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Abstract

Background: The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased
biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels.
Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of
LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning
their magnitudes and sources of variability.

Results: In our study, we estimate LUC GHG emissions for ethanol from four feedstocks: corn, corn stover,
switchgrass, and miscanthus. We use new computable general equilibrium (CGE) results for worldwide LUC. U.S.
domestic carbon emission factors are from state-level modelling with a surrogate CENTURY model and U.S. Forest
Service data. This paper investigates the effect of several key domestic lands carbon content modelling parameters
on LUC GHG emissions. International carbon emission factors are from the Woods Hole Research Center. LUC GHG
emissions are calculated from these LUCs and carbon content data with Argonne National Laboratory’s Carbon
Calculator for Land Use Change from Biofuels Production (CCLUB) model. Our results indicate that miscanthus and
corn ethanol have the lowest (−10 g CO2e/MJ) and highest (7.6 g CO2e/MJ) LUC GHG emissions under base case
modelling assumptions. The results for corn ethanol are lower than corresponding results from previous studies.
Switchgrass ethanol base case results (2.8 g CO2e/MJ) were the most influenced by assumptions regarding
converted forestlands and the fate of carbon in harvested wood products. They are greater than miscanthus LUC
GHG emissions because switchgrass is a lower-yielding crop. Finally, LUC GHG emissions for corn stover are
essentially negligible and insensitive to changes in model assumptions.

Conclusions: This research provides new insight into the influence of key carbon content modelling variables on
LUC GHG emissions associated with the four bioethanol pathways we examined. Our results indicate that LUC GHG
emissions may have a smaller contribution to the overall biofuel life cycle than previously thought. Additionally,
they highlight the need for future advances in LUC GHG emissions estimation including improvements to CGE
models and aboveground and belowground carbon content data.
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Background
Biofuels are often considered to be among the technolo-
gies that can reduce the greenhouse gas (GHG) impacts of
the transportation sector. Yet the changes in land use that
could accompany the production of biofuel feedstocks
and the subsequent environmental impacts, including
GHG emissions, are a potential disadvantage of biofuels.
Land-use change (LUC) occurs when land is converted to
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biofuel feedstock production from other uses or states,
including non-feedstock agricultural lands, forests, and
grasslands. This type of LUC is sometimes called direct
LUC. The resulting change in crop production levels (e.g.,
an increase in corn production may cause a decrease in
soybean production) and exports may shift land uses
domestically and abroad through economic linkages. This
latter type of LUC is called indirect LUC and can be esti-
mated through the use of economic models.
A change in land use causes a change in carbon stocks

aboveground and belowground. As a result, a given LUC
scenario may emit or sequester carbon. When an LUC
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scenario results in a net release of carbon to the atmos-
phere, it is debated if biofuels result in GHG reductions
at all [1,2]. Of particular concern is the conversion of
forests [3,4], an inherently carbon-rich land cover that in
some cases may be a carbon sink. Their conversion to
biofuel feedstock production land could incur a signifi-
cant carbon penalty [5].
The estimation of LUC and the resulting GHG emis-

sions is accomplished through the marriage of LUC data
with aboveground carbon and soil organic carbon
(SOC) data for each of the land types affected. The
amounts and types of land converted as a result of
increased biofuel production can be estimated with an
agricultural-economic model, for example, a comput-
able general equilibrium (CGE) model; several recent
reports [6,7] provide an overview of CGE models and
their application to estimating LUC associated with bio-
fuel production. It is also necessary to know the above-
ground and belowground carbon content of the land in
its original state and in its future state as feedstock pro-
duction land. Aboveground carbon content information
is provided by databases that are often built on satellite
data [8], while SOC content can be modelled with tools
such as CENTURY [9].
LUC GHG emissions from biofuel production are typic-

ally placed in the context of a biofuel life cycle analysis
(LCA), which estimates the GHG emissions of a biofuel
on a farm-to-wheels basis [10]. Regulatory bodies, inclu-
ding the U.S. Environmental Protection Agency (EPA), the
California Air Resources Board (CARB), and the European
Union [11-13], use LCA to evaluate the GHG impacts of
biofuels.
When LUC GHG emissions are examined in the context

of a biofuel’s life cycle, they can be substantive. For ex-
ample, EPA estimated that LUC GHG emissions were
38% of total life cycle GHG emissions for corn ethanol
produced in a natural gas-powered dry mill with dry
distillers grains solubles (DGS) as a co-product [11]. LUC
GHG emissions are also highly uncertain [14] due to large
uncertainties in CGE modelling, aboveground carbon
data, and SOC content data [15].
As one of the most prevalent biofuels, corn ethanol has

been the subject of most biofuel LUC research [14,16].
Few studies have considered LUC GHG emissions from
cellulosic ethanol production. Hill et al. [17] estimated
domestic LUC GHG emissions for the production of 3.8
billion litres of ethanol based on conversion of land
formerly in the Conservation Reserve Program (CRP) to
production of corn, corn stover, switchgrass, prairie grass,
and miscanthus. The resulting LUC GHG emissions
for corn were between 27 and 35 g CO2e/MJ. These emi-
ssions were 0.5 and 0.2 g CO2e/MJ for switchgrass and
miscanthus, respectively. Corn stover was assumed to have
no LUC GHG emissions associated with its production.
Scown et al. [18] considered a number of domestic U.S.
scenarios for the production of 39.7 billion liters/year
of ethanol from miscanthus, allowing only cropland or
CRP lands to be converted to miscanthus production.
These authors modelled productivity of miscanthus with
Miscanmod at the county level. A model proposed by
Matthews and Grogan [19] was used to estimate the SOC
content of converted land. SOC changes were aggregated
to the county level from a 90-meter resolution. In their
calculation of LUC GHG emissions, Scown et al. [18] did
not consider the impact of land management history on
SOC content. Their study concluded that on net 3.4 to
16 g CO2e/MJ would be sequestered as a result of SOC
changes. Separately, Davis et al. [20] considered the con-
version of 30% of domestic (U.S.) land currently in corn
production to miscanthus or switchgrass (fertilized or
unfertilized) production. They used DAYCENT to simu-
late regional miscanthus and switchgrass cultivation in the
central U.S. and identified lower GHG fluxes from cultiva-
tion when either crop was grown in place of corn. The
reductions after 10 years (1.9% for switchgrass with
fertilization and 19% for miscanthus) came from both
reduction in fertilizer-derived N2O emissions and in-
creased carbon sequestration. Similarly, Qin et al. [21]
showed that SOC content increases by 50 and 80% when
land is converted from corn cultivation to switchgrass and
miscanthus, respectively. EPA has estimated LUC GHG
emissions for cellulosic ethanol derived from corn stover
(−10 g CO2e/MJ) and switchgrass (12 g CO2e/MJ) [11].
CARB has examined forest residue and farmed trees as
feedstocks for cellulosic ethanol [22,23]. The agency deve-
loped preliminary LUC GHG estimates for the latter feed-
stock, which is not examined in our current study.
The above literature summary highlights two limita-

tions of previous studies of LUC GHG emissions associ-
ated with cellulosic ethanol production. First, application
of worldwide CGE modelling to LUC GHG calculations
for cellulosic ethanol has been limited to EPA and CARB
analyses for switchgrass and corn stover. Second, SOC
emission factors have either been developed for very
specific lands (e.g., CRP or agricultural lands) or at the
national or regional scale for other land types, as
in the CARB and EPA analyses. In our study, we
sought to address these two limitations of the current
literature.
First, we used worldwide LUC results for four biofuel

production scenarios (Table 1) as modelled with Purdue
University’s Global Trade Analysis Project (GTAP) CGE
model [24]. The modelling considered domestic U.S.
production of ethanol from four feedstocks: corn, corn
ethanol, switchgrass, and miscanthus. Second, we ap-
plied finer-level SOC emission factors (EF) than have
been used in previous analyses for all land categories,
including forests. We developed a modelling framework



Table 1 GTAP modelling scenarios [24]

Scenario Scenario description Increase in Ethanol (BL)

1 An increase in corn ethanol production from its 2004 level of 13 billion litres (BL) to 57 BL 45

2 An increase of ethanol from corn stover by 35 BL, in addition to 57 BL corn ethanol 35

3 An increase of ethanol from miscanthus by 27 BL, in addition to 57 BL corn ethanol 27

4 An increase of ethanol from switchgrass by 27 BL, in addition to 57 BL corn ethanol 27
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to estimate these EFs at the state-level by utilizing
remote sensing data, national statistics databases, and a
surrogate model for CENTURY’s soil organic C dynam-
ics submodel (SCSOC) [25]. Details of the development
of these EFs, which account for both aboveground and
belowground carbon content changes, are provided in
the Methods section and in a separate publication [26]
as is the handling of international carbon EFs [27]. The
LUC and carbon EF data were compiled in Argonne
National Laboratory’s Carbon Calculator for Land Use
Change from Biofuels Production (CCLUB) model to en-
able calculation of LUC GHG emissions [28]. CCLUB is
a module of Argonne National Laboratory’s Greenhouse
Gases, Regulated Emissions, and Energy use in Trans-
portation (GREET™) model which was used to analyse
LUC GHG emissions in the context of overall bioethanol
life-cycle GHG emissions. GREET covers bioethanol
production pathways extensively and is used by Argonne
and other researchers to examine GHG emissions from
transportation fuels and vehicle technologies [28].
In this paper, we estimate LUC GHG emissions asso-

ciated with ethanol produced from four feedstocks (corn,
corn stover, switchgrass, miscanthus). A sensitivity analysis
is conducted to investigate the influence of key carbon con-
tent modelling assumptions on results. Addressing CGE
model assumptions and their impact on LUC GHG emis-
sions is outside the scope of this paper.

Results and discussion
In the following subsections, we describe LUC, domestic
U.S. aboveground carbon, and domestic U.S. SOC model-
ling results. Next, we provide a full discussion of LUC
GHG emissions results and place them in the context of
life-cycle GHG emissions for each biofuel. The discussion
is based on an agro-ecological zone (AEZ) level although
SOC EFs for domestic U.S. lands were determined at a
state level [27]. Figure 1 provides the distribution of AEZs
in the United States for reference.

Land-use change
In this paper, we divide LUC into domestic and inter-
national LUC for clarity and simplicity because it is not
possible to distinguish between direct and indirect LUC in
GTAP results, which are calculated at an AEZ level in the
United States and a country/regional level abroad. As
described above, types and amounts of converted lands
were modelled with GTAP using four scenarios (Table 1)
designed to follow the arc of Renewable Fuel Standard
(RFS2) implementation. First, corn ethanol production
expands until the RFS2 limit of 57 billion litres (BL) is
met. Subsequently, cellulosic ethanol feedstocks will be
produced on lands that corn does not already occupy.
Results for each feedstock are presented in Figure 2. We
developed and applied a forest proration factor (FPF) to
adjust total domestic forest area converted for production
of these feedstocks [27]. We took this approach to align
forest land areas in the GTAP land database, the National
Land Cover Dataset, and the U.S. Forest Service Forest In-
ventory Data. This step was necessary for consistency in
the analysis because we used the latter to develop emis-
sion factors for aboveground and belowground carbon in
addition to values for foregone sequestration. GTAP con-
tains significantly more forested land than either of the
other two data sources. When applying the FPF reduces
the amount of forest converted, the difference is made up
with land covered by young, thin trees. In Figure 2, this
land type is called Young Forest-Shrub (YFS). The forest
emissions factor for YFS is based on the relative height of
forest stands in each state compared to shrubland. The
relative tree heights for each state were derived from
Pflugmacher et al. [29] and Buis [30]. When we apply the
FPF, between 20 and 22% of converted land shifts from
forests to YFS for all feedstocks.
In the case of corn ethanol (Scenario 1 in Table 1), most

of the land converted in the U.S. is cropland-pasture along
with some domestic forest (Figure 2). Modelling results indi-
cated that AEZ 10 (temperate sub-humid) is most affected
by expansion of corn agriculture. Of the cellulosic feed-
stocks, corn stover has the lowest impact on domestic land
use. Although this feedstock has the lowest productivity
(Table 2), this result is unsurprising because stover is mod-
elled as a “waste” product of corn production (as opposed to
a co-product). Stover harvesting may not fundamentally
change corn farming and should not result in significant
LUC. Additionally, the greater amount of land converted for
switchgrass ethanol production as compared to miscanthus
ethanol production in the U.S. can be explained by crop
yield, which can be nearly two times higher for miscanthus
[31,32]. For both switchgrass and miscanthus ethanol, the
majority of the land converted is in AEZ 7 (temperate arid)



Figure 1 Distribution of AEZs in the United States.
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and is cropland-pasture. Nonetheless, the amount of forest
converted for switchgrass is striking.
Figure 3 displays international LUC that occurs from

production of corn and cellulosic ethanol. Internationally,
corn causes more LUC than the other crops because,
Figure 2 Domestic LUC for switchgrass, miscanthus, corn stover, and
land area.
unlike the cellulosic crops, U.S. corn accounts for a large
share of the international corn market and a reduction in
U.S. corn exports caused by corn ethanol production
increases corn production in other countries. Among cel-
lulosic crops, switchgrass production causes the most land
corn ethanol. Legend: Negative values indicate a decrease in



Table 2 Feedstock productivity

Feedstock Crop yield
(dry metric ton/ha)

Ethanol productivity
(L/ha)

Corn 7.9a 4,250 L/hab

Miscanthus 24c 6,190 L/had

Switchgrass 12c 3,200 L/had

Corn stover 4.1c 1,070 L/had

a Yield calculated from [28] and 20% moisture content at harvest.
b 344 L/dry metric ton [28].
c From [24].
d Assuming an ethanol yield of 317 L/dry metric ton [24].
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conversion and, as it does domestically, the highest
amount of forest conversion. (Note that no FPF was ap-
plied for international forest conversions.) Switchgrass
production consumes cropland-pasture land in the United
States, possibly shifting agricultural production from these
lands to other countries. For both corn and corn stover
feedstocks, some forest land is recovered internationally,
the majority of which is in Russia. Table 3 shows domestic,
international, and total LUC for each feedstock.

Soil organic carbon emission factors
The development of the SOC EFs used in CCLUB is
summarized in the Methods section, a detailed discus-
sion can be found in an earlier publication [26]. Here,
we discuss trends in these EFs and the implications for
LUC GHG emissions. The variation in SOC EFs with lo-
cation, a result of soil type and climate differences, is an
important feature of this analysis. Although state-level
EFs were calculated for each land transition and biofuel
scenario, in CCLUB these EFs are rolled up to an AEZ
level to match AEZ-level GTAP results. In Figure 4, we
present the variation of SOC EFs for two AEZs (7 and
Figure 3 International LUC for switchgrass, miscanthus, corn stover, a
decrease and increase, respectively, in land area.
10) that GTAP predicts will experience the largest
amount of LUC by feedstock and land conversion type.
These results were generated from modelling runs with
calibrated surrogate CENTURY soil cultivation effect co-
efficients, feedstock yields that increase with time, and
with erosion effects (surrogate CENTURY case sd in
Table 4). (We discuss the influence of surrogate CEN-
TURY modelling choices on LUC GHG emissions in the
next section.) Clearly, conversion of forest to produce
corn or corn-corn stover results in the greatest amount
of carbon emissions. Forest conversion to miscanthus
production, however, may not incur a carbon penalty.
Carbon sequestration occurs when grassland or cropland-
pasture is converted to switchgrass or miscanthus produc-
tion, which is consistent with other studies [20,21]. The
data in Figure 4 consistently show that, of the land use
transitions we considered, conversions to miscanthus
maximize carbon sequestration. This result is consistent
with miscanthus growth generating more aboveground
and belowground biomass [26]. The SOC emission factors
vary slightly between AEZs 7 and 10 with the exception of
forest land converted to corn production. Converting forest
to corn or corn stover production in AEZ 10 will produce
greater carbon emissions than this transition in AEZ 7.
In estimating GHG emissions from the conversion of for-

ests to biofuel feedstock production lands, we consider two
sources of aboveground carbon: carbon contained in above-
ground biomass that is cleared and the loss of carbon se-
questration that would have occurred if the forest had
continued to grow. See Mueller et al. [27] for a full discus-
sion of how these factors were developed. Figure 5 breaks
down the total carbon emissions factor applied to converted
forest land for each feedstock in AEZs 7 and 10. The largest
contributor to these emission factors is aboveground carbon.
nd corn ethanol. Legend: Negative and positive values indicate a



Table 3 Total domestic and international LUC for each
feedstock (ha/MJ × 106)

Feedstock Domestic International Total

Switchgrass −0.54 −0.04 −0.58

Miscanthus −0.29 −0.02 −0.30

Corn stover 5.7 × 10-4 1.8 × 10-3 2.4 × 10-3

Corn −0.08 −0.07 −0.14
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Both aboveground carbon and carbon sequestered during
annual growth are greater in AEZ 10 than in AEZ 7. As
expected based on Figure 4, conversion of forest to corn
production with stover harvest transitions incur the greatest
carbon penalty whereas transition to miscanthus production
results in the lowest amount of GHG emissions.

LUC GHG emissions
CCLUB is populated with carbon EFs generated from
surrogate CENTURY modelling under four scenarios
outlined in Table 4. The scenarios differ in their treatment
of three key parameters: soil erosion, crop yield, and the
soil cultivation effect coefficient. The latter was either
left at default values or calibrated to real-world data. Add-
itionally, EFs were also produced under different land
management practices (conventional till, reduced till, no-
till) for corn and corn stover feedstocks. We selected
scenario “sd” in Table 4 as the base case for this study. For
corn with and without stover harvest, the land manage-
ment practice of conventional till is the base case setting.
Figure 4 Soil organic carbon content changes from domestic land-us
AEZs 7 and 10, respectively. Forest, grassland, and cropland-pasture transiti
red, green, and blue markers reflect transitions to corn, corn stover, miscan
generated from surrogate CENTURY modelling runs with calibrated soil cul
with erosion effects.
Base case LUC GHG results
Figure 6 contains the base case LUC GHG emissions re-
sults for the four bioethanol production scenarios in Table 1.
Figure 7 pairs domestic U.S. LUC for each feedstock with
the resulting base case domestic GHG emissions or seques-
tration. In the U.S., the miscanthus ethanol scenario causes
significant SOC increases in the large amount of cropland-
pastureland converted for feedstock growth. International
LUC GHG emissions associated with this scenario are posi-
tive, but minimal. Miscanthus ethanol then exhibits net
GHG sequestration from LUC. In the case of switchgrass
ethanol, international LUC GHG emissions are significant.
As described earlier, switchgrass production converts large
areas of domestic cropland-pasture land, triggering conver-
sion of lands abroad, including forests, to agriculture. In the
United States, GHG emissions from forest-to-switchgrass
conversion cut into gains in soil carbon from conversion of
cropland-pasture lands to switchgrass production (Figure 7).
The switchgrass ethanol scenario therefore on net emits
GHGs as a result of LUC. Less land is converted for corn
ethanol production than for switchgrass, yet LUC GHG
emissions for corn ethanol exceed those for all cellulosic
crops. LUC GHG emissions for corn ethanol are not offset
by sequestration elsewhere (Figure 7) because corn reduces
or only minimally enhances SOC (Figure 4). The results
when corn stover is the ethanol feedstock show a small
amount of carbon is sequestered. LUC modelling in this
case predicts slight domestic gains in both YFS and forest
lands and an increase in international forest lands, which
e transitions. Legend: Solid and hollow markers denote transitions in
ons are denoted by circles, squares, and triangles, respectively. Orange,
thus, and switchgrass production, respectively. These results were
tivation effect coefficients, feedstock yields that increase with time, and



Table 4 Surrogate CENTURY scenarios in CCLUB

CCLUB case Soil cultivation effect coeffecient Crop yield Erosion

CENTURY default Calibrated Increase No increase Erosion No erosion

sa X X X

sb X X X

sc X X X

sd X X X

se X X X
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sequester enough carbon to offset the carbon emitted from
cropland-pasture conversion. For the most part, however,
LUC GHG impacts of corn stover ethanol production can
be considered negligible.

Effect of key surrogate CENTURY model parameters
Next, we consider how three surrogate CENTURY mode-
lling choices affect these base case domestic LUC GHG
emission results for corn ethanol (with conventional till)
(Figure 8a) and for miscanthus and switchgrass ethanol
(Figure 8b). The first modelling choice is whether to use a
default or calibrated soil cultivation coefficient. Called
clteff, this coefficient represents acceleration in soil carbon
decay as a result of cultivation and fertilization under corn-
based agriculture. Because it is used to establish the base-
line amount of SOC in cropland before switchgrass or
miscanthus production begins, it influences results for
these feedstocks. Its calibrated value is larger than the
default value [25]. Applying the calibrated soil cultivation
effect coefficient therefore increases emissions from
corn production. On the other hand, emissions decrease
Figure 5 Forest carbon emission factor for four feedstocks in AEZs 7
“sd” in Table 4.
slightly from switchgrass and miscanthus production
because when more SOC decay occurs prior to establish-
ment of the feedstocks (calibrated clteff), conversion of
cropland to produce them yields larger SOC increases. The
second modelling choice is whether to assume crop yields
are static or increasing. To investigate the influence of as-
suming crop yields increase, a 1% annual increase in yield
for miscanthus and switchgrass was assumed [33]. Corn
yield increases were based on historical data [25]. Crop
yield increases translate into the production of more be-
lowground carbon, some of which would be incorporated
into SOC. Logically, then, assuming crop yields increase
with time causes LUC GHG emissions to decline regard-
less of feedstock. Finally, the impact of soil erosion can be
included. Erosion would be expected to decrease SOC, but
Figure 8 illustrates that including its impact has a limited
effect on domestic LUC GHG emissions.

Effect of key CCLUB model parameters
In addition to containing EFs from surrogate CENTURY
modelling under the scenarios in Table 4, CCLUB allows
and 10. Legend: SOC values were calculated with modelling option



Figure 6 Base case LUC GHG emissions (g CO2e/MJ) for switchgrass, miscanthus, corn stover, and corn ethanol. Legend: Domestic LUC
GHG emissions were calculated with modelling option “sd” in Table 4, adopting the FPF, and assuming sequestration of 42% of aboveground live
and dead tree carbon in HWP.
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users to explore the effect of two other variables, the fate
of carbon in harvested wood products (HWP) (e.g., lum-
ber for buildings) and amount of forested land area in the
U.S. (which can be determined with or without the FPF).
In the case of HWP, one CCLUB scenario assumes 42% of
aboveground live and dead tree carbon is sequestered in
HWP [34]. The alternative scenario is that all carbon in
these products is emitted. Figures 9a and 9b examine the
Figure 7 LUC (ha/MJ × 106) and LUC GHG emissions (g CO2e/MJ) from
LUC amounts and LUC GHG emissions, respectively. Orange, red, blue, and
miscanthus, respectively. Results reflect base case modelling conditions.
impact of HWP and FPF for switchgrass and corn ethanol,
respectively. We examine switchgrass results because
GTAP predicts its production converts the largest amount
of forests. In Figure 9a, accounting for sequestration of
carbon in HWP reduces LUC GHG emissions by between
3 and 4 g CO2e/MJ when the FPF assumption is held
constant. For a given HWP assumption, applying the FPF
decreases GHG emissions by between 2 and 3 g CO2e/MJ.
selected land conversions. Legend: Solid and hollow bars represent
green bars indicate feedstocks of corn, corn stover, switchgrass, and



Figure 8 Surrogate CENTURY parameters’ impact on domestic ethanol LUC GHG emissions for (a) conventionally-tilled corn (b)
switchgrass and miscanthus. Legend: Solid and hollow shapes indicated surrogate CENTURY modelling with default and calibrated soil
cultivation effect coefficients, respectively. Shapes with solid and dashed outlines represent surrogate CENTURY runs with constant and increasing
yields, respectively. Diamond markers represent switchgrass results; square markers represent miscanthus results. All results except those indicated
include erosion effects. In all cases, HWP sequesters 42% of aboveground live and dead tree carbon and the FPF is applied.
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In the case of corn ethanol (Figure 9b), applying the FPF
decreases emissions by less than 1 g CO2e/MJ when the
type of tillage and the HWP assumption are held constant.
Changing the HWP assumption under a constant tillage
and FPF scenario decreases emissions by approximately
1 g CO2e/MJ. As expected, for a given HWP and FPF con-
figuration, corn grown under a no-till land management
practice emits less carbon because tillage activities do not
disturb the soil and release carbon to the atmosphere.

Biofuel LUC GHG emissions in a life-cycle context
In Table 5, we provide the range of LUC GHG emissions
results that can be obtained by varying the key surrogate
CENTURY and CCLUB modelling parameters as described
above. We also provide the range of life-cycle GHG emis-
sions assuming the default GREET assumptions for each
ethanol pathway [10]. Without the contribution of LUC
GHG sequestration, the net life-cycle GHG emissions re-
sult for miscanthus ethanol would be positive. Scown et al.
[18] reported slightly higher GHG sequestration (between
−3 and −16 g CO2e/MJ) from miscanthus production, but
limited their study to active cropland or CRP land. LUC
GHG emissions could potentially contribute significantly
to life-cycle GHG emissions (up to 19 g CO2e/MJ) for
switchgrass ethanol. This fuel exhibits the largest sensitivity
to changes in modelling parameters in LUC GHG emis-
sions. The area of forest that is predicted to be converted
to grow this feedstock makes switchgrass results more



Figure 9 HWP and FPF impact on domestic ethanol LUC GHG emissions for (a) switchgrass and (b) corn. Legend: In Figures 9a and 9b,
solid circles represents results calculated with the FPF applied. Hollow circles represent results using default GTAP results for area of converted
forests. In Figure 9b, solid bordered circles represent results that account for some carbon sequestration in HWP. Circles with dashed borders are
used for results that assume no carbon is sequestered in HWP.
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sensitive to assumptions about HWP and the FPF than re-
sults for the other feedstocks (Figure 9). Corn ethanol LUC
results vary considerably, although the base case estimate
(7.6 g CO2e/MJ) aligns well with a value in another recent
report [35]. At most, LUC GHG emissions contribute 20%
of life-cycle GHG emissions for corn ethanol. Regardless of
the modelling scenario, corn stover ethanol LUC GHG
emissions are essentially negligible.

Conclusions and future research
In this research, we have examined LUC GHG emissions of
ethanol from four feedstocks: corn, corn stover, switchgrass,
and miscanthus. Of the fuels examined, corn ethanol has
the highest LUC GHG emissions. However, the estimate of
LUC GHG emissions for this fuel has decreased substan-
tially compared to earlier studies [1,2,11,12,36]. This evo-
lution is due to improvements in CGE modelling such as
modifications to the modelling of animal feed, yield re-
sponses to price increases, and representation of growth in
both supply and demand [24].
Miscanthus ethanol shows the potential to sequester

carbon over the course of its life cycle. This result is
largely due to its high yield. Scown et al. [18] reached a
similar conclusion, although they predict a higher amount
of carbon sequestration from miscanthus production-
induced LUC. On the other hand, switchgrass exhibits
higher emissions than miscanthus because it is produced
with a lower yield, necessitating more land, including



Table 5 Range of LUC GHG emissions (g CO2e/MJ)a

Switchgrass Miscanthus Corn stover Corn

Minimum U.S. LUC GHG emissions −3.9 −12 −0.24 1.2

Maximum U.S. LUC GHG emissions 13 −3.8 −0.19 7.4

International LUC GHG emissions 6.7 1.7 −0.97 3.5

LUC GHG emissions range 2.7 to 19 −10 to −2.1 −1.21 4.7 to 11

Lifecycle GHG emissions rangeb 10 to 26 −8.5 to −0.20 0.97 to 1.0 62 to 68
a Values presented represent range of results generated at all combinations of surrogate CENTURY (Table 4) and CCLUB modelling parameter settings discussed.
b Using default GREET parameters [10] and varying only LUC GHG emissions.
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carbon-rich forests, to be converted for its production. It
is important to note that the contrast between switchgrass
and miscanthus results is largely due to the difference in
their yield. Similar differences may be observed between
other high- and low-yield energy crops. LUC GHG emis-
sions associated with corn stover were negligible. As the
technology for corn stover’s conversion to biofuels and
other uses matures, corn stover may evolve into a co-
product of corn production rather than a waste product.
In that case, future modelling efforts could allocate LUC
GHG impacts between the two fuels.
The sensitivity of LUC GHG emissions to key modelling

parameters that dictate carbon emissions from converted
lands is highlighted from the range of possible results in
Table 5, which are affected by belowground and above-
ground carbon simulation assumptions and results. As
discussed, we did not investigate the influence of key CGE
parameters on emissions because we used only one set
of GTAP results. The uncertainty associated with these
models, including GTAP, is large and difficult to estimate,
as Plevin et al. [14] discuss. Improvements to these models,
including modelling scenarios in which multiple feedstocks
are simultaneously produced, scenarios at higher resolution
(state or county-level), and scenarios with dynamic crop
yields will shed further light on biofuel-induced LUC and
better inform estimates of subsequent GHG emissions.
Improvements to estimates of converted lands’ carbon

content are also needed. First, SOC content data for soils
worldwide is needed, as explained in Smith et al. [8],
who provide a vision for developing these data and dis-
cuss key sources of uncertainty in their development.
Soil organic matter models such as CENTURY would
benefit from further calibration of default parameters,
including the soil cultivation effect coefficient, with real-
world data.
Additionally, it is important to include other factors

that accompany LUC beyond soil carbon changes, as we
have considered. For example, nitrogen fertilization rates
will change, depending on the land use both on the site
of feedstock production and at other, indirectly affected
agricultural sites, affecting N2O emissions rates from the
soil. The EPA has considered indirect effects like these
[11]. Further, Georgescu et al. [37] examine the effects of
stored soil water, which can have a regional cooling
effect, as impacted by LUC. Additionally, land cover al-
bedo will change with LUC [38]. Because the uncertainty
that surrounds biofuel LUC impacts are a key barrier to
what otherwise may be a technology that offers environ-
mental and energy security benefits, these impacts certainly
merit further study. It is important to realize, however, that
the complexity inherent in modelling worldwide phenom-
ena in the future that involve economic, biogeochemical,
and biogeophysical effects will likely always lead to large
uncertainties and will produce estimates of LUC GHG
emissions that vary widely.
Despite the uncertainty and complexity associated with

estimating LUC GHG emissions, the continued pursuit of
improvement of these estimates will increase understand-
ing of crop management practices that limit GHG emi-
ssions from SOC depletion, provide new data for policy
formulation that limits LUC impacts through, for example,
preventing conversion of carbon-rich lands (forests), and
identify crops that minimize LUC GHG emissions when
produced on a large scale as biofuel feedstocks.

Methods
To conduct the modelling for this analysis, we used
Argonne National Laboratory’s CCLUB and GREET
models [28]. The GREET model is developed at Argonne
National Laboratory and is widely used to examine
GHG emissions of vehicle technologies and transporta-
tion fuels on a consistent basis. CCLUB combines land
transition data from GTAP modelling [24] with carbon
emission factors derived from several sources. Domestic
SOC content data were developed with a surrogate model
for CENTURY’s soil organic carbon submodel (SCSOC)
[25,26]. In this modelling, we estimated the forward
change in soil C concentration within the 0–30 cm depth
and computed the associated EFs for the 2011 to 2040
period for croplands, grasslands or pasture/hay, crop-
lands/conservation reserve, and forests that were suited to
produce any of four possible biofuel feedstock systems
(corn-corn, corn-corn with stover harvest, switchgrass,
and miscanthus). This modelling accounted for prior
land-use history in the U.S. dating to 1880. SOC model-
ling was conducted under a number of parameter settings
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to examine the effect of soil erosion, crop yield increases,
and the calibration of values for a key coefficient that rep-
resents the soil cultivation effect. Surrogate CENTURY
modelling scenarios are shown in Table 4. Additionally,
the effect of three different land management (tillage)
scenarios for corn and corn stover production were exam-
ined: conventional till, no till, and reduced till. Our model-
ling of conventional tillage assumes that 95% of surface
residues are mixed with soils, whereas no-tillage scenarios
assume a converse 5% mixing of surface soils.
International SOC emission factors were adopted from

data from the Woods Hole Research Center. The data,
available at the biome level, were authored by R. Houghton
and provided to CARB and Purdue University to support
land-use modelling. Tyner and co-authors [36] reproduced
the data set. We incorporated aboveground carbon emis-
sions impacts of forest conversion using data from the U.S.
Department of Agriculture’s (USDA) Forest Service/Na-
tional Council for Air and Stream Improvement, Inc.
(NCASI) Carbon Online Estimator (COLE) [39]. Technical
documentation for CCLUB is available [27]. GREET pa-
rameters for feedstock production and growth are provided
in several reports [31,32,40]. Other bioethanol life cycle
parameters are provided in Wang et al. [10].
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