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Abstract

Background: Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and
regulatory networks remain elusive. Here we revealed the “cellulose degradome” for the model mesophilic
cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its
transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes
under glucose, cellobiose or cellulose.

Results: Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide
metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a “core”
set of 48 CAZymes required for degrading cellulose-containing substrates as well as an “accessory” set of 76
CAZymes required for specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon
Catabolite Repression (CCR) related regulators sense intracellular glycolytic intermediates and control the core
CAZymes that mainly include cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs)
respond to availability of extracellular soluble sugars and respectively regulate most of the accessory CAZymes and
associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both
transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing
cellulase transcription at low concentrations.

Conclusion: A molecular model of cellulose degradome in C. cellulolyticum (Ccel) was proposed, which revealed the
substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts
as a CCR inhibitor instead of a trigger. These features represent a distinct environment-sensing strategy for
competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering
of microbial cellulolysis.

Keywords: Cellulose degradation, Transcription, Two-component systems, Catabolite control proteins, CcpA-like,
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Background
Lignocellulosic biomass is the most abundant biopolymers
on earth, yet recalcitrance to hydrolysis has hampered
its exploitation for renewable bioenergy and biomaterials
[1,2]. In nature, direct hydrolysis of lignocellulose is
carried out exclusively by microorganisms. Cellulolytic
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clostridia, which are ubiquitous in cellulosic anaerobic
environments, represent a major paradigm for efficient
biological degradation of cellulosic biomass [3,4]. Many
of these anaerobes digest cellulose via a cell surface-
attached extracellular enzymatic complex called the
cellulosome where primarily catalytic components (in-
cluding glycoside hydrolases, carbohydrate esterases and
polysaccharide lyases) are integrated onto a non-catalytic
macromolecular scaffoldin subunit [5,6]. These host cells
[4,7,8] and their cellulolytic machineries [9] are being
exploited in the production of cellulosic biofuels by a var-
iety of approaches, notably consolidated bioprocessing
(CBP; [10]). However, the structure and regulation of the
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“cellulose degradome”, i.e., the genome-wide metabolic and
regulatory networks underpinning cellulose degradation,
remain poorly understood. Identifying genetic components
of the degradome and elucidating how their activities are
organized and regulated in vivo should form the basis for
developing natural or engineered cellulases and their host
cells for efficient production of cellulose-based biofuels.
Clostridium cellulolyticum, a Gram-positive cellulosome-

producing anaerobe of the Family 4 (or Cluster III) of
Clostridia [11], has become a model organism for the study
of mesophilic cellulolysis [12-14]. In addition to cellulose,
it grows on a wide variety of carbohydrates including
soluble cellodextrins, glucose, xylan, xylose, arabinose,
fructose, galactose, mannose and ribose [15-17]. By
sequencing its complete genome and comparing its
transcriptomes and extracellular proteomes collected
under different growth conditions (cellulose and its
derivative mono- and di-saccharides), we report here a
genome-wide, single-nucleotide resolution bacterial cellu-
lose degradome for the C. cellulolyticum strain H10 or
ATCC 35319 (abbreviated here as Ccel). Two functional
tiers (core and accessory) of CAZymes were revealed
that are respectively transcriptionally regulated by a
Carbon Catabolite Repression (CCR) mechanism and
two-component systems (TCSs). Surprisingly, instead
of suppressing cellulase transcription, glucose promotes
cellulolysis by inducing cellulase transcription at low con-
centrations while by promoting cell growth at high concen-
trations. A molecular model of the cellulose degradome in
Ccel was proposed which revealed the substrate-specificity
of CAZymes and the transcriptional regulation of core cel-
lulases by CCR where the glucose acts as a CCR inhibitor
instead of a trigger. These features represent a distinct
environment-sensing strategy for competing while colla-
borating for cellulose utilization, which can be exploited
for process and genetic engineering of cellulolysis.

Results
Genomic features of a mesophilic cellulose degrader
The complete genome of Ccel consists of a single circular
4,068,724 bp chromosome with a GC content of 37.4%.
It encodes 3390 proteins, 63 tRNAs and 24 rRNAs
(Additional file 1: Table S1; GenBank Accession Number
NC_011898; [18]). CAZymes are the critical enzymes that
cleave, build and rearrange oligo- and polysaccharides [19].
Relative to other mesophilic cellulosome-producing clos-
tridia such as C. acetobutylicum [20] and C. cellulovorans
[21], Ccel harbors the least number of CAZyme genes (149
genes), but features the largest portfolio of cellulosomal
genes which consists of 62 dockerin-encoding genes and
three cohesin-encoding genes (cipC/Ccel_0728, orfX/
Ccel_0733 and Ccel_1543). The cellulosomal enzymes in
Ccel are diverse and complementary in functions, which
included cellulases, hemicellulases (xylanases, mannanases,
and arabinofuranosidases), pectate lyases and chitinases
[22]. Moreover, the cellulosomal genes in Ccel tend to
physically cluster along the chromosome, representing
an organizational pattern distinct from C. thermocellum
ATCC 27405 [23]. Among the 65 cellulosomal genes
in total, we identified several clusters: i) the “cip-cel”
gene cluster (Ccel_0728-0740) that encodes the major
cellulosome components (including scaffoldin), most of
which encode cellulases [24], ii) a second cluster of 14
genes (Ccel_1229-1242) encoding exclusively secreted
dockerin-containing proteins, which are probably involved
in hemicellulose degradation and herein named the
“xyl-doc” gene cluster [22], iii) three small clusters (each
with two genes) encoding cellulosomal enzymes (Man
26A/Ccel_0752-Cel9P/Ccel_0753, PL10/Ccel_1245-CE8/
Ccel_1246 and Ccel_1655-1656), and iv) one cluster
(Ccel_1549-1550) of one non-cellulosomal and one cell-
ulosomal genes.

Structure of the cellulose degradome in C. cellulolyticum
To identify the components of the cellulose degradation
in Ccel, we started by characterizing the populations of
transcripts in Ccel cultures under a variety of carbon
sources using RNA-Seq. The carbohydrate substrates
tested included i) cellulose and its derivatives glucose
and cellobiose, ii) hemicellulose (using xylan from oat
spelts as a representative substrate) and its derivative
xylose, and iii) corn stover, a natural plant-derived resi-
due which consists of both cellulose and hemicellulose
(Additional file 2: Figure S1A). In total, 12.4 million reads
were uniquely mapped to the genome, representing com-
bined sequence coverage of 223X. After removing rRNA
reads, for each of the substrates tested, 74.3% to 84.2% of
the reads were mapped to previously annotated coding
regions, and the remaining were either upstream of a
coding sequence (CDS; thus putatively identifying a 5′-
untranslated region (5′-UTR)) or mapped to unannotated
or potentially mis-annotated regions.
In total, a large majority (86.0%) of the genome was

actively transcribed under at least one of the conditions,
while 59.5%, 59.8%, 69.3%, 67.1%, 36.4% and 63.2% of
the genome were transcribed under glucose, cellobiose,
xylose, cellulose, xylan and corn stover, respectively.
Furthermore, 8521 regions of a total of 1.16 Mb (28.5%
of the genome) were expressed under each of the
substrates tested, representing a “core transcriptional
glycobiome”. These regions exhibited a scattered pattern
along the genome. On the other hand, 167 regions (142
overlapping with CDS and 25 within intergenic regions)
with a total of merely 14,338 bp (only 0.34% of the
genome) were expressed under only one substrate (129
regions were found to be cellulose-specific, among
which 18 were intergenic). Thus, specificity of the
transcribed loci in response to carbon substrates was



Figure 1 Structure of cellulose degradome in C. cellulolyticum.
(A) Hierarchical clustering analysis of 650 genes that exhibit
substrate-specific gene expression under glucose (Glu), cellobiose
(Ceb), and cellulose (Cel). A Row Z-Score measures the
relationship between the NTA of a gene under a given
condition and the mean NTA of the gene under the multiple
conditions compared (i.e. the row). A Row Z-score of 0 means
the NTA is equal to the mean NTA. Positive (or negative) Row Z-
score indicates the degree to which the NTA is higher (or lower)
than the mean. The corresponding classes (C1, C2 or C3) were
indicated. (B) Functional profiles of the genes that exhibit
substrate-specific gene expression. Those GO terms specifically
enriched or depleted in the cellulose-specific degradome were
shown (0005840: ribosome; 0044444: cytoplasmic part; 0003677:
DNA binding; 0003723: RNA binding; 0016787: hydrolase activity;
0016491: oxidoreductase activity; 0005215: transporter activity;
0044255: cellular lipid metabolic process; 0010467: gene
expression; 0046483: heterocycle metabolic process; 0009059:
macromolecule biosynthetic process; 0009057: macromolecule
catabolic process; 0006807: nitrogen compound metabolic
process; 0019538: protein metabolic process).
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manifested in the relative level of transcription, instead
of their presence or absence.
For each CDS, its Normalized Transcript Abundance

(NTA) under a particular substrate was determined
(Additional file 3: Table S2) and then compared across
the various carbon substrates supporting Ccel cultivation
(Additional file 2: Figure S1B). We defined the “cellu-
lose degradome” as the collection of genes transcribed
(NTA > 1) under cellulose. The “cellulose-specific deg-
radome” was defined as those required for degradation of
cellulose but not for that of cellulose derivatives (glucose
and cellobiose); specifically, a gene was included only
when i) its NTA under cellulose is greater than 1, and ii)
the ratio of NTA between cellulose and glucose and that
between cellulose and cellobiose are both greater than 2
and the p values (statistical significance of differential ex-
pression) are both lower than 0.001.
Those CDS encoding core metabolic functions (macro-

molecule biosynthetic process, protein biosynthesis and
primary metabolic process) are enriched in the cellulose
degradome of Ccel as compared to the complete proteome
encoded in the genome. Moreover, except for nucleic
acid binding (GO:0003676), various Gene Ontology (GO)
categories related to environmental sensing, gene regula-
tion and polysaccharide metabolism are also enriched in
the cellulose degradome of Ccel.
Differentially Expressed Genes (DEGs; including both

positively and negatively regulated) among substrates
were further identified. At the threshold of P < 0.001,
1043 DEGs were identified from the 15 pair-wise com-
parisons of the six substrates. Most DEGs were involved
in energy production and conversion, carbohydrate
transport and metabolism, and translation. In total, 650
genes were differentially expressed between any two of
the conditions of glucose (monosaccharide), cellobiose
(disaccharide) and cellulose (polysaccharide), which for-
mulated three main groups (via hierarchical clustering;
Figure 1A; Additional file 4: Table S3). The first class
(Class C1; 342 genes) showed the highest NTA under cel-
lulose. Of them, 63 genes showed high NTA (Z-score > 0)
in glucose. In comparison with cellulose degradome
genes, the remaining 279 genes in the cellulose-specific
class (cellulose-specific “degradome”) showed enrich-
ment for ribosomal proteins (GO:0005840), oxidoreduc-
tase activity (GO:0016491), RNA binding (GO:0003723),
gene expression (GO:0010467), macromolecule biosyn-
thetic processes (GO:0009059) and protein metabolic
processes (GO:0019538), etc (Figure 1B). The second
class (Class C2) included 207 genes showing the highest
NTA under cellobiose. Within this class are 17 genes
showing high NTA under cellulose and 25 under glu-
cose. The remaining 165 genes were enriched with ion
transport (GO:0006811), protein binding (GO:0005515)
and nucleotide metabolic processes (GO:0006139). A
third class of 101 genes (Class C3) showed the highest
NTA under glucose among the carbon sources, where
catabolic processes (GO:0009056), carbohydrate meta-
bolic processes (GO:0005975) and carbohydrate binding
(GO:0030246) were enriched.
Surprisingly, 145 of the 148 CAZymes (except

Ccel_0750, Ccel_0920 and Ccel_2109) encoded by Ccel
genome were not found in the cellulose-specific degra-
dome due to their similar transcriptional levels under
cellulose and glucose, suggesting an unusual link between
monosaccharide catabolism and cellulose degradome
in this organism. To further probe the links among
the substrate-specific degradomes, we performed co-
expression analysis of all CAZyme genes encoded in Ccel
genome under the different substrates.
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Regulation of the cellulose degradome in C. cellulolyticum
Based on their substrate-dependent transcription patterns,
the 143 CAZyme genes (except Ccel_0428, Ccel_0429,
Ccel_2073, Ccel_2123 and Ccel_2442 which were not
expressed under any of the carbon sources and a cohesin-
encoding gene Ccel_1543) were clustered into four diffe-
rent groups (Figure 2A; Additional file 5: Table S4).
Carbon catabolite repression (CCR)
Group I includes 45 genes that showed higher expre-
ssion levels under glucose, cellulose, xylan and corn
stover relative to cellobiose and xylose, which included
the “cip-cel” gene cluster (Ccel_0728-0740). Genes of
this group mainly encode cellulosomal components,
including scaffoldin subunits and major enzymatic
subunits, which belong to GH families 5, 9, 26 and 48
and others involved in cellulose degradation. Surpri-
singly, most of the cellulosomal genes except the “xyl-
doc” cluster belong to this group. Interestingly, the
NTAs of all the 50 cellulosomal genes (not including the
“xyl-doc” cluster) were correlated to each other, with
highest correlation coefficients (R2 > 0.7) under glucose,
cellulose, xylan and corn stover (Figure 2B; in grey).
Figure 2 CCR-regulation of cellulose degradome components in C. ce
carbon sources (glucose (Glu), cellobiose (Ceb), xylose (Xyl), cellulose (Cel),
hierarchical clustering analysis and gene function. The structural (cellulosom
(glycoside hydrolase (GH), glycosyltransferase (GT), carbohydrate esterase (C
and unknown function enzyme (UF)) characteristics of CAZmes were distin
50 cellulosomal genes under various carbon sources. Correlation coefficien
“xyl-doc” cluster. The arrows indicated the order in average transcript abund
(C) Correlation of NTA between “cip-cel” cluster and lfpC2-IfpC3 (Ccel_2999
Transcription of Group I CAZymes appears to be
regulated by the carbon catabolite repression (CCR), as
suggested its synchronic yet distinct differential patterns
among substrates that featured a negative correlation
between NTAs and growth rate. For example, the order
in average NTA of Group I genes was cellulose (or corn
stover or glucose) > xylan > xylose > cellobiose (Figure 2A),
while that in growth rate was cellobiose > xylose > xylan >
cellulose (or corn stover or glucose) (Additional file 2:
Figure S1A). Catabolite control protein A (CcpA) is
thought to be one of the key CCR regulators in Bacillus
subtilis [25]. CcpA belongs to the LacI family of transcrip-
tional regulators and binds selectively to specific DNA
sequences (referred to as catabolite-responsive element, or
cre) [26,27]. Recently a 18-nt cre-like motif with 3
mismatches (TGTGTACGCGTTTATATT) was found up-
stream of the “cip-cel” gene cluster in Ccel; it was shown
to be involved in regulating at least cipC by a CCR mech-
anism [28]. The Ccel genome has five genes (Ccel_1005,
Ccel_1438, Ccel_2999, Ccel_3000 and Ccel_3464) that
encode putative regulators of the LacI-family. In Ccel, the
protein sequence of Ccel_1005 has the highest identity
and similarity (34% and 55%, respectively) to that of B.
subtilis CcpA. Four other proteins are slightly less similar
llulolyticum. (A) Expression profiles of CAZymes under the selected
xylan (Xyn) and corn stover (CS)) were clustered into four groups by
al component (CC) and noncellulosomal enzyme (NC)) and functional
E), polysaccharide lyase (PL), cellulosomal noncatalytic subunit (CN)
guished by different color-blocks. (B) The expression correlation of the
ts (R2) were calculated (n = 50) for all cellulosomal genes except the
ance (from low to high) of the genes under the different conditions.
-3000) under different carbon sources.
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(e.g., 25% and 46% in identity and similarity for Ccel_2999;
26% and 44% for Ccel_3000) to CcpA but more conserved
in DNA-binding helix-turn-helix (HTH) domains. We
therefore propose to use CcpA for Ccel_1005, while the
other four LacI-family regulators are named herein as
LfpC1, LfpC2, LfpC3 and LfpC4 (LacI family proteins in
C. cellulolyticum). Surprisingly, the expression levels of
two neighboring genes, lfpC2 and lfpC3 (Ccel_2999 and
Ccel_3000, respectively) were strongly negatively corre-
lated with average expression levels of the “cip-cel” gene
cluster with different carbon sources, and related coeffi-
cient (R2) reaches 0.79 (Figure 2C). Meanwhile, certain
cre consensus-like sequences, possibly recognized by
CcpA, LfpC1, LfpC2, LfpC3 and LfpC4, were determined
via MEME [29] based on predicted DNA-binding motifs
of these transcription factors [30]; the two center positions
of the predicted putative 16-nt motifs were limited to
“CG” owing to the conservation of this nucleotide pair in
the CcpA binding site consensus sequences (Additional
file 6: Figure S2). Genome-wide scanning of intergenic
regions using FIMO [29] revealed 110 putative cre sites
(18, 17, 20, 27 and 28 sites recognized respectively
by CcpA, LfpC1, LfpC2, LfpC3 and LfpC4) in Ccel
(Additional file 7: Table S5). However, only seven
CAZyme genes on their upstream regions included a cre
site motif, which was recognized by LfpCs but not by
CcpA. Five of the seven genes (cel9Q/Ccel_0231, cipC/
Ccel_0728, Ccel_0755, Ccel_1207 and Ccel_1439) belong
to Group I (Additional file 7: Table S5). Notably, the puta-
tive cre site (AAGTTATCGTTAATTA) we identified for
the “cip-cel” cluster was distinct and 87 bp upstream of
the previously reported cre site [28], suggesting the pres-
ence of multiple cre sites within the upstream region of
the “cip-cel” cluster. Thus the majority of cellulosomal
genes might be regulated by CcpA-independent CCR,
such as GlyR3 [31], CcpC [32] or CcpN [33].
Two-component systems (TCSs)
Group II includes 49 genes that showed high expression
specifically on one substrate (e.g. cellulose, cellobiose,
xylose or xylan) (Figure 2A). These genes encode
noncellulosomal enzymes from GH10, 51, 94 and other
GH and GT families (Additional file 5: Table S4). In par-
ticular, the genes encoding xylanases (GH8: Ccel_1258;
GH10: Ccel_2319, 2320, 0153), a xylosidase (GH3:
Ccel_1139) and arabinofuranosidases (GH51: Ccel_1255
and 1221) were highly expressed specifically under
xylan, whereas cellobiose/cellodextrin phosphorylase
genes (GH94: Ccel_3412 and 2109) are expressed
specifically under cellulose, while hemicellulase genes
(GH18: Ccel_2893, 0643 and 2820; GH23: 0815) and
some glycosyltransferase genes (Ccel_0486, 3410, 1334,
0333) are expressed specifically under xylose.
Group III is mainly the “xyl-doc” gene cluster (Ccel_
1229-1242) that exhibited higher expression levels under
corn stover than other carbon sources (Figure 2A;
Additional file 5: Table S4). The low expression of
“xyl-doc” cluster genes on xylan from oat spelts indicates
that they hydrolyze hemicellulose other than the xylan
from oat spelts. They also encode cellulosomal compo-
nents, which belong to GH43, 27, 10 and other families
involved in hemicellulose degradation. The remaining
CAZymes are collectively assigned to Group IV, which
are mainly non-GH family enzymes, such as members of
the GT1 family (Figure 2A; Additional file 5: Table S4).
Further analysis revealed that transcription of 76

CAZymes that include noncellulosomal enzymes (Group
II; 49 genes) and cellulosomal hemicellulase components
(including “xyl-doc” gene cluster; Group III; 27 genes)
might be regulated by a TCS mechanism. Ccel possesses
37 putative TCSs, eleven of which were flanked by genes
encoding Group II and Group III CAZymes and putative
sugar ABC transporters (Figure 3A). In these loci, the
CAZyme genes exhibited similar expression patterns to
ABC transporter genes (if both were highly expressed)
under the carbon sources tested. Thus CAZymes of
Group II, Group III and ABC transporters appeared to
be co-regulated by TCSs. Our results were confirmed by
a recent study which showed that one TCS (XydS/XydR;
Ccel_1227/1228) transcriptionally regulates Group III
CAZymes (the “xyl-doc” gene cluster; [34]). Meanwhile,
genes encoding sugar-binding proteins (SBP) were
found in two loci (named sbp1 and sbp2, respectively)
that encoded ABC transporter genes and TCS genes
(Figure 3A; TCS-loci Category I). For example, Ccel_2109-
2115 encoded one CAZyme (Ccel_2109; encoding a
cellodextrin phosphorylase named cdpA), cellulose-
utilization associated ABC transporters (Ccel_2112-
2110, named cuaA, cuaB and cuaC), and TCS
(Ccel_2115-2113, named cuaD, cuaS and cuaR)
(Figure 3B). Expression of the cuaA (Ccel_2112), en-
coding a potentially periplasmic high-affinity solute-
binding protein, exhibited substrate-specificity (with
the highest level under cellulose) and is strongly cor-
related with that of the cdpA under different carbon
sources (R2 = 0.97) (Figure 3C). However, the sbp2 gene
(cuaD) was expressed constitutively with TCS as an operon
at a low level (<0.2% of sbp1 (cuaA) on cellulose) under
each of the carbon sources. Moreover, upstream of cdpA,
cuaA and cuaB, there is a conserved sequence motif that
might serve as a putative binding site of CuaR (a TCS re-
sponse regulator harboring an “AraC”-family DNA-binding
domain) (Figure 3B). Therefore, SBP2 may be a “signal col-
lector” of TCS. When an extracellular sugar molecule is
specifically bound to SBP2, the complex formed may
activate the sensor histidine kinase, which can phosphoryl-
ate a cognate response regulator (e.g. CuaR). Subsequently



Figure 3 TCS-regulation of cellulose degradome components in C. cellulolyticum. (A) The eleven genomic loci encoding TCSs, ABC
transporters and CAZymes. The loci can be classified into three categories, where the TCS operon harbors sbp2 (Category I), CAZymes
(Category II) or no other genes (Category III) as an accessory to the TCS. (B) Detailed schematic of Ccel_2109-2115, one of the eleven
genomic loci. The regulation of cuaA, cuaBC and cdpA by CuaR was indicated by arrows. The putative 19-nucleotide cuaR-binding motifs
upstream of cuaA, cuaB and cdpA were shown as a table, with their positions relative to the first base of the translation start of the
corresponding genes indicated. (C) Correlation of transcript levels between cuaA and cdpA of the Ccel_2109-2115 cluster under various
carbon sources.
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the phosphorylated regulator may promote the expression
of genes encoding Group II of CAZymes and ABC trans-
porters which specifically hydrolyze polysaccharides and
transport the hydrolysates.
Thus via CCR control, cellulosomal genes (except the

“xyl-doc” cluster) were induced under recalcitrant carbon
sources (cellulose and corn stover) and repressed under
cellobiose and xylose. On the other hand, via TCS regu-
lation, noncellulosomal enzymes, cellulosomal hemice-
llulases encoded by the “xyl-doc” cluster and ABC
transporters were induced in a substrate-specific manner.
Therefore, the CAZyme components of the cellulose

degradome can be classified into two categories: i) the
“core” proteins (Group I) which are required for cellu-
lose degradation, and ii) the “accessory” proteins (Group
II and III) which are not required for cellulose degrad-
ation. Furthermore, transcriptional regulation of the core
is associated with CCR, while that of the accessory is
linked to TCS.
Activation of cellulose degradation by glucose in C.
cellulolyticum
Curiously, the NTA of most of the Group I genes were
over four times higher under glucose than under cellobi-
ose, xylose or xylan (Figure 2A, Additional file 3: Table
S2), suggesting glucose induced transcriptionally at least
part of the cellulose degradome. To test whether the
NTA upregulation led to elevation in protein abundance,
the secreted proteomes of Ccel under glucose and cello-
biose were analyzed via label-free quantitative proteo-
mics using LC-MS/MS. At the protein level, the number
and yield of cellulosomal components under glucose
were significantly higher than under cellobiose: for
example, 13 cellulosomal components were identified
under glucose, but only five components were found
under cellobiose (Additional file 8: Table S6).
To test the hypothesis of glucose-based promotion of

cellulase expression and cellulose degradation, we cultured
Ccel on singular or mixed carbon source of cellulose
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(3 g/L) and glucose (3g/L). Under dual-substrate, arrival of
mid-log phase was ~24 hours earlier than that under glu-
cose alone and ~48 hours earlier than that under cellulose
alone (Figure 4A), suggesting faster cellulose degradation
when glucose is present. Moreover cellulose degradation
under dual-substrate was ~50 hours faster than that under
cellulose alone (Figure 4B), while glucose utilization rate
under dual-substrate was similar to that under glucose
alone (Figure 4D). Quantitative RT-PCR (qRT-PCR)
revealed that the transcription level of the eight genes (six
of them were from the cip-cel cluster) encoding major
cellulosomal components in Group I under glucose or
glucose-cellulose was significantly higher than (for six
genes) or equal to (for two genes) that under cellulose
(Figure 4C). In particular, the two main cellulosomal genes
in the cip-cel cluster, Ccel_0728 (cipC) and Ccel_0729
Figure 4 Activation of cellulose degradation by glucose in C. celluloly
and 3g/L cellulose (Cel), 3 g/L singular carbon source of Glu, or 3 g/L singular
residual cellulose (B) and glucose (D) in broth were measured. The transcriptio
cip cluster) was quantified using qRT-PCR (C). To test the dependence of t
cultured on cellulose mixed with series concentrations (0.5, 1.0, 2.0, 4.0 an
mixed with 4.0 g/L cellobiose) were used as control. The data point of 8g
measured, and the curves of cellulose degradation were fitted by sigmoid
cellulose degradation rate and the lag-time (the number of days it took to
(F). Means of three biological replicates were shown.
(cel48F), were transcribed at significantly higher level
(2-fold) under dual-substrate than under cellulose-alone.
Thus glucose enhanced degradation of cellulose by indu-
cing expression of the cellulosomal genes in Ccel.
To test whether the inductive effect of glucose on

cellulose degradation is dependent on glucose concen-
tration, we cultured Ccel on cellulose which was mixed
with a gradient of glucose (0.5-8.0 g/L) or cellobiose
(4g/L). The culture under cellulose-alone was used as
control (Figure 4E). The peak cellulolysis rate decreased
under incremental concentrations of the glucose supple-
ment (Figure 4F): the rates under lower glucose-
supplements (0.854 and 0.622 g/L/Day under 0.5 and
1.0 g/L respectively) were up to 41% higher than that of
cellulose-alone (0.607 g/L/Day), while those under
higher glucose-supplements (0.469, 0.449 and 0.434 g/L/
ticum. The bacterium was cultured on a mixture of 3 g/L glucose (Glu)
carbon source of Cel. The growth curves (A) and concentrations of
nal level of several cellulosomal genes (including those in the cel-
he cellulolytic activity on glucose concentration, the bacterium was
d 8.0 g/L) of glucose; two conditions (singular cellulose and cellulose
/L glucose was not shown. Amount of degraded cellulose was
al equation using data from three biological replicates (E). The peak
reach the peak rate) under each culture condition were both shown
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Day under 2, 4 and 8 g/L respectively) were 23 ~ 29%
lower than that of control (but still higher than that
under 4 g/L cellobiose (0.305 g/L/Day)). On the other
hand, the lag-time (the time taken to reach the peak
cellulose degradation rate) under higher glucose-
supplements (4.44, 4.10 and 3.90 Day under 2, 4 and
8 g/L respectively) was faster by1.42-1.96 Day than that
of control (5.86 Day), while that under lower glucose
(0.5 and 1 g/L) was only 0.76-1.24 Day faster than that
of control. Thus glucose supplementation promotes
cellulose degradation by inducing cellulase transcription
at low concentrations.
Such glucose induction of cellulase transcription and

cellulolysis and its dependency on glucose concentration
appeared to be quite unique as they have not been previ-
ously reported in this and any other microorganisms
[28,35]. Several lines of evidence suggested glucose as an
edible but not preferred carbon source of Ccel, which
potentially explains the surprising trait: i) Ccel growth
was much slower under glucose than under cellobiose
[36] or xylose and xylan (Additional file 2: Figure S1A);
ii) Under glucose-cellulose mixture Ccel cells did not
exhaust glucose, which remained at ~1 g/L from mid- to
late-log phase (Figure 4D); iii) The NTA of putative glu-
cokinase genes (Ccel_0700 and Ccel_3221, the first en-
zyme in the Embden-Meyerhof pathway) under glucose
Figure 5 Cellular model of cellulose degradome in Clostridium cellulo
glycolytic intermediates and controls the core cellulose-degrading machine
hand, TCS systems (C) sense extracellular soluble sugars and respectively re
to the synergy of cellulosomal enzymes and the substrate-specific CAZyme
mono-saccharides transported into cell.
were 36 ~ 58% lower than under other soluble sugars such
as xylose and cellobiose (Additional file 3: Table S2);
iv) Under higher glucose-supplements (4 and 8 g/L), the
peak cellulolysis rates (0.449 and 0.434 g/L/Day) were
higher than that under 4 g/L cellobiose-supplement
(0.305 g/L/Day; Figure 4F), consistent with the report that
repression of the cip-cel cluster by cellobiose was more
drastic than by glucose [28]. Therefore, the activation of
cellulase transcription by a non-preferred carbon source
(i.e., glucose) and inhibition by a preferred substrate
(i.e., cellobiose) in Ccel can be explained by the CCR
mechanism.

A molecular model of the cellulose degradome in C.
cellulolyticum
In view of the above, we propose a structural and regula-
tory model for the cellulose degradome in Ccel (Figure 5).
In this model, utilization of cellulose requires at least three
functional classes of proteins, including CAZymes that
catalyze cellulose hydrolysis, ABC transporters of the hy-
drolysates and the signal transduction systems (CCR and
TCS). The cellular degradation of cellulose consists of five
steps: (A) When Ccel is grown on mineral medium with a
lignocellulose substrate (including both pentose and
hexose) or non-preferred monosaccharides (e.g., glucose)
as the sole carbon source, the CCR mechanism is relieved,
lyticum. The cell employs CCR (A) to sense intracellular level of
ry that mainly includes cellulosomal components (B). On the other
gulate carbon-substrate specific CAZymes (D) and transporters (E). Due
s, cellulose is degraded efficiently and the resulted soluble di- and
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leading to low levels of intracellular glycolytic intermedi-
ates. Consequently, a homologue of the phosphocarrier
proteins (Crh (catabolite repression HPr)-like protein,
Ccel_0806) remains dephosphorylated and prevents the
CcpA homologues, such as LfpC2 (Ccel_2999) or LfpC3
(Ccel_3000), from inhibiting the transcription of the major
cellulosomal genes (except the “xyl-doc” gene cluster) or
activates their expression via other regulators. (B) As a re-
sult, the cellulosomal components are expressed, secreted
and assembled into cellulosomes anchored on the cell
surface, which catalyzes hydrolysis of the lignocellulose.
(C) The soluble saccharides resulted from lignocellulose
hydrolysis are captured by sugar-binding proteins (SBP2);
the signal is transduced into cells via the intramembrane-
sensing histidine kinase of the TCSs. The histidine kinase
phosphorylates the response regulator, which activates
expression of ABC transporters and CAZyme genes. (D)
The temporal synergy and functional complementarity
between the transcriptionally upregulated CAZymes may
then accelerate lignocellulose degradation generating the
release of soluble sugars. (E) ABC transporters, whose
transcription is also activated via the TCS, transport and
feed the extracellular soluble sugars into the glycolysis
pathway. The resultant high concentrations of glycolytic
intermediates would inhibit the expression of cellulosomal
genes via CCR, thus closing this five-step cycle of regu-
lated cellulose degradation.

Discussion
Efficient conversion of lignocellulosic biomass to trans-
portation biofuels such as ethanol is a leading candidate
solution among alternatives to fossil fuels because of its
sustainability and rural economic benefits [37]. To
maximize the energy and cost efficiency in the conversion
process, schemes such as consolidated bioprocessing
(CBP) were proposed, where hydrolysis of lignocellulosic
biomass, co-utilization of pentose and hexose, and robust
ethanol fermentation are built into a single bioreactor
[10]. Cellulolytic clostridia are among the leading CBP
candidates due to their wide carbon substrate range
that include cellulose. They produce a wide variety of
CAZymes with different specificities for lignocellulose
hydrolysis, yet most of which remain functionally
uncharacterized. Here we demonstrated their functional
classification into the ‘core’ and ‘accessory’, which aimed
respectively at the major constituent-crystalline cellulose
and other variable constituents of lignocellulosic biomass.
The observed differential NTAs between core and
accessory enzymes and within each of the two classes
might underlie the stoichiometry of the protein products.
Thus the results can potentially serve as a blueprint for
construction of potent cellulase systems (in vitro or
in vivo) tuned or optimized for the targeted substrate by
matching the abundance of core enzymes, the type
and abundance of accessory enzymes as well as their
stoichiometry.
Furthermore, we have untangled a collaborative regu-

latory network involving CCR and TCS that regulate
the ‘core’ and ‘accessory’ respectively. Previous studies
observed substrate-dependent differential expression of a
few cellulases in C. cellulovorans [38] and C. thermocellum
[39-42], and identified one cis-acting element (cre) tenta-
tively involved in CCR-based regulatory mechanism in C.
cellulolyticum [28]. However, the global regulation of
cellulolysis remains unknown and the contribution of
CCR unclear. This first genome-wide model for cellulose
degradation here revealed a functional web of CCR. First,
45 CAZymes were found regulated by CCR, suggesting a
global regulatory role of CcpA-like proteins. However, as
Ccel does not seem to encode an HPr ortholog and any
‘cognate’ PTS enzyme EII [28], alternative regulatory
systems could be involved in the CCR mechanism in this
bacterium. Second, there are only five cre sites in promoter
regions of Group I genes, suggesting that in addition to
CcpA-dependent CCR, there are CcpA-independent
CCRs involved in regulating Group I genes. Third, within
the cip-cel cluster, few such cre-like sites were found, yet
the transcriptome profile indicated multiple transcrip-
tional start-sites or post-transcriptional processing sites
were present (consistent with previous transcriptional
analysis of the cip-cel gene cluster [43]), suggesting
additional mechanisms controlling the differential tran-
scription of cellulase genes encoded within the cluster.
In natural environments, cellulose which consists of only

glucose is a shared component of all types of plant
biomass, yet distinct types of hemicelluloses (e.g. xylan,
glucuronoxylan, arabinoxylan, glucomannan or xyloglucan)
which consists of many different monosaccharides are
found in different plants or plant tissues. As cellulose hy-
drolysis is a shared activity for consuming various plant
biomasses, it is efficient to employ CCR which responds to
intracellular level of glycolytic intermediates to modulate
cellulase transcription. On the contrary, expression of
hemicellulases is only needed for certain types of plant
biomass, thus TCS which senses the presence of extracellu-
lar sugars was adopted for transcriptional activation of the
hemicellulase genes. Therefore, in Ccel, the CCR-mediated
monitoring of cellular needs for energy and the TCS-
mediated sensing of environmental substrate-availability
likely ensure both sensitivity to environmental nutrients
and the efficiency of cellulose degradome.
Surprisingly, contrary to most known CCR models

such as those found in Escherichia coli and B. subtilis
and many pathogenic bacteria (where glucose serves
as a CCR trigger; [44]), in Ccel the glucose instead acts as
a CCR inhibitor, where the presence of glucose relieves
the inhibitory effect of CCR, consequentially resulting in
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transcriptional activation of Group I CAZymes for
cellulolysis. Our results are inconsistent with an earl-
ier report [28] that glucose activated CCR and
inhibited expression of the cip-cel cluster, which was
likely due to some differences in the specific Ccel
laboratory clones of strain H10 tested. Furthermore,
we showed that the inductive effect of glucose on
cellulase transcription and cellulose degradation is
dependent on glucose concentration, where glucose
promotes cellulose degradation by inducing cellulase
transcription at low doses while by promoting cell
growth at higher doses.
These traits appear to be quite novel. Among the

mesophilic phylogenetic relatives of Ccel, C. acetobutylicum
[20,45] and C. cellulovorans both prefer glucose; in the lat-
ter cellulases was transcriptionally repressed under glucose
but was derepressed upon glucose exhaustion [38]. In C.
thermocellum, cellobiose is the preferred carbon source as
in Ccel [4], yet its cellulase transcription is probably
activated by alternative σ factors released by their cognate
anti-σ factors that might sense availability of extracellular
cellulose [46]. In fungi, cellobiose serves as the inducer
of cellulase expression in Trichoderma reesei [47]
and Asperillus species [48], cellotriose or cellotetraose in
Phanerochaete chrysosporium [49] and cellodextrins in
Neurospora crassa [50].
These distinct traits might convey to Ccel advantages

in its natural niche, where cellulose is abundant, glucose
scarce and competition for edible sugars keen. First, it
avoids direct competition of cellulolytic organisms (who
are often in minority, e.g., in the rumen only ~10% of
the bacteria are cellulolytic [51]) with non-cellulolytic
bacteria for carbon source. For most heterotrophic
bacteria studied to-date, glucose is the preferred (or pri-
mary) carbon source [52]. The varied diet preference
might lead to a more sustainable ecosystem [53]. Second,
the uptake of cellobiose or cellodextrins into the cell is
more energy-efficient than glucose: the former requires
less ATP per glucose residue, and the breakdown of
cellodextrins into glucose-1-phosphate by the intracellu-
lar cellodextrin phosphorylase ,conserves ATP [54].
Third, as glucose is soluble, induction of cellulases upon
low concentration of glucose might allow Ccel to detect
nearby cellulolytic activities and thus respond rapidly to
cellulose availability.
This trait might find applications in CBP [54] where

microbes act singularly or collaboratively to convert
lignocellulosic biomass to fuel molecules such as etha-
nol. As many non-cellulolytic yet fuel-fermenting organ-
isms (e.g., E.coli, Zymomonas mobile and Saccharomyces
cerevisiae) prefer glucose, the complementary diet of
Ccel would make it a suitable CBP partner. This trait
can also be exploited to improve cellulase production
and cellulolysis in Ccel.
Intricate structure and precise control of the cellulose
degradome such as those found in Ccel here are likely
the norm rather than an exception in nature (cellulolytic
organisms span a wide phylogenetic and ecological
spectrum [55]), yet the degree of conservation and
the evolutionary links among them remain unknown.
For example, in the related C. thermocellum, a distinct
mechanism involving multiple alternative σI-like factors
[46] was found modulating transcription of cellulosomal
genes, suggesting a surprising degree of divergence for
cellulolysis regulation in cellulolytic clostridia. Compa-
ring the cellulose degradomes in this and related organ-
isms should help the design and construction of cellular
systems for robust and green conversion of lignocellu-
lose to valuable products.

Conclusions
A molecular model of cellulose degradome in Ccel was pro-
posed that revealed the substrate-specificity of CAZymes
and their regulatory modes. CCR-related regulators sense
intracellular glycolytic intermediates and control the core
CAZymes that mainly include cellulosomal components.
On the other hand, 11 sets of Two-Component Systems
(TCSs) respond to availability of extracellular soluble sugars
and respectively regulate most of the accessory CAZymes
and associated transporters. Surprisingly, glucose acts as a
CCR inhibitor instead of a trigger. Under glucose alone, the
core cellulases were highly expressed at both transcript and
protein levels. Furthermore, glucose enhanced cellulolysis
in a dose-dependent manner, via inducing cellulase tran-
scription at low concentrations. These features represent
a distinct environment-sensing strategy for competing while
collaborating for cellulose utilization, which can be ex-
ploited for process and genetic engineering of microbial
cellulolysis.

Methods
Strains and culture conditions
Clostridium cellulolyticum ATCC 35319 or H10 (Ccel)
was cultured anaerobically at 35°C in 250 mL flasks with
100 mL working volume of modified DCB-1 medium
[56] supplemented with 2.0 g/L of glucose, xylose, cello-
biose, or 5.0 g/L of cellulose (Avicel PH101), xylan (from
oat spelts) or milled corn stover. A 1% (v/v) inoculum of
culture pre-adapted on various substrates in vials was
used for inoculation. Cellular growth on glucose, xylose,
cellobiose and cellulose was monitored by optical density
of the culture at 600 nm (OD600), while that on xylan
and corn stover was measured based on increase of cel-
lular proteins in the culture, as suspension of substrates
interfered with OD600 measurement. After lysing cells in
NaOH/SDS solution, cell debris were pelleted and re-
moved, then protein concentration in the supernatant was
estimated using the BCA assay. Concentrations of residual
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glucose and cellulose were measured respectively by
Megazyme D-glucose kit and phenol-sulfuric acid method
as described previously [9].
Preparation and sequencing of transcriptomes
Total RNA was isolated from cultures harvested at the
mid-log phase using RNeasy Mini Kit (Qiagen). Genomic
DNA was removed by RNase-Free DNase Set (Qiagen).
RNA quality was determined using Bioanalyser (Agilent)
and quantified using ND-2000 (NanoDrop Technologies).
Message RNA were purified by removing 16S and 23S
rRNA from total RNA using MicrobExpress™ Bacterial
mRNA Purification kit (Ambion), with the exception that
no more than 5 μg total RNA was treated per enrichment
reaction. Reduction of 16S and 23S rRNA was confirmed
by 2100 Bioanalzyer (Agilent) and gel electrophoresis
prior to preparation of cDNA fragment libraries. RNA
was reversely transcribed using random primers and
Superscript III (Invitrogen) to generate cDNA.
Sequencing libraries for GA-IIx (Illumina, USA) were

constructed by shearing the enriched cDNA by nebuliza-
tion (35psi, 6 min) followed by end-repair with Klenow
polymerase, T4 DNA polymerase and T4 polynucleotide
kinase (to blunt-end the DNA fragments). A single 39
adenosine moiety was added to the cDNA using Klenow
exo and dATP. The Illumina adapters (containing primer
sites for sequencing and flowcell surface annealing)
were ligated onto the repaired ends of cDNA and
gel-electrophoresis was used to separate library DNA
fragments from unligated adapters by extraction of the
200–250 bp cDNA fragments. Fragmentation followed
by gel electrophoresis was used to separate library DNA
fragments and size fragments were recovered using gel
extraction at room temperature to ensure representation
of AT rich sequences. Libraries were amplified by PCR
(18 cycles) with Phusion polymerase. Sequencing librar-
ies were denatured with sodium hydroxide and diluted
to 3.5 pM hybridization buffer before loading into a lane
of an Illumina GA flowcell. Cluster formation, primer
hybridization and single-end, 36 cycle sequencing were
performed (Illumina, USA). The efficacy of each stage
during library construction was ascertained by quality
control which involved measuring the adapter-cDNA on
an Agilent DNA 1000 chip. A final dilution of 2 nM of
the library was loaded onto the sequencer.
Transcriptomic analysis
Mapping reads to the genome
A customized computational pipeline was developed.
Low quality bases located at the end of each read were
removed, then the reads were mapped to the Ccel
genome (GenBank: NC_011898) using SOAP. Reads that
did not align uniquely to the genome or were mapped to
rRNA genes were discarded. The mismatch number
parameter (−v) used in SOAP was 2.

Core and accessory transcriptional glycobiome
The “core transcriptional glycobiome” were defined as
regions expressed under all of the substrates tested. The
“accessory transcriptional glycobiome” were regions
expressed under only one carbon substrates. For the latter,
two additional criteria were used to filter out potential
false positives: (i) not overlapping with other transcribed
regions and (ii) average sequencing depth being greater
than two.

Normalized transcript abundance (NTA)
Transcript abundance (TA) was determined as follows:
for each particular gene j in the NCBI annotation, the
number of unique k hits associated with each base in
each gene was quantified, overall k values summed
which correspond to each base located in gene j, and
then divided by the length of gene j to represent TA of
gene j. This value was then normalized using each sam-
ple’s average sequencing depth (ASD). The normalized
TA (NTA) was calculated as: NTAj = TAj / ASD.

Estimation of differential expression
Based on each gene’s NTA, an R package (DEGseq) was
employed to identify those differential expression genes.
The MA-plot-based method was used with random sam-
pling model. The sets of genes were selected for further
analysis after the following filters: (1) NTA log2 ratios
were considered significant when ≧2.0 or ≦ −2.0; (2)
positive NTA log2 ratios that had numerators below 0.01
were ignored; (3) negative NTA log2 ratios that had de-
nominators below 0.01 were not selected; (4) the P-value
for differential expression was set to be ≦ 0.05.
In addition to those based on intensity ratio and average

intensity (MARS), two other methods were employed to
evaluate differential expression: Fisher’s exact test and Like-
lihood ratio test. All these methods were implemented in
DEGexp [57]. The overall differential expression calls were
highly similar among the methods and in all subsequent
analysis, thus differential expression genes validated by
these three methods were used for the following analysis.

Validation of mRNA-Seq based transcript quantification
To examine the biological reproducibility of RNA-Seq,
one pairs of differential cDNA libraries (C2 and C3)
were constructed and sequenced as biological replicates
of the original cellulose (C1) library. Correlation analysis
was performed using Spearman’s rank correction test.
The RNA-Seq data was found to be highly and signifi-
cantly correlated among the three biological replicates
(Additional file 9: Figure S3A and B). For evaluating the
technical reproducibility, two replicates for the each
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biological replicate of cellulose samples were se-
quenced on GA-IIx, which demonstrated reproducibil-
ity (Additional file 9: Figure S3C, D, E).
To further validate the mRNA-Seq based transcript

quantification, we correlated the results from RNA-Seq
(the average NTA for a transcript) with the absolute
transcript copy number measured via qRT-PCR. The
qRT-PCR was performed using the SYBR Green I on
LightCycler®480II using FastStart Universal SYBR Green
Master (Roche). Genes selected for this test included
Ccel_0270, 0271, 0297, 0298, 0445, 0446, 0597, 0598,
0728, 0729, 0730, 0731, 0732, 0885, 1060, 1608, 1986,
1987, 2065, 2066, 2111, 2112, 1223 and 2485 under two
conditions (growing on glucose and cellulose), which en-
code the subunits of cellulosome and components of
ABC transporters. The primer sets for qRT-PCR were
listed in Additional file 10: Table S7. Data of qRT-PCR
from these studies were normalized against expression
of Ccel_0312 which encodes the beta-subunit of DNA-
directed RNA polymerase. Relative RNA-Seq read cover-
age under each condition was normalized against data
obtained under glucose. Based on transcript levels of the
24 genes, log-transformed average NTA and Log-
transformed qRT-PCR relative transcriptional level
were respectively correlated (Additional file 9: Figure
S3F, P < 0.0001, R2 = 0.82), indicating that RNA-Seq
provides reliable quantitative estimate of NTA.
Functional comparisons of transcripts and transcriptomes
Association between genes and COG functional groups
was based on NCBI (http://www.ncbi.nlm.nih.gov/sutils/
coxik.cgi?gi=23673). Non-expressed genes and those not
assigned by COG were excluded for further analysis. The
COG functional groups with less than 20 expressed genes
were discarded for lacking of statistical power. Gene
Ontology (GO) categories and InterPro ID were assigned
using InterProScan (version 4.7). The number of genes in
the Ccel genome assigned to each GO term, or its parents
in the hierarchy, was totaled. To control difference in the
specificity of gene prediction, genes that could not be
assigned to a GO category were excluded from the re-
ference sets. The results were compiled and statistical
comparisons were made among the numbers of genes
assigned to each GO term in different samples.
Putative CAZymes encoded in the genome were iden-

tified by comparing each protein model with a library of
modules derived from all the entries present in CAZy
[19] (http://www.cazy.org/). This library includes cata-
lytic modules involved in hydrolysis, modification or cre-
ation of glycosidic bonds (from the enzymes classes GH,
CE, PL, and GT), as well as CBMs, dockerin and cohesin
modules. Genes harboring these modules were com-
pared based on their transcriptional level.
Transcription factor-specific operator motif analysis
Sequence homologs of putative CcpA-like regulator
(Ccel_1005) and four other LacI-family proteins in Ccel
(Ccel_1438, Ccel_2999, Ccel_3000 and Ccel_3464) were
found from the NR database using the BLASTP server
at NCBI and the HTH domains of the above-mentioned
Ccel proteins as queries (Additional file 6: Figure S2A).
The upstream regions of the genes harboring each of the
groups of homologous domains were searched for puta-
tive operator sites via MEME [29]. The LacI-family tran-
scriptional factors (TFs) were known to form functional
dimmers thus the binding sequence motifs of these TFs
are 10 ~ 16 bp palindromes [30,58]. A position-specific
scoring matrix was created using WebLogo (http://
weblogo.berkeley.edu/) by applying MEME to the de-
fined operator regions (Additional file 6: Figure S2B).
The matrices were used as input for an automated motif
search at a database of upstream sequences of all Ccel
genes using FIMO (P < 0.0001) [29].
Proteome analysis
Cultures grown on the glucose and cellobiose for prote-
omics experiments were harvested at the end of the
exponential growth stage. The cultures were centrifuged
(12,000 g, 4°C, 30 min), and the supernatants filtered
through a 0.22-m PES membrane to obtain a cell-free
fraction. The cell-free supernatants were concentrated
using an ultrafiltration device containing a noncellulosic
PES membrane with a 5 kDa molecular weight cutoff
(Millipore). Concentrated samples were then pooled, pre-
cipitated with 1/4 volume of 100% (w/w) trichloroacetic
acid (TCA) and incubated for 60 min at 37°C in 1% SDS,
0.2 M NaOH, and 10 mM DTT. Cysteines were alkylated
with 30 mM iodoacetamide at room temperature in the
dark for 60 min. Proteins were again precipitated using
TCA and resuspended in 50 mM Tris–HCl (pH 7.6), 1M
urea and digested overnight at 37°C with sequencing grade
trypsin (Promega) with a 50:1 substrate to enzyme ratio.
Peptide solutions were acidified with trifluoroacetic acid
(TFA) to a final concentration of 0.5% and <50 μg of
peptides. Peptides were desalted using C18 reversed-phase
extraction using Pierce C-18 spin columns (Thermo) and
analyzed by microcapillary LC-MS/MS using a hybrid
quadrupole/atmospheric pressure ionization orthogonal
accelerated time-of-flight mass spectrometer (MSI-Q-
TOF; Bruker Daltonics).
The MS/MS spectra acquired were assigned to spe-

cific peptide sequences using Mascot (http://www.
matrixscience.com/search_intro.html) with a FASTA
proteome database specific to C. cellulolyticum. The
database contained common contaminant protein en-
tries as well as reversed decoy sequences for assessment
of protein-level false discovery rates. Absolute protein
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Xu et al. Biotechnology for Biofuels 2013, 6:73 Page 13 of 15
http://www.biotechnologyforbiofuels.com/content/6/1/73
abundance within each treatment was estimated from
MS/MS spectral counts using Trans-Proteomic Pipeline
(TPP) [59].

Additional files

Additional file 1: Table S1. General features of the complete genome
of Clostridium cellulolyticum ATCC 35319 (H10).

Additional file 2: Figure S1. Growth curves and transcriptomic
overview of Clostridium cellulolyticum. (A) Growth curves of Clostridium
cellulolyticum on glucose, xylose, cellobiose, cellulose, xylan and corn
stover. Cell growth was monitored by measuring OD600 under glucose
(Glu, open square), xylose (Xyl, open triangle), cellobiose (Ceb, open
circle) and cellulose (Cel, filled circle) and by determining the amount of
cellular protein produced on xylan (Xyn, filled triangle) and corn stover
(CS, filled square) as described in Methods. The symbols indicate the
means of three experiments, and the error bars indicate the standard
deviations. (B) Overview of the Clostridium cellulolyticum transcriptome
generated by RNA-Seq. Data were normalized by the number of CDS for
each function encoded within the entire genome. A ratio of 1 represents
transcription of functional class on par with its genome content. A ratio
of more than one represents a transcriptionally enriched class, and less
than one, depleted.

Additional file 3: Table S2. The normalized transcript abundance (NTA)
of all genes under various carbon subtrates in Clostridium cellulolyticum.

Additional file 4: Table S3. Clostridium cellulolyticum genes that were
differentially expressed between any two of the conditions of glucose,
cellobiose and cellulose.

Additional file 5: Table S4. The four groups of CAZymes and their
relative transcript abundance under the various carbon substrates in
Clostridium cellulolyticum.

Additional file 6: Figure S2. Phylogeny and putative operator motifs of
CcpA-like regulators in C. cellulolyticum. (A) Phylogenetic (Neighbor-
joining) tree of the HTH DNA-binding domains of Ccel_1005, Ccel_1438,
Ccel_2999, Ccel_3000 and Ccel_3464, and their homologues in other
Gram-positive bacteria (Methods). Bootstrap values are indicated. (B)
Putative operator motifs of the Ccel LacI-family regulators. Upstream
regions of the genes flanking the query and subject genes were
inspected for sharing similarity to the cre consensus sequence and used
to create the Ccel_1005, Ccel_1438, Ccel_2999, Ccel_3000 and Ccel_3464
specific operator motifs.

Additional file 7: Table S5. Putative cre sites present in the promoter
regions of certain Clostridium cellulolyticum genes.

Additional file 8: Table S6. Label-free quantitation of proteins in cell-
free supernatant of Clostridium cellulolyticum based on the normalized
spectra counts of LC-MS/MS.

Additional file 9: Figure S3. Validation of mRNA-Seq based transcript
quantification for genome-wide expression profiling. (A and B) Biological
replicates. In the correlation plots, each point indicates the TA of an
individual CDS in two biological replicates for cellulose sample. (C, D, and
E) Technical replicates. In the correlation plots, each point indicates the
TA of an individual CDS in pairwise technical replicates for cellulose
sample. (F) Real-time quantitative RT-PCR (qPCR) validation of mRNA-Seq
based transcript quantification. The induction levels were compared
among 24 genes in C. cellulolyticum. All genes were randomly selected.
The comparison was plotted on log2R, which was determined by
qRT-PCR (x axis) and RNA-Seq (y axis).

Additional file 10: Table S7. A complete list of PCR primer sets used in
this study.
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