-randomisation, appropriate technical replica-
tion, and batch to batch (temporal) controls combined
in an appropriate analysis is often overlooked. Further-
more, complementary designs at both phases ensure that
field and laboratory variation can be separated and
accounted for correctly in the analysis.

The literature to support the use of appropriate multiple-
phase design and analysis has grown slowly over the last
50 years. McIntryre and others [11-15] discuss the analysis
of multi-phase experiments in general. Indeed, some pro-
gress has been made, particularly relating to the benefits of
a multi-phase design and analysis in crops [16-19]. In par-
ticular, Butler et al. [17] show the existence of substantial
non-genetic sources of variation in field and laboratory and
the need to account for these to improve the accuracy of
the phenotyping, concluding ‘the use of a multi-phase de-
sign and analysis is superior to an approach which doesn’t
use a valid statistical design and efficient analysis’. In the
case of large-scale saccharification screens, although many
of the technical challenges have been identified [20], most
studies have not exploited the opportunities offered by ap-
propriate statistical design in extracting meaningful data
while controlling for such technical ‘noise’. In the labora-
tory phase in particular, while sample replication is in-
cluded in most studies, the value of both spatial and
temporal randomisation is usually overlooked. By ignoring
many non-genetic sources of variation, and simply aver-
aging over biological and technical replicates to obtain a
cultivar value, cultivar selection may not be optimal and
any planned subsequent genetic studies such as quantitative
trait loci (QTL) mapping may be compromised.
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For crop plants, cultivar performance is affected by the
environment, such as different growing times (for ex-
ample season or year) or locations. To assess this culti-
var by environment interaction, and thus the stability
and adaptability of cultivars, a multi-environment trial
(MET) can be undertaken in which the experiment is
wholly repeated in different locations. Smith et al. [21]
provides a comprehensive review of mixed model ap-
proaches to the analysis of METs, which considers the
phenotypic response as partitioned into cultivar effects,
environmental effects, cultivar by environment interaction
effects, and within-environment effects. For a multi-phase
experiment the within-environmental effects of a MET
will include the non-genetic field and laboratory variation
found in each environment.

The study described here illustrates the practical bene-
fit of accounting for both multiple phases and multiple
environments through sound experimental design and
analysis. We grew 648 and 856 elite cultivars of spring
barley in an experiment consisting of field and labora-
tory phases conducted and repeated over two years (re-
ferred to as ‘trials’). Our aims were to characterise and
rank existing elite cultivars for their possible use as par-
ents in barley improvement programmes to improve the
saccharification potential of the straw, and to subse-
quently use the phenotypic values to accurately identify
regions of the barley genome (genes or loci) associated
with high straw saccharification potential.

Results and discussion

In each trial, the barley cultivars were grown in pots in
the field in a polyethylene tunnel arranged in a spatial
row-column design with five replicate blocks (Figure 1).
There were 648 cultivars planted in each replicate block
in the 2010 trial and 856 cultivars planted in each repli-
cate block in the 2011 trial, with 639 cultivars common
to both trial years. This resulted in a total of 3,300 and
4,480 harvested straw samples from the 2010 and 2011
trials, respectively, which included five true biological
replicates per cultivar (Table 1). The straw samples were
milled to a powder.
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For each replicate block, in each trial, the milled straw
sample from each available cultivar was re-randomised
to a 96-well plate. Each plate contained four technical
replicates of each sample (Figure 2). In addition to the
re-randomisation and technical replication of samples, a
subset of cultivars were chosen as duplicates and ran-
domly allocated across the plates using a partially repli-
cated design (Figure 3). This additional level of replication
enabled us to determine laboratory variation across Plates.
A summary of the field and laboratory design phases for
trial 2010 is shown in Figure 4.

The assay for sugar release performed on the 96-well
plates resulted in 13,200 and 22,480 data points (consist-
ing of the results of four technical replicates plus repli-
cated cultivars) in 2010 and 2011, respectively. Laboratory
processing of the 165 and 224 plates (Table 1) took 8 and
15 weeks for the 2010 and 2011 trials, respectively. For
each data point, details from the field (row, column, and
replicate block), laboratory (day of processing, plate, plate
row, and plate column), and the trial (2010 and 2011)
were recorded for subsequent data analysis.

The data was analysed according to three distinct stat-
istical models (see Table 2 for summary and Methods
section in conjunction with Tables 3 and 4 for a full de-
scription of the models). Model A was a baseline model
that did not account for the field, laboratory, or environ-
ment variation. This model represents the results ob-
tained if all the observations from a particular cultivar
are simply averaged and reflects the common practice in
most high-throughput saccharification studies to date.
Model B took the variation introduced in the field and
laboratory into account and adjusted for both, but, like
model A, did not consider the multi-environment vari-
ation of growing the plants in two successive years (that
is, it was equivalent to fitting each trial separately). Only
model C took all sources of variation into account, adjust-
ing for field, laboratory, and the multi-environment vari-
ation between the trials in 2010 and 2011. Figure 5A
shows the results of the sugar release of each cultivar for
both trials and is the result of model A, Table 2. The level
of sugar release was lower in 2011 with an overall mean of

direction and the horizontal stripe in R1 highlights field row direction.
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Figure 1 The spatial row-column field design for the 2010 trial. In 2010, 648 barley cultivars were grown in five replicate blocks, R1 to R5,
with cultivars randomised within a block. In 2011, 886 cultivars were grown in the same way. A vertical stripe in R5 highlights field column
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Table 1 Details of the laboratory design

Trial Number of cultivars Number of samples Number of Plates

processed® per replicate block®  samples
2010 647 660 3,300 165
20M 856 900° 4,480 224

Total number of cultivars across all five replicate blocks; ®includes duplicated
cultivars used as laboratory replicates; “replicate 1 had 880 samples.

54.0 nmol glucose/mg DM (dry matter) as compared to
an overall mean of nearly double that of 93.3 nmol glu-
cose/mg DM in 2010. This illustrates the scale of variabil-
ity that the environment (growth in one or other trial
year) and/or the laboratory (analysis in one or other trial
year) can introduce into the data. Irrespective of this, the
lack of any pattern in the data in Figure 5A suggests that
systematic differences alone cannot explain the very low
correlation between the raw mean sugar release of culti-
vars across the two trials. Significant levels of random
variation must also influence the results unless it is as-
sumed that genetic differences between cultivars truly
exert no consistent influence on saccharification proper-
ties, a premise that is unlikely at best.

In order to attempt to extract the non-genetic sources
of variation, the data was analysed according to two add-
itional models (Table 2) that illustrate the benefits of ac-
counting for field and laboratory variation (that is, the
multi-phase nature of each trial) and cultivar by trial in-
teractions (that is, the multi-environmental nature of the
trials). It should be noted that the ability to partition the
variation into field and laboratory strata in the models is
the result of the sound statistical design employed. While
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Figure 2 Sample layout within each 96-well plate. Each sample
has four technical replicates and is shown in a different shade or

pattern: columns 11 and 12 contain standard samples, and the rest
of the samples are test cultivars. The wells of plate row A (wells A1
to A12) and plate column 12 (wells A12 to H12) are boxed as well as
one of the 24-plate plots (wells E1 to H1).
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Column
1 2 3 4 5 6 7 8 9 10 11 12

1 [325 487 408 276 179 295 421 635 381 441 S1 S3
510512379 38 328491367/499 52 521 S2 S4

2 [176 212136 417 414 257208 288 86 601 S1 S3
463 383 300 624 318 411 258 27 194576 S2 S4
3 [437 241282 11 378234 246320506289 S1 S3
| 71 188 344 356 65 636 371 410 156)88) S2 S4
4 [550 274 476 189 287 637 334 21 142396 S1 S3
56 203 563 446 3728 570 380 461548 S2 S4
537 5 [868 606 376 453 240 420 416 426 S1 S3
574319415496 8 468256 76 508619 S2 S4
6 |283 406355 95 120 181433 285 148 133 S1 S3
432 532 313 364 382 324 536804 564/108 S2 S4

7 [404 126 178 309128 158 298 370/898 137 S1 S3
353 239 454 537 567 77 301443221249 S2 S4
8 [250573 30 526 562 321 543 399 135231 S1 S3
639 442[888 265 556 571457 90 244237 S2 S4
9 (345608 49 44 522465294 64 374544 S1 S3
233213 255018 96 116202216473 87 S2 S4
10 (335336 236 621 363611 358 6 530456 S1 S3
215183412 61 584 352293588592 S2 S4

Figure 3 Subset of the laboratory design of replicate block,
showing the sample allocation and duplicated cultivars. The
subset is the first ten plates of replicate block R1 (2010 trial). The
cultivar numbers are shown; highlighted in dark blue are laboratory
duplicated cultivars, and Plate 1 has been highlighted in light blue.
Each cultivar number represents four replicate samples as illustrated
in Figure 2. Columns 11 and 12 contain the same standard samples
on each plate.

Plate

model A ignores these sources of variation (see Methods
section; terms indexed with an L or F in Table 4 are ex-
cluded), model B accounts for the field and laboratory
variation (see Methods; terms indexed with an L or F in
Table 4 are included). In both models A and B, the
analysis of each trial is conducted separately, so that
no cultivar by trial interaction is fitted. The third model
(model C) includes both the field and laboratory variation
and a cultivar by trial interaction. The influence that
model B and particularly model C have in refining the
data can be clearly seen in Figure 5. While model B
(Figure 5B) reduces the spread of the data compared to
model A (Figure 5A), a strong, broadly linear correl-
ation between the two years’ data is only clearly appar-
ent in the output from model C (Figure 5C). The overall
correlation between the two years’ data represented in
Figure 5C is 0.66 or 66% (see Table 2).

A log likelihood ratio test is used to determine which
model fits best (Table 2). Model C, the full model
which accounts for field and laboratory variation and
includes a cultivar by trial interaction, is the best fit-
ting model and significantly better (P <0.001) than
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Figure 4 Summary of the field and laboratory design phases, following through a single field replicate block. Laboratory processing of
all field replicate blocks in both trials was undertaken; however, the follow-through for only one of the replicates is shown, which is replicate

block R1 (2010 trial). There were eight missing cultivars in this particular replicate (shown in red). Overall, 660 (620 + 20 + 20) samples were
processed in the laboratory, representing 640 unique cultivars out of 648 total cultivars with 20 of these 640 cultivars duplicated. A similar
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model B. Similarly, model B, which accounts for field
and laboratory variation, is significantly better (P <0.001)
than model A.

The precision of cultivar effects under the three models
can be determined by examining the average prediction
error variance, which is a measure of the difference be-
tween the true and predicted cultivar effects. For models
A, B, and C this was 2.61, 2.44, and 2.28, respectively,
suggesting that model C is the one that most accur-
ately represents the cultivar effects. Heritability pro-
vides an indication of the amount of variation in sugar
release that is due to the genetic variation among culti-
vars and can be calculated separately for both trials for
all models (see Methods section). Using model A, the
heritability in the 2010 trial is just 0.12 (that is, only
12% of the variation is due to genetics), while that of
the 2011 trial is 0.20 (Table 2). The benefit of including
field and laboratory variation in the model (model B
versus A, Table 2) is apparent as there is a substantial
increase in heritability in both trials. Nevertheless, had
the trial only been performed in 2010, the heritability
after adjusting for field and laboratory variation, would
not have risen above 0.37 (37%). Including a second

year of trial in 2011 and accounting for the cultivar by
trial interaction (model C versus B, Table 2) achieves a
further significant improvement in the proportion of
the variation that can be assigned to the cultivars (her-
itability). By extracting non-genetic sources of vari-
ation (from field, laboratory, and trial/environment)
the heritability rises to 0.46 for the 2010 trial and 0.49
for the 2011 trial, that is almost 50% of the variation
being considered is now due to genetics when the best
model, model C, is used. The estimated variance com-
ponents for model C (Table 2) are examined in Table 5.
Both the field and laboratory made a substantial con-
tribution to the total non-genetic variation present
within each trial. The field variation was 27.9% and
22.2% and the laboratory variation was 56.7% and 58.1%
of the total variation in the 2010 and 2011 trials, respect-
ively (Table 5). This concurs with the findings of Smith
et al. [18] who found that variation in the laboratory
accounted for the greatest proportion (58%) of the
non-genetic variation in a study where field wheat tri-
als were followed by laboratory grain milling to esti-
mate flour yields. This highlights the importance of
accounting for the laboratory phase and not just the

Table 2 Summary of the models fitted and their corresponding log likelihood

Model Equation Field and laboratory terms® Cultivar by trial interaction® Log likelihood Number of variance parameters Heritability

2010 2011
A 2 Zu=0 0,9, =0 —88376.08 4 012 020
B 1 Zu#0 0,9, =0 —70884.82 26 037 043
C 1 Zu*0 05,9, = 0.66 —70853.58 27 046 049

?Z,u =0 implies the terms indexed with a L or F are not included in the model (see Methods and associated Tables 3 and 4); "6_(,15,2 =0 implies the genetic
covariance between the two trials is zero and that no cultivar by trial interaction is fitted. This is equivalent to fitting the two trials separately.
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Table 3 Tiers for the factors of non-genetic sources of in-
formation from the field and laboratory phases

Tier 3 Tier 2 Tier 1
Factors randomised Factors unrandomised Factors unrandomised
in field phase in field phase in laboratory phase
Cultivar Field block Day
Field row Plate
Field column Plate plot®
Plate row

Plate column

Plate plot refers collectively to the four consecutive wells used for a single
sample. The aim of this stage in the analysis process is to identify the objects
involved in the randomisation and then to determine the factors associated
with each set of objects; these groups of factors are referred to as tiers. Here
the factors form the non-genetic sources of information from the experimental
design elements of the field and laboratory phases. Following Brien [12] the
tiers are labelled in reverse chronological order of conduct of the experiment.

field phase in the statistical model; without this, half or
more of the non-genetic variation is not accounted for
leading to unnecessary ‘noise’ in the data and poten-
tially confounding valid conclusions being drawn.

In our experiment, some of the sources of variation
had recorded events associated with them. For example,
the largest percent variation in the field component in
the 2010 trial was block (Table 5). A failure in the

Table 4 ANOVA table showing sources of variation from
the field and laboratory and corresponding model terms

Source of variation Model term
Laboratory plate

Field block F block
Residual L day

L day x L plate
L plate x Laboratory plate plot

Field plot
Cultivar Cultivar
Residual F row x F column
F row
F column
Residual L plate x L plate plot

L plate x L column
L plate x L row

L row

L column

L row x L column

L plate x L plate plot x Laboratory technical Residual

replicates

For the design factors shown: L, laboratory; F, field; x, represents an interaction
between terms; L plate, refers to the 96-well plate used in the laboratory
phase; L row and L column, refer to rows and columns of the plate; and L
plate plot, refers collectively to the four wells that contain the technical
replicates of a single sample.
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automatic water system was quickly rectified by supple-
mentary watering but a small area of plants suffered a
short period of drought stress and flowered earlier than
the others. The subsequent effect on saccharification is
captured in the field blocks, hence the high percent vari-
ation. For the laboratory variance components, some of
the 12.2% variation due to day of processing in the 2010
trial was attributed to the saccharification reagents being
freshly prepared every few days. For this reason, in the
2011 trial, one large reagent batch was prepared at the
beginning of the analysis and used for processing of all
the plates resulting in a much lower total variation due
to day of processing of 1.8%. Clearly, unexpected events
or unanticipated factors can influence any large experi-
ment. Appropriate modelling and analysis of the data
may allow practical changes to be made to improve ex-
perimental procedures. For this particular dataset, how-
ever, through sound statistical design and analysis, the
cultivar effects after adjustment will not include the vari-
ation due to these factors and the results of the experi-
ment are therefore not compromised.

Of interest is cultivar performance and in particular
the selection of cultivars that may have the best sugar
release properties. Therefore, the ranking of the sugar
release of the top 40 cultivars (that is, the mean for each
cultivar) was used as an indicator to investigate how the
results change as field and laboratory variation and, fi-
nally, the cultivar by trial interaction, are accounted
for by the different models. The top 40 were chosen as
this is a reasonable number of cultivars to subse-
quently take forward to evaluate for bioethanol pro-
duction and because this number covered many of the
cultivars that looked like outliers having substantially
better sugar release than most of the cultivars within
the population in each year (that is, cultivars above the
blue line and to the right of the green line in Figure 5A).

The effect of accounting for field and laboratory within
each trial was investigated, by comparing where each
cultivar would be placed if cultivars were ranked by
mean sugar release using model B (Table 2) that adjusts
for field and laboratory variation, compared to the un-
adjusted model A (Table 2) where no terms relating to
field or laboratory variation are included. Both models
assume no cultivar by trial interaction (the genetic co-
variance 6, is zero), which is equivalent to fitting a
separate model for each trial. For the 2010 trial this
comparison reveals that only 26 of the cultivars in the
top 40 are the same for model A versus model B. This
suggests that 14 (35%) of the cultivars that appear in the
top 40 in model A are there only because errors intro-
duced in the field and the laboratory have not been
accounted for. Conversely, 14 cultivars that reach the
top 40 when field and laboratory variation is extracted
from the data (model B) are not identified as being in



Oakey et al. Biotechnology for Biofuels 2013, 6:185
http://www.biotechnologyforbiofuels.com/content/6/1/185

Page 7 of 12

Mean Sugar Release {(nmol glucosefmg DM) 2011

Mean Sugar Release (nmol glucosefmg DM) 2011

Mean Sugar Release (nmol glucose/mg DM) 2011

65

60

55

50

45

60

58

56

54

52

50

60

58

56

54

52

.
.
] . .
T T T T
80 90 100 110
1 - -
B .
s a4 . te
-
-
i 1
i ‘_?wﬁ stesty ¥
EEAR. P
. L]
* .': Ll .\:...
1. M
* . *
-
T T T T
85 90 95 100 105
-»
L4 -
. *
1 -
"
[}
. -
T T T T T
85 90 95 100 105

Mean Sugar Release (nmol glucose/mg DM) 2010

Figure 5 Sugar release of each cultivar in 2010 and 2011 trials
using models A, B and C. (A) The unadjusted mean sugar release
(nmol glucose/mg DM) of each cultivar in each trial. (B) The cultivar
mean sugar release after adjustment for field and laboratory
variation, single trial analyses. (C) The cultivar mean sugar release
after adjustment for field and laboratory variation, MET analysis. A, B,
and C correspond to the output from models A, B, and C,
respectively (Table 2). Cultivars to the right of the green line are the
top 40 cultivars for sugar release in 2010. Cultivars above the blue
line are the top 40 cultivars for sugar release in 2011. Cultivars
highlighted in red are the cultivars that are consistently in the top
40 for sugar release in both years 2010 and 2011. There were five
cultivars in the top 40 in both years for model A, eight cultivars for
model B, and 25 cultivars for model C. DM, dry matter; MET,
multi-environment trial.

the top 40 by model A. Clearly these discrepancies
would have a serious impact on the appropriateness of
the cultivars selected for further investigation if only
model A was used, or, indeed, if the trial had only been
performed in a single year, in 2010. For the 2011 trial,
the number in agreement is higher at 32; however, there
is still a discrepancy between the models with eight cul-
tivars different between the models A and B.

Table 5 Summary of the REML estimates of variance
components and the corresponding percent of total
variation

Variance 2010 trial Percent (%) 2011 trial Percent (%)
component?

Field

F block 540 20.5 0.7 0.7
F column 2.1 08 08 09
F row 04 0.2

F row x F column 16.8 6.4 19.1 206
Field Total 733 279 20.6 222
Laboratory

L day 322 12.2 16 1.8
L day x L plate 283 108 10.0 10.7
L plate x L plot 375 14.2 18.3 196
L column 4.1 1.6 48 5.1
L row 12.8 49 8.5 9.1
L plate x L column 2.7 30
L plate x L row 325 124 74 8.0
L row x L column 1.6 06 0.7 08
Laboratory Total 149.0 56.7 54.0 58.1
Cultivar 135 5.1 6.9 74
Residual 274 104 11.5 12.3

®Variance components for sugar release using model C, Table 2. REML, residual
maximum likelihood; x, represents an interaction between terms.
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The importance of including all of the data in a single
model (model C, Table 2) that is multi-phase (adjusting
for field and laboratory variation) and multi-environment
(cultivar by trial interaction) is that comparisons between
trials can now be made. This is the comparison that is
most relevant if cultivars that consistently show high sugar
release in multiple years and environments are to be se-
lected. As a base-line for the comparison, consider the
mean sugar release of cultivars that consistently appear in
the top 40 in both trials using model A (Table 2), which
did not adjust for field and laboratory variation nor con-
sider a cultivar by trial interaction. Model A identifies only
five cultivars (SCRI_S_0010860, Baudin, SCRI_S_0006956,
Mandolin-1418, Aapo) as being in the top 40 ranking cul-
tivars in both trials (highlighted in red in Figure 5A).

The effect of accounting for the cultivar by trial inter-
action on mean sugar release of cultivars can be consid-
ered by comparing the results of model B and C
(Table 2). Both models account for field and laboratory
variation but model B assumes there is no cultivar by
trial interaction (the genetic covariance between the two
trials 6, ,, is zero), whereas model C (Table 2) includes a
cultivar by trial interaction (the genetic covariance be-
tween the two trials 6, ,, is non-zero). Figure 5B shows
that application of model B results in only eight cultivars
(SCRI_S_0010860, SCRI_S_0006956, Bulbul 89, Keops,
Gant, Aapo, Mandolin-1418, Fontana) that consistently
rank in the top 40 across the two trials. By comparison,
Figure 5C shows the results of model C (that accounts
for a cultivar by trial interaction), which identifies 25
cultivars as ranking consistently in the top 40 in both
trial years. Despite the variation between the trials in the
amounts of sugar released by each year of analysis, this
model maintains a strong genetic correlation between
the trials of 0.66. Because of the stability of their ranking
positions across two years, these cultivars present the
most suitable candidates for further investigation. These
cultivars are Sterling, Hamelin, SCRI_S_0010860, Bau-
din, SCRI_S_0006956, Bulbul 89, Spiral, Mandolin-1418,
Keops, Dew, Fontana, Gant, Annabell, Fairytale, Aapo,
Juno, Safir, 915006, Romi, SW 2808, Tokak, Skiff, Deba,
Abed Otis, and SJ Christina. Interestingly, many of these
are early maturing cultivars with heading dates (that is,
time to maturity) of less than 70 days.

Conclusions
Our analyses illustrate the benefit of accounting for both
the multi-phase and multi-environment aspects of an
experiment in which we aimed to classify and rank bar-
ley cultivars according to the saccharification potential
of their straw.

A sound statistical design was produced for both
phases of the experiment for each trial. In the field
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phase, five biological replicates of each cultivar were
grown in a spatial row-column arrangement. A partially
replicated design that re-randomised samples from the
field, duplicated between 3% and 5% of cultivars, and in-
cluded technical replicates, was used for the laboratory
phase that tested for sugar release.

The approach to analysis took account of design fac-
tors in the field and laboratory. Trends due to spatial
position in the field described by replicate block, field
columns, and rows were accounted for in the analysis
and were shown to represent between 20% and 30% of
the total variation in sugar release. Laboratory factors,
such as day of processing, plate, and position of samples
within plates, were also accounted for in the analysis
and were found to contribute between 50% and 60% of
the variation in the sugar release. Most high-throughput
saccharification studies published to date have simply
averaged over biological and technical replicates to ob-
tain a cultivar value and have disregarded the impact of
other potential sources of non-genetic variation such as
time and date of analysis and position of samples within
incubators. Lack of consideration of these kinds of vari-
ables can invalidate subsequent research, for example,
see Smith et al. [22] where consecutive rather than ran-
domised milling of replicate samples led to detection of
a false QTL that was simply a consequence of mill day.
We have shown here that, for high-throughput sacchari-
fication analyses, the partitioning of the variation in
sugar release to include these non-genetic sources en-
sures that the cultivar means are more accurately repre-
sented than if the non-genetic variation was ignored,
and decisions on cultivar selection (or subsequent genetic
analyses) can consequently be made with more certainty.
In addition, the heritability was more than doubled in
2010 and 2011 by including the field and laboratory
variation in the analysis, illustrating the benefit of this
approach.

Cultivar performance was noticeably affected by trial
year with much lower sugar release being achieved in
2011. The importance of including a cultivar by trial
interaction and therefore fitting a single model that in
addition to the field and laboratory factors includes a
multi-environment aspect was revealed by the changes
in the cultivars present in the top 40. Failure to account
for the interaction resulted in only eight cultivars that
were consistently in the top 40, whereas the correspond-
ence between the ranking of cultivars was much higher
at 25 using the MET model. In this dataset there were
just two trials and therefore the structure of the genetic
variance matrix for trials was straight-forward, allowing
for a single covariance component. Multi-environment
experiments with more than two trials can be harder to
fit, particularly if the genetic variance matrix for trials is
fitted as unstructured. It is recommended for METs with
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more than two sites that a factor analytic structure for
the genetic variance matrix for trials [21] be considered.
For a large number of sites, a two-stage analysis where
cultivar means for each trial are obtained from the ap-
propriate model (that includes field and laboratory com-
ponents) and then used in a weighted multi-site analysis,
may be necessary due to computational restrictions.

In addition to illustrating the benefits of sound statis-
tical design and analysis, the key biological outcome of
this large-scale experiment was the clear oversubscription
of lines that are early maturing in the top 40 saccharifying
lines. Lignin concentration in the stem increases with in-
creased maturity [23,24] and early maturing cultivars by
definition have less time for stem lignification. Reduced
lignification may therefore be the single major factor that
allows sugars to be released more easily from barley straw.
The increased sugar release properties of early maturing
cultivars may be a previously unrecognised quality charac-
teristic that could potentially be exploited in short season
environments by tailoring crop cultivars for use as both
food and fuel.

In conclusion, our results show that conducting a
multi-phase experiment with a sound statistical design
at both phases of the experiment and analysing results
appropriately improved the accuracy of cultivar means,
increased heritability, and improved the coincidence be-
tween cultivars across years, ensuring that the cultivars
with the best consistent sugar release are correctly iden-
tified for further investigation.

Methods

Barley cultivars

A total of 648 and 856 spring two-row barley cultivars
were assembled to establish a multi-parent population
that was suitable for ranking saccharification potential
and for conducting genome-wide association studies
(GWASs). The genotypes and their derivation have
been described previously [25,26].

Statistical design
Field
During two consecutive years, 2010 and 2011 (referred
to hereafter as the 2010 and 2011 trials), spring barley
cultivars were grown in 25 cm pots placed on felt mat-
ting in the field within a polythene tunnel, with each pot
containing one plant (cultivar). Plants were watered daily
throughout the growing season from below by irrigating
the matting and received no fertiliser in addition to that
included in the starting compost. They were treated with
fungicide once during the growing season to control fo-
liar pathogens (largely mildew).

In each trial, the pots were arranged in a spatial row-
column design with five replicate blocks (R1, R2, R3, R4,
and R5), where the replicate blocks correspond to
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biological replicates. In the 2010 trial, there were 648
cultivars planted with pots arranged in 405 columns by
8 rows with each replicate block consisting of 81 col-
umns by 8 rows. In the 2011 trial, there were 856 cultivars
planted with pots arranged in 535 columns by 8 rows with
each replicate block containing 107 columns (Figure 1).
There were 639 cultivars common to both trial years. The
software CycDesigN 4.0 (VSN International Ltd, Hemel
Hempstead, UK) was used to generate the design each
trial year.

Laboratory

To quantify sugar release or saccharification, the main
tiller from each plant was identified and the second
internode was harvested. The internodes were dried in
an oven with hot air circulation at 45°C overnight. Sam-
ples were then chopped into 2 mm wide pieces using
multi-blade shredder scissors. The chopped materials
were placed into 2 mL screw cap tubes and filled to the
1.5 mL level indicator which provided approximately
1.5 mm? feedstock. Subsequently, two 5 mm metal beads
were added to each tube. Samples were milled using a Tis-
sueLyser II (Qiagen, Limburg, Netherlands) for 1 minute
20 seconds, and rotated to ensure uniform grinding.

The milled samples were allocated to a 96-well plate
(with 8 rows by 12 columns) using a grinding and load-
ing robot (Labman Automation Ltd, Stokesley, UK), with
each well containing 4 mg of milled sample. A total of
24 samples per plate were tested each with four tech-
nical replicates. Each sample was placed in four consecu-
tive wells down the plate columns so there were two
samples per column. Of the 24 samples, the cultivar
samples represented 20 of these, the other four were
standard samples with known sugar concentration and
were confined to columns 11 and 12 (Figure 2). Between
three and four plates (60 to 80 cultivar samples) were
processed per day.

The pre-treatment, hydrolysis, and sugar determination
of samples was performed using an automated liquid
handling station (Tecan, Maennedorf, Switzerland). Each
well was pre-treated with 0.5 N NaOH at 90°C for 30 mi-
nutes, after which the biomass was rinsed six times with
500 ul. sodium acetate buffer. The samples were incu-
bated while shaking at 50°C for 8 hours in the presence of
an enzyme cocktail (4:1 ratio of Celluclast and Novozyme
188; Novozymes, Bagsvaerd, Denmark). Enzyme loading
was approximately 6 FPU/g of material, and automated re-
ducing sugar determination was carried out using a modi-
fication of the 3-methyl-2-benzothiazolinone hydrazone
(MBTH) method, as previously described [3].

For the laboratory design, milled straw samples from
the polythene tunnel experiment were re-randomised for
laboratory processing. In addition, 3% to 5% of cultivars
were duplicated in each trial year. The duplicated cultivars
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act as control cultivars and provide an indication of la-
boratory variation across plates (not available from the
four technical replicates which were within a single plate).

This approach results in better estimates of genetic ef-
fects [27] than including samples of a single control cul-
tivar across the plates as all resources are concentrated
on cultivars of interest and additional information is
gained on these duplicated cultivars.

The re-randomisation of cultivars from the field to the
laboratory maintained the replicate blocks. For each
trial, within each replicate block, samples from the
field were re-randomised to plates using a partially
replicated design [27] generated by the R package DiG-
Ger [28]. This design ensured that the field position of
samples was not confounded with the order of labora-
tory processing.

For each replicate block of the 2010 trial, 660 samples
were processed in 33 plates, where three to four plates
were processed each day. The 660 samples included cul-
tivars available from the polythene tunnel plus a random
selection of these cultivars for laboratory duplicates. The
design ensures that within any one of the 33 plates
which collectively encompass a replicate block, between
one and two of the laboratory duplicated cultivars were
included. For example, in replicate R1, 20 cultivars
were duplicated, ensuring there were 40 duplicated
samples across the 33 Plates. A subset of the labora-
tory design for replicate R1 of the 2010 trial is shown
in Figure 3.

The design for the 2011 trial was similar, 900 samples
were processed in 45 plates in each replicate apart from
replicate R1 which, owing to the number of missing cul-
tivar samples from the field, had 880 samples processed
in 44 plates. Details of the number of cultivars, number
of samples, and plates for the laboratory phase of the
trial designs are shown in Table 1.

Statistical analysis

The aim of the analysis is to partition the variation in
the sugar release data in each trial into known sources
of genetic and non-genetic variation. The non-genetic
sources of variation in this experiment are due to the
field, laboratory, and trial. First, the factors forming the
non-genetic sources of information from the experimen-
tal design elements of the field and laboratory phases
within each of the trials are discussed. Subsequently, the
additional model terms allowing the data of both trials
to be analysed as a single multi-environmental trial are
determined.

Brien and Bailey [13] provide guidelines on the formula-
tion of the models of a multi-phase experiment. First,
identify the objects involved in the randomisation and
then determine the factors associated with each set of ob-
jects; these groups of factors are referred to as tiers [12].
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Once the factors associated with each of the tiers have
been identified then the explicit crossing and nesting rela-
tionships between factors within each tier based on the
experimental randomisation and inherent relationships
can be determined and the model terms can be identified.

In this experiment, within each trial, there is the initial
randomisation in the field phase of the cultivars to pots,
and the subsequent randomisation in the laboratory
phase of the cultivar stem samples to the plate plots
(that is, to four consecutive wells in the 96-well plate,
Figure 2). The first two tiers of each trial therefore con-
tain the unrandomised factors in the laboratory and field
phases (Table 3). The third tier contains the factors that
are randomised in the field phase, the cultivar. Note the
factors in different tiers are associated by randomisation,
whereas those in the same tier are not.

For determining the inherent relationship between fac-
tors and therefore model terms for the field phase (tier 2,
Table 3) the approach of Gilmour et al. [9] is used; where
the modelling of environmental spatial trends in field trials
including global non-stationary trends such as linear row
and linear column effects, extraneous terms due to trial
management such as random row or column variation,
and local trends due to spatial position in the trial are
considered. Given each well of the 96 wells in a plate
can be defined by a plate row and column position, the
model terms for the laboratory phase (tier 1, Table 3)
can be determined in a similar way to the field phase
terms.

The need for randomisation-based factors due to the
trial design, for example replicate block and days, are
also considered.

The final model terms and the breakdown of the rele-
vant sources of variation for field and laboratory are
shown in an analysis of variance (ANOVA)-like decom-
position in Table 4. The model terms relating to field are
preceded by an F and those relating to laboratory by an
L. The unrandomised field and laboratory phase model
terms are described in Table 3 and are treated as ran-
dom effects in the model.

Now the treatment of the trial, cultivar, and their
interaction ensues. The aim is to model the sugar release
of cultivars in each of the trials (that is, the cultivar by
trial interaction) so that the best cultivars can be se-
lected. The cultivar by trial interaction term is treated as
random as the aim is cultivar selection [29]. A main ef-
fect for cultivar is not implicitly fitted here and the trial
main effect is treated as fixed. This imposes a structure
on the interaction term that corresponds to a genetic
correlation between trials. Accordingly, a separate vari-
ance term is fitted for each trial and the covariance and
hence correlation between trials can be estimated [30].
Cultivar main effects can be obtained by use of a selec-
tion index or weighted sum of the means across the two
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trials. As there is a large number of cultivars that overlap
across the two trials, also of interest is cultivars that rank
consistently well regardless of trial.

The following mixed model is fitted to the saccharifi-
cation data from both trials as follows:

y=Xt+Z,g+Zu+e (1)

The (nx1) y vector of sugar release (nmol/mg dry
matter) consists of the complete data for laboratory sam-
ples from both trials, 7 is a (p x 1) vector of fixed terms
consisting of an overall mean performance for each of

the p = 2 trials, with associated design matrix xxp)

gl = (7.2} )T is the vector of random cultivar ef-
fects of the m cultivars in each of the p = 2 trials, the
variance of var(g) = G, ® I,,, where G, is genetic vari-
ance matrix across trials and I, the identity matrix, is
the genetic variance matrix for cultivars, and @ is the
Kronecker product. For two trials, the matrix G, has
diagonal elements that are the genetic variances for
the individual trials 6;1 and 6;2 and an off-diagonal
element 6, , that is the genetic covariance between
the two trials. The off-diagonal element can be used to

obtain the genetic correlation between trials.

. bix1
The vector u”* " consists of subvectors uf- “V \where

the subvector u; corresponds to the ith random term.
The corresponding design matrix Z”*1) is partitioned
conformably as [Z,,...Z,,]. The subvectors are assumed
to be mutually independent with variance 671,,. The sub-
vectors include the random terms for field and laboratory
terms (prefixed by F and L, respectively, in Table 3). The

residual vector € has variance @127:1Rp a block diagonal

matrix of p blocks where R, = 91271 n, and n, is the number
of observations in trial p.

Thus the cultivar term g reflects the genetic variation
and the fixed 7, random u, and residual € terms reflect
the design and conduct of the two phases of the trials,
and as such provide the underlying structure for non-
genetic variation.

Because of the unbalanced nature of the data, estimation
of variance parameters is by residual maximum likelihood
(REML). Given that the variance parameters are esti-
mated, empirical best linear unbiased predictors (EBLUPs)
are obtained for random effects such as cultivar effects.
Nested variance models are compared using log likelihood
ratio tests. The analysis was performed using ASReml
for R [31].

When fitting the model described above, a hierarchical
or incremental approach must be taken. First, a baseline
model is fitted (Equation 2) referred to as model A. This
model excludes the field and laboratory terms (terms
indexed with an L or F in Table 4) and assumes that the
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genetic covariance between the two trials 6, , is zero.
This is equivalent to fitting each trial separately.

y=Xr+Z,g+¢ (2)

The full model (Equation 1) is then fitted, initially as-
suming the genetic covariance 6, ,, (model B) between
the two trials is zero (equivalent to fitting each trial sep-
arately). Once appropriate field and laboratory terms
within each trial are determined, the genetic covariance
0,,4, between the two trials can be estimated (model C).
In general, as most of the field and laboratory terms
(Table 4) are design factors they are left in the model
even if they are not significant, unless the variance com-
ponent for this term tends to zero.

The calculation of the generalised heritability in com-
plex linear mixed models is not straight-forward [27].
Here the generalised heritability for each trial is calcu-
lated as 1—@ where a is the average pairwise prediction

error variance of cultivar effects and Qﬁp is the genetic
variance of trial p [27].
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