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Abstract

Background: 2,3,5,6-Tetramethylpyrazine (TMP) is a popular food flavour additive. This biologically active ingredient
has additional potential dietotherapy functions, such as in cardiovascular and cerebrovascular health. Previous
production methods from renewable materials suffer from low yields and efficiency which seriously hampers the
scaling up of the laboratory processes.

Results: We have found a novel temperature-controlled two-step preparation method of TMP with highly elevated
production yield and efficiency. In the first step, 30.1 g L™ of acetoin, the precursor of TMP, was biosynthesized in
29 h from 100 g L' of glucose by Bacillus subtilis CICC 10211 in a fermentor controlled at 37°C, pH 7.0+ 0.2,

500 rpm of stirring, and 1.0 vwm of airflow. In the following step, the fermentation broth, supplemented with

67.7 g L' of diammonium phosphate, was transferred into another reactor controlled at 95°C. After 2.5 h of
spontaneous reaction, 834 g L' of TMP was obtained. A temporary by-product, which was identified as 2-(1-
hydroxyethyl)-2,4,5-trimethyl-3-oxazoline, was formed but then decomposed rapidly under higher temperature.
The novel method received consistent results when it was tested using Serratia marcescens CICC 10187 and
Paenibacillus polymyxa CICC 23617, respectively. Crystallized TMP with high purity (99.9%) from the cooled reaction
mixture was harvested by filtration.

Conclusions: The novel method can be expanded for other acetoin-producing strains and it gives the highest product
titre and production efficiency so far devised for TMP production from renewable materials. The complex components

of the reaction mixture have no effect on the purity of the product obtained from the crystallization process.
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Background

A colourless crystalline compound, 2,3,5,6-tetramethyl-
pyrazine (TMP) has a pleasant tonality of nutty, roasty,
and toasty. It naturally exists in fried, roasted, or grilled
foods like potato, bell pepper, wheaten bread, beef, lamb,
pork, tea, coffee, peanuts, filberts [1], tortillas [2], and
rice cakes [3]. It is also found in a variety of fermented
foods such as cheese, rum, whiskey, Chinese liquors [4],
vinegars [5], and soybean-based fermented foods [6].
With the Flavor and Extract Manufacturers Association
(FEMA) number 3237, it is a substance generally recognized
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as safe, and is mainly used in the food industry to enhance
the flavour of the products.

Additional dietotherapy functions have been attributed
to TMP. It exists abundantly in the rhizome of Chuan-
xiong (Ligusticum wallichii), a famous Chinese medicinal
plant. Chuanxiong is usually stewed with fish, chicken,
or duck and such meals are held to be good for cardio-
vascular and cerebrovascular health [7]. This alkaloid
has been widely used in China to treat several diseases
[8,9]. TMP can also serve as the precursor in the synthe-
sis of several other biological materials of value [10-12].

The current supply of commercial TMP is largely from
chemical synthetic methods, which involve radical reac-
tions and impose environmental impacts. In the face of
the current scarcity of fossil feedstock supplies, the
prices for the raw materials for these synthetic methods

© 2014 Xiao et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:zjxiao@upc.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Xiao et al. Biotechnology for Biofuels 2014, 7:106
http://www.biotechnologyforbiofuels.com/content/7/1/106

are rising. Consumer pressure for natural products adds
to this trend [6], especially when the compound is used
in foods, medicines, and cosmetics. Therefore, extensive
efforts have been made to develop natural TMP produc-
tion using biotechnology.

Direct extraction of natural TMP from plants suffers
from the shortage of raw materials, thus making this
method unfeasible. Fermentation engineering is a prom-
ising alternative green technology in TMP production
from renewable feedstocks. The current record of the
highest titre of TMP fermentation is 7.46 g L™" in 120 h
[13]. In the present study, a novel temperature-controlled
two-step preparation method of TMP has been devised,
which raises this figure to 8.34 g L™" in 31.5 h. A simple
downstream process with high product purity has also
been introduced.

Results and discussion
The first step: accumulation of the precursor acetoin
As shown in Figure 1, the typical kinetic process of acet-
oin biosynthesis from glucose by Bacillus subtilis CICC
10211 can be divided into three stages. The depletion of
glucose and the maximum yield of biomass, lactic acid,
and 2,3-butanediol were the boundary events between
stage I and II. The maximum yield of acetoin was the
landmark between stage II and III. In stage I, glucose
was rapidly assimilated accompanied by cell propagation.
The three main primary metabolites, lactic acid, acetoin,
and 2,3-butanediol accumulated simultaneously and rap-
idly. In the following stage, lactic acid served as the main
alternative carbon and energy sources for cellular main-
tenance. Also in stage II, acetoin was accumulated very
efficiently. In the last stage, that is, the decline phase,
large populations of cells died and the bacterial respir-
ation became very weak. Acetoin was re-utilized as the
carbon source by the remaining cells in this stage.

As a model species of Gram-positive bacteria, B. subti-
lis has been well-studied. A large part of the current
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knowledge of acetoin metabolism in bacteria came from
the research into this species [14]. Therefore, the acetoin
metabolic pathway in B. subtilis CICC 10211 can be pos-
tulated as shown in Figure 2 (up) from a consideration
of the kinetics of the metabolites in Figure 1. Although
21 g L' of lactic acid is accumulated in stage I, over-
acidification of the intracellular environment is attenu-
ated by the conversion of excess pyruvate to neutral
acetoin and 2,3-butanediol, which agrees with its physio-
logical significance in pH homeostasis [15]. In stage II,
lactic acid is efficiently dehydrogenated to pyruvate to
produce the reducing power (that is, the generation of
nicotinamide adenine dinucleotide plus hydrogen (NADH)
by lactate dehydrogenase) needed for cellular oxidation re-
actions. Excess pyruvate is again channelled into neutral
acetion. Meanwhile, 2,3-butanediol is transferred back to
acetoin by 2,3-butanediol dehydrogenase, which assists the
regulation of the cellular nicotinamide adenine dinucleo-
tide (NAD)/NADH ratio [16]. Finally, when lactic acid and
2,3-butanediol are all exhausted (at 26 h in Figure 1) and
there is not enough reducing power capable of supporting
vigorous bacterial respiration, there is a radical increase in
the partial pressure of dissolved oxygen (pO,). Without the
repression of glucose mediated by the catabolite control
protein A, acetoin induces the transcription of the aco op-
eron [17]. Then, the acetoin dehydrogenase enzyme system
(AoDH ES) is expressed to break down acetoin into C,
units, which are channelled into central metabolic net-
works. This process fulfils the energy-storing strategy of
the acetoin biosynthesis pathway [14].

The second step: accelerated spontaneous formation of
TMP

The formation mechanism of TMP in vivo is a conten-
tious issue on which there are two main viewpoints. The
first of these, the enzymatic condensation biogenic path-
way, has been supported by several authors [19]. However,
the enzymes or genes responsible for the condensation
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Figure 1 Typical kinetic process of acetoin biosynthesis from glucose by B. subtilis CICC 10211. The 5-L fermentor was operated at a
temperature of 37°C, pH of 7.0 £ 0.2, stirring at 500 rpm, and airflow of 1.0 vwm. pO,, partial pressure of dissolved oxygen.
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Figure 2 The simplified acetoin metabolic pathway in B. subtilis
CICC 10211 (up) and the spontaneous reactions [18] of acetoin and
ammonium (down). Bold arrows with solid, dot, and dash-dot lines are
reactions taking place in stage |, Il, and Il in Figure 1, respectively. EM,
Embden-Meyerhof pathway; PDH, pyruvate dehydrogenase complex;
LDH, lactate dehydrogenase; ALS, a-acetolactate synthase; ALDC,
a-acetolactate decarboxylase; BDH, 2,3-butanediol dehydrogenase;
AoDH, acetoin dehydrogenase enzyme system. Arrows with
upper-case letter S are non-enzymatic spontaneous reactions.

SPONTANEOUS REACTIONS

reaction have never been reported. In the second route,
the so-called Biochem-Chem route (Figure 2), acetoin is
biosynthesized in vivo but the following processes to TMP
are nonenzymatic spontaneous reactions. This route has
gained convincing experimental support [20]. Our results
of this study give support to the second viewpoint because
cellular enzymes were inactivated but TMP formation was
accelerated at high temperature.

Stage III in Figure 1 is undesirable and should be
avoided to save acetoin for TMP condensation. Therefore,
the fermentation broth at the time point of maximum
acetoin yield (29 h in Figure 1) is transferred from the fer-
mentor, supplemented with an optimum ammonium salt,
and heated up to the desired temperature for the acceler-
ated formation of TMP. If the temperature is not elevated,
TMP can also be produced but at a very low speed, which
is consistent with previous results [13]. The formation of
TMP from acetoin is highly temperature-dependent, as
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discussed below. At an elevated temperature (for example,
95°C), the condensation of acetoin to TMP can be
achieved at a desirable speed. As an additional benefit,
the enzymatic breakdown of acetoin can be completely
prevented under high temperature conditions.

As indicated in Figure 2 (down), ammonium is another
key precursor of TMP. The choice of the right ammo-
nium salt is essential in TMP synthesis. DAP (diammo-
nium phosphate) has been confirmed to be most efficient
in supporting TMP accumulation among various ammo-
nium sources [6,21]. The mechanism that phosphate buf-
fer can significantly promote TMP formation in acetoin/
ammonium systems has been explained in terms of phos-
phate serving as both proton donor and acceptor to facili-
tate proton transfer during the Schiff base formation
between ammonia and acetoin [22]. DAP was therefore
chosen as the ammonium source in this study.

The amount of supplemented DAP was optimized at
95°C for 3 h of reaction. As shown in Figure 3, the yield
of TMP increased as the molar ratio of acetoin/ammo-
nium increased from 1/1.0 to 1/2.5. However, this trend
ceased with further DAP. Therefore, 1/2.5 and 1/3.0
were chosen in the following kinetic study of TMP
formation.

As indicated in Figure 4A, the condensation speed of
acetoin to TMP is highly temperature-dependent. At 95°C,
8.34 g L' of TMP can be synthesized from 30.1 g L™" of
acetoin and 67.7 g L™ of DAP (molar ratio of acetoin/am-
monium = 1/3.0) after 2.5 h of reaction. Further elevation
of temperature can further accelerate the formation of
TMP. However, the current efficiency at 95°C is acceptable
and if the reaction solution is heated to boiling point, TMP
would be significantly entrained with the water vapour. In
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Figure 3 Effect of molar ratio (acetoin/ammonium) on
2,3,5,6-tetramethylpyrazine (TMP) production. The fermentation
broth containing 28.4 g L' of acetoin was supplemented with
different amount of diammonium phosphate (DAP) and controlled at
95°C for 3 h.
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Figure 4 The time courses of 2,3,5,6-tetramethylpyrazine (TMP)
formation (A) and 2-(1-hydroxyethyl)-2,4,5-trimethyl-3-oxazoline
(OXZ) kinetics (B) at different temperatures and acetoin/ammonium
molar ratios (as indicated in the rectangle). Initial acetoin
concentration, 30.1 g L.

this situation additional condensing equipment and energy
consumption would add to the cost of TMP production.

During the analysis of the reaction mixtures using gas
chromatography (GC), an unknown by-product often ap-
pears accompanying TMP. According to Figure 2, this un-
known compound could be one of the complex products
or something else. In order to identify and quantify this
compound, it was purified by silica gel column chroma-
tography. The purity was 97% according to GC analysis.
The compound shares a typical electron impact (EI)
mass spectrum with 2-(1-hydroxyethyl)-2,4,5-trimethyl-3-
oxazoline (OXZ) [23]. The electrospray ionization (ESI)
mass spectrum can deduce that the molecular weight is
157. According to the previous assignments of chemical
shifts [23], our nuclear magnetic resonance (NMR) data
further confirmed that the unknown by-product was
OXZ.

As shown in Figure 4B, OXZ is formed rapidly at the
beginning of the reaction. However, OXZ is unstable at
high temperature and its reducing speed is highly
dependent on temperature. As 2,4,5-trimethyl-3-oxazoline
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and 2,4,5-trimethyl-oxazole (Figure 2) were not detected
during this work, OXZ was postulated to transfer back to
C4 compounds ready for the condensation of TMP [18].
The fact that the purified OXZ product can slowly break
down to form acetoin and TMP even it is stored in the
dark at 4°C (data not shown) further supports this opin-
ion. In other words, Figure 4B indicates that higher
temperature (not more than 95°C in this study) is
favourable to reduce the formation of the by-product
OXZ and accelerate the accumulation of TMP.

Comparison of TMP production methods from renewable
feedstocks

As shown in Table 1 (third row), the yield and efficiency
of this study both substantially improve TMP production
from renewable carbon sources. This achievement is
based on the novel two-step strategy of process controls.
During the first step, acetoin was efficiently biosynthe-
sized from glucose. If DAP had been added into the fer-
mentation medium in this step, excess salts would cause
serious inhibition of cell growth and acetoin accumula-
tion [24]. A DAP feeding strategy was applied to deal
with this problem [13]. However, DAP feeding cannot
prevent the possible degradation of acetoin catalyzed by
the AoDH ES. More importantly, the efficiency of acet-
oin condensation to TMP is too low at low tempera-
tures. Therefore in the second step in this study, DAP is
supplemented and the reaction temperature is elevated
to denature the AoDH ES and improve the reaction effi-
ciency. The success of efficiency enhancement is based
on the mechanism that the condensation speed of acet-
oin to TMP is highly temperature-dependent.

The novel temperature-controlled two-step method
can be expanded for other acetoin-producing strains. In
this study, Serratia marcescens CICC 10187 and Paeni-
bacillus polymyxa CICC 23617 were tested for the pur-
pose of TMP production. However, the yields were both
low (0.14 and 3.52 g L™" of TMP, respectively) due to
weak accumulation of the precursor acetoin (1.6 and
12.7 g L™ of acetoin, respectively). The current record
of acetoin fermentation is 75.2 g L™ using S. marcescens
H32-nox [30]. According to the top 10 records of acet-
oin fermentation [31], some Bacillus strains and P. poly-
myxa CS107 [32] have also been proved to be good at
acetoin production. TMP production could be further
enhanced to a large extent if better strains were used in
the first step of the present study. However, these two
representative strains, that is, S. marcescens H32-nox
and P. polymyxa CS107, were unavailable during this
study. Thus, in order to imitate them, the similar fer-
mentation broths of S. marcescens CICC 10187 and
P. polymyxa CICC 23617 were supplemented with ap-
propriate amount of acetoin and then submitted to
the second-step reactions respectively. Pure water
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Table 1 Records of TMP production from renewable carbon sources

Bacterial strains Carbon sources Ammonium salts Process control Yield (g L™ Efficiency References
methods (gL'h™)

Serratia marcescens CICC 10187 30 g L' of sucrose plus  169.2 g L' of DAP  Temperature-controlled 1897 0372 This study

736 g L' of acetoin two-step method

Paenibacillus polymyxa CICC 30 g L of glucose plus 1244 g L' of DAP  Temperature-controlled  14.90 0.292 This study

23617 426 g L' of acetoin two-step method

B. subtilis CICC 10211 100 g L' of glucose 67.7. g L™ of DAP Temperature-controlled 834 0.265 This study
two-step method

P. polymyxa CICC 23617 30 g L' of glucose 286 g L' of DAP Temperature-controlled  3.52 0.0690 This study
two-step method

S. marcescens CICC 10187 30 g L' of sucrose 36 g L' of DAP Temperature-controlled  0.14 0.00275 This study
two-step method

B. subtilis CCTCC M208157 100 g L' of glucose 30 g L' of DAP DAP feeding 746 0.0622 [13]
fermentation

B. subtilis CCTCC M208157 100 g L' of glucose 30 g L' of DAP pH-controlled two-step  7.43 0.0619 [21]
fermentation

Bacillus sp. CCTCC M206043 200 g L' of glucose 30 gL' of DAP Glucose fed-batch 433 0.0670 [6]
fermentation

B. subtilis CCTCC M208157 100 g L™ of sucrose 30 g L' of DAP Normal batch 420 0.0382 [25]
fermentation

Corynebacterium glutamicum 80 g L' of glucose 9gL ' of DAPand  Normal batch 3 0.0.03 [26]

MB-1923

B. subtilis CCTCC M208157 10% (w/w) of glucose

B. subtilis IFO 3013 90 g kg~ initial dry Not added
weight of acetoin

Lactococcus lactis ssp. lactis 30 g L' of Na-citrate Not added

biovar. diacetyilactis FC1

B. subtilis IFO 3013 60 g L' of acetoin Not added

69 L™ of (NH,),S0,
3% (w/w) of DAP

fermentation

Two-step solid-state 3.01° 0.00836°  [24]
fermentation
Solid-state fermentation ~ 2.45¢ 000729¢  [27]
Normal batch 057 0.0013 [28]
fermentation
Solid substrate 0.542 0.00753 [29]

fermentation

®The unit was g kg™ dry substrate. PThe unit was g kg~' dry substrate h™". “The unit was g kg

DAP, diammonium phosphate.

solutions of acetoin and DAP were used in control
experiments. As the results shown in Figure 5, there
is a fixed conversion rate of acetoin to TMP in the tested
range, regardless of using the simple pure water-acetoin-
DAP system or the complex fermentation broth-acetoin-
DAP system. The components of the three kinds of
fermentation media (that is, the media for B. subtilis
CICC 10211, S. marcescens CICC 10187, and P. polymyxa
CICC 23617, respectively) did not produce any noticeable
effects on reaction products by GC analysis.

As indicated in Figure 5, the conversion rate of acetoin
to TMP was 0.168 mol mol™" acetoin, corresponding to
only 33.6% of the theoretical conversion rate. There was
0.6 to 1.4 g L™! of unreacted acetoin remaining in the re-
action mixtures. The volatile by-product OXZ existed
only in trace amounts in the final products. Acetoin can
act as the precursors of many other kinds of compounds
due to its reactive hydroxyl group and the hydrogens on
the alpha position of the carbonyl group. Fu et al. [18]
revealed some side-reactions using GC-mass spectrom-
etry (GC-MS) techniques. However, owing to the limita-
tion of the gas chromatographic method, non-volatile

—1

initial dry weight. ®The unit was g kg™ initial dry weight h™".

derivatives may have been overlooked. Therefore, future
work should continue to optimize the reaction condi-
tions and find more reasons behind the low conversion
rate.

As discussed above, the enzymatic breakdown of acet-
oin can be completely prevented during the second step.
Furthermore, S. marcescens is a pathogenic species, but
3 h of 95°C reaction in the second step can inactivate
the biological pathogenic factors in the fermentation
broth, reducing the risk of industrial utilization of the
pathogenic species. The two steps of this study can of
course be accomplished in one pot. In other words, DAP
can be added into the fermentor at the endpoint of acet-
oin fermentation and then the temperature is elevated to
synthesize TMP, meanwhile killing the bacterial cells.

Product recovery and purity analysis

The reaction mixtures cool down naturally and during
this process needle-like crystals are precipitated. The
crystals are harvested by filtration using a 120-mesh
stainless steel screen and washed with a small amount of
ice water. Then the crystals are dried naturally for 2 h at
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Figure 5 Relationship between the concentration of the
precursor acetoin and the yield of 2,3,5,6-tetramethylpyrazine
(TMP). Up: the control experiments were performed in pure water
solutions of acetoin and diammonium phosphate (DAP) with the
molar ratio of acetoin/ammonium = 1/3.0; down: the reactions took
place in different kinds of acetoin fermentation broths (points A to E).
A, the fermentation broth of S. marcescens CICC 10187 (containing

16 g L of acetoin) supplemented with 36 g L™ of DAP; B, P.
polymyxa CICC 23617 (containing 12.7 g L™ of acetoin) supplemented
with 286 g L' of DAP; C, B. subtilis CICC 10211 (containing 30.1 g L™
of acetoin) supplemented with 67.7 g L' of DAP; D, P. polymyxa CICC
23617 (containing 12.7 g L' of acetoin) supplemented with 42.6 g L™
of acetoin and 1244 g L' of DAP; E, S. marcescens CICC 10187
(containing 16 g L' of acetoin) supplemented with 736 g L™" of
acetoin and 169.2 g L' of DAP. All the experiments were performed in
triplicates at 95°C for 3 h.

room temperature. The diameters of the crystals are
about 10 to 50 um in size, much larger than ordinary
bacterial cells. This advantage makes a simple filtration
process feasible.

The purity of the crystal product (determined by GC)
was 99.9% and the main impurity (0.08%) was tentatively
identified as 2,3,5-trimethyl-6-ethylpyrazine by GC-MS
analysis. This result is similar to our previous report [6].
The infrared spectrum reconfirmed the high purity of
the product. Therefore, the complex components of the
reaction mixture have no effect on the purity of the
product obtained from the crystallization process. The
recovery yield was about 66% by one-step crystallization
and filtration. There would be 1.06 and 2.81 g L™ of
TMP remaining in the 4°C and 20°C filtrate, respectively
[6]. Some tiny TMP crystals could also be formed and
they would escape to the filtrate during the filtration
process, which would further reduce the recovery yield.
Therefore, if the downstream process was optimized, the
yield would rise.

One of the major barriers for industrial acetoin fer-
mentation is the development of efficient and economic
downstream processes for the separation of acetoin from
the complex fermentation broths [31]. On the other
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hand, there is a large gap between the current prices of
natural acetoin and natural TMP (134.20 USD kg™' of
natural acetoin versus 3008.00 USD kg™ of natural TMP,
from Sigma-Aldrich W200832-5KG-K and W323713-
1KG-K, respectively). Therefore, the transformation of
acetoin to TMP can not only avoid the technical diffi-
culty of acetoin extraction from fermentation broths,
but also substantially add value to the product.

Conclusions

TMP is a valuable product due to its broad uses. Green
processes of natural TMP production from renewable
biomass continue to be of significant interest, especially
in the face of scarcity of fossil feedstock supplies today.
In this study, the novel temperature-controlled two-step
method greatly improves both the yield and the effi-
ciency of TMP production from renewable materials,
which largely results from the particular properties of
TMP and the main by-product OXZ. The yield can be
further enhanced via the use of better strains for acetoin
accumulation.

Methods

Chemicals and reagents

TMP (98%) was bought from J&K Scientific Ltd, Beijing
(China). Yeast extract and tryptone were from Difco, De-
troit, Michigan (USA). Natural acetoin (96%) was ob-
tained from Shanghai Apple Flavour & Fragrance Co.,
Ltd, Shanghai (China): 2,3-Butanediol (99%) was from
Sinopharm Chemical Reagent Co., Ltd, Shanghai (China).
All other chemicals and reagents used were of analytical
grade.

Microorganism and culture media

The microorganisms used in this study were B. subtilis
CICC 10211, S. marcescens CICC 10187, and P. polymyxa
CICC 23617. They were bought from the China Centre of
Industrial Culture Collection (Beijing, China) and main-
tained on Luria-Bertani agar slants at 4°C. The seed cul-
ture of B. subtilis CICC 10211 was prepared by growing
the bacterium in the following medium in 300-mL Erlen-
meyer flasks for 10 h with agitation (100 strokes min ™", re-
ciprocal shaker) at 37°C: 60 g L™" of glucose, 10 g L™ of
beef extract, 10 g L™" of tryptone, 10 g L™" of yeast extract,
and 5 g L™! of NaCl. The seed cultures of S. marcescens
CICC 10187 and P. polymyxa CICC 23617 were prepared
by growing them in Luria-Bertani broth in 250-mL Erlen-
meyer flasks for 12 h with agitation (150 strokes min~},
rotary shaker) at 37°C.

The fermentation medium for B. subtilis CICC 10211
was composed of 100 g L™ of glucose, 30 g L™" of tryp-
tone, 10 g L™ of yeast extract, 3.6 g L™ of NaSO,, 3 g L™
of Na,HPO, - 2H,0, and 0.3 g L ™" of KCl. The fermenta-
tion medium for S. marcescens CICC 10187 was from Sun
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et al. [30]: 30 g L™! of sucrose, 12 g L™ of ammonium cit-
rate, 9.8 g L ™" of corn steep liquor powder, 0.9 g L™" of
KH,PO,, 0.2 g L™ of MgSO,, 0.15 g L™ of MnSO, - H,0,
and 0.02 g L7t of FeSO, - 7H,0. The composition of the
corn steep liquor powder was described previously [33].
The fermentation medium for P. polymyxa CICC 23617
was from Zhang et al. [32]: 30 g L™ of glucose, 15.93 g L™
of yeast extract, 2.02 g L™ of sodium acetate, 0.015 g L™
of MnSQy, 0.005 g L™ of FeSO,, and 0.1 g L™! of KH,PO,,
Before autoclaving, the pH of the fermentation media was
adjusted to 7.0. The carbon source and the other ingredi-
ents were autoclaved separately for 15 minutes at 121°C.

Reaction conditions

Batch fermentation of B. subtilis CICC 10211 was con-
ducted in a 5-L fermentor (BIOSTAT B, B Braun Biotech
International GmbH) controlled at 37°C. The prepared
seed culture was inoculated (2%, v/v) into the fermentor
to start the fermentation process. The pH was controlled
automatically with 1 M HCI and 1 M NaOH. The batch
fermentation experiments of S. marcescens CICC 10187
and P. polymyxa CICC 23617 were performed in tripli-
cates using 250-mL Erlenmeyer flasks in a rotary shaker
(150 strokes min™?) controlled at 37°C.

For the second step, the TMP formation step, the 5-L
fermentor fermentation process of B. subtilis CICC 10211
was terminated when acetoin reached its maximum titre.
The endpoint of fermentation could be judged from the
radical increase of the pO, level and the depletion of lactic
acid and 2,3-butanediol (as discussed in Results and dis-
cussion). The Erlenmeyer flask fermentation processes of
S. marcescens CICC 10187 and P. polymyxa CICC 23617
were terminated at 48 h. The fermentation broths supple-
mented with DAP were then transferred into stoppered
flasks or test tubes placed in a water bath controlled at the
desired temperatures.

Purification of volatile by-products

The reaction mixture was evaporated under reduced
pressure at 70°C. The fraction was collected and ex-
tracted with chloroform. Then the chloroform was re-
moved by evaporation and the residue was loaded onto
a silica gel column (30 mm x400 mm glass column
packed with 300 to 400 mesh silica gels). Petroleum
ether, chloroform, chloroform plus methanol (3:1, v/v),
and methanol were used sequentially as the eluent in a
stepwise mode. The fractions were analyzed by GC and
those containing the same composition were combined.
The solvent was then evaporated under a stream of pure
nitrogen.

Analytical methods
Bacterial growth was measured by recording the optical
density at 620 nm. Glucose and lactic acid concentrations
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were enzymatically determined with an YSI 2700 SELECT
biochemical analyzer (Yellow Springs Instrument Co.,
USA). The volatile products were quantified as previously
described [6,34] or as the following method. During the
TMP formation step, every 40 uL of the reaction mixture
was diluted with 1,200 pL of absolute ethanol and centri-
fuged at 8,000 rpm for 5 minutes. Then the supernatant
was immediately subjected to GC analysis using an Agi-
lent 7890A GC equipped with a flame ionization detector
and a 30-m HP-5 (0.32 mm inside diameter, 0.25 pm film
thickness) capillary column (19091 J-413, Agilent). When
the yield of TMP was higher than its solubility, the
whole reaction mixture was extracted with equal vol-
ume of dichloromethane before GC quantitative ana-
lysis. n-Hexanol or n-butanol was used as the internal
standard. The GC column oven was kept constant at
50°C for 2 minutes, then programmed to 250°C with a
temperature increase of 10°C min~', and then main-
tained at 250°C for further minutes if necessary. Other
metabolites and reaction products were tentatively
identified using GC-MS (Agilent GC 7890A/MS 5975C).
MS in the EI mode was generated at 70 eV. ESI mass
spectrometry was applied to determine the molecular
weight using an API-4000 system (Applied Biosystems,
USA). The structure of the purified by-product was
also determined by a Bruker AVANCE 600 FT-NMR
spectrometer equipped with CryoProbe TM (Germany)
operating at 600 MHz. The sample was dissolved in
CDCl3, and the chemical shifts were calibrated against
tetramethylsilane.

The final crystallized TMP product was resolved in
absolute ethanol and then analyzed by GC. The crys-
tals were examined on a hemocytometer slide using a
light microscope (DMI3000B Microscope, Leica). In-
frared spectroscopic analysis of the TMP product was
also performed using the potassium bromide pellet
method with a Fourier transform infrared spectrometer
(Nicolet 6700). As a control, the TMP standard (98%)
was further purified by recrystallization. Briefly, 0.1 g
of TMP was dissolved in 10 mL of boiling water and
then the solution was cooled naturally. The crystallized
TMP was harvested by filtration. Then the crystals
were dried naturally for 2 h at room temperature.
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