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Efficient estimation of the maximum 
metabolic productivity of batch systems
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Abstract 

Background:  Production of chemicals from engineered organisms in a batch culture involves an inherent trade-
off between productivity, yield, and titer. Existing strategies for strain design typically focus on designing mutations 
that achieve the highest yield possible while maintaining growth viability. While these methods are computationally 
tractable, an optimum productivity could be achieved by a dynamic strategy in which the intracellular division of 
resources is permitted to change with time. New methods for the design and implementation of dynamic microbial 
processes, both computational and experimental, have therefore been explored to maximize productivity. However, 
solving for the optimal metabolic behavior under the assumption that all fluxes in the cell are free to vary is a chal-
lenging numerical task. Previous studies have therefore typically focused on simpler strategies that are more feasible 
to implement in practice, such as the time-dependent control of a single flux or control variable.

Results:  This work presents an efficient method for the calculation of a maximum theoretical productivity of a batch 
culture system using a dynamic optimization framework. The proposed method follows traditional assumptions 
of dynamic flux balance analysis: first, that internal metabolite fluxes are governed by a pseudo-steady state, and 
secondly that external metabolite fluxes are dynamically bounded. The optimization is achieved via collocation on 
finite elements, and accounts explicitly for an arbitrary number of flux changes. The method can be further extended 
to calculate the complete Pareto surface of productivity as a function of yield. We apply this method to succinate 
production in two engineered microbial hosts, Escherichia coli and Actinobacillus succinogenes, and demonstrate that 
maximum productivities can be more than doubled under dynamic control regimes.

Conclusions:  The maximum theoretical yield is a measure that is well established in the metabolic engineering liter-
ature and whose use helps guide strain and pathway selection. We present a robust, efficient method to calculate the 
maximum theoretical productivity: a metric that will similarly help guide and evaluate the development of dynamic 
microbial bioconversions. Our results demonstrate that nearly optimal yields and productivities can be achieved with 
only two discrete flux stages, indicating that near-theoretical productivities might be achievable in practice.

Keywords:  Flux balance analysis, Dynamic optimizations, Elementary flux modes, Actinobacillus succinogenes, 
Escherichia coli
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Background
Microbial bioconversion plays a critical role in efforts 
to enable sustainable production of commodity chemi-
cals from renewable feedstocks. The economic feasibil-
ity of the integrated biorefinery concept therefore hinges 
sharply on the productivity, yield, and titers that can 
be achieved by a given microbial host [1]. Flux balance 

modeling has emerged as an important tool in guiding 
experimental efforts in strain design by predicting the 
effects of gene knockouts and overexpression on metabo-
lite yields [2]. In developing engineered organisms for 
optimal performance in batch cultures, a trade-off is 
often encountered between the productivity and yield 
that can be obtained via metabolic interventions [3]. As 
a result, many existing strategies for strain design such 
as OptKnock or OptForce involve designing mutations 
to achieve the highest possible yield while maintaining 
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growth viability [4, 5]. Other strategies, including DyS-
ScO, have specifically addressed the importance of pro-
ductivity through dynamic simulations [6, 7]. Overall, 
approaches tend to follow the principle of designing 
static networks with minimum metabolic functionality to 
achieve desired product yields [8]. While these methods 
are computationally and experimentally tractable, opti-
mum productivity is likely achieved by a dynamic strat-
egy, in which the partition of resources between biomass 
and product formation varies with time [9].

Experimental studies have investigated the use of 
multi-stage fermentations to increase productivity and/
or yield. These techniques range from simple manipula-
tions, such as changing from aerobic to anaerobic condi-
tions [10, 11], to more complex genetic toggle switches 
[12] or otherwise inducible gene expression [13]. Com-
putational methods have also been developed to aid in 
optimizing two-stage fermentation systems. Gadkar et al. 
optimized the flux profile of glycerol kinase to maximize 
the productivity of glycerol from glucose [14]. Simi-
larly, Anesiadis and coworkers proposed an extension to 
Gadkar’s work, where parameters for a quorum-sensing 
toggle switch are tuned to provide the optimal repres-
sion for a target gene to maximize ethanol productivity 
[15]. By choosing a single reaction target as their control 
strategy and ensuring that unmodulated fluxes are con-
strained to maximize a growth objective, these strategies 
follow similar, well-known techniques such as MOMA 
[16] or ROOM [17] in calculating an expected biological 
response from an experimental perturbation. However, a 
method to calculate a theoretically optimal global limit 
for a batch culture’s metabolic productivity does not cur-
rently exist.

The calculation of maximum theoretical yield is well 
established in the metabolic engineering literature, and 
its use helps guide strain design and pathway selection 
for static knockout and/or overexpression efforts. Maxi-
mum yields are useful even though they are not physi-
cally realizable: they reveal the cofactor balancing and 
pathway split ratios necessary to achieve optimum car-
bon conservation. In an analogous fashion, an estimate 
of the maximum theoretical productivity of a batch cul-
ture system would prove equally useful for the growing 
field of designing dynamic metabolic interventions. How-
ever, due to the computational burden associated with 
optimizing over all feasible flux profiles, no generalized 
framework for such an estimate currently exists.

In this article, we present an efficient method for cal-
culating the maximum theoretical productivity of a batch 
system based on dynamic optimization [18]. Dynamic 
optimization is a mathematical approach for solving 
problems involving a differential equation for a desired 
endpoint objective, in this case the maximum product 

production in the minimum time. Rather than guessing 
values for the metabolic state and repeatedly integrating 
the system forward in time, the approach involves divid-
ing the time domain into a set of finite elements, and 
within each, representing the dynamic system by a col-
lection of interpolating polynomials. The polynomials 
are constrained to be continuous between each finite ele-
ment, and at each of a set of defined points, constraints 
are imposed to ensure the derivatives of the interpolat-
ing polynomials are consistent with maximum substrate 
uptake rates and maintenance requirements. In this 
manner, optimal metabolite profiles are found in a single 
optimization using a large-scale nonlinear programming 
solver. Dynamic optimization has previously been used 
in metabolic modeling, including in dynamic flux balance 
analysis (DFBA) [19] and in calculating optimal control 
for fed-batch fermentations [20]. However, its widespread 
usage has been limited by the number of variables that 
can be simultaneously considered. We therefore remove 
the explicit mass balance constraints by calculating ele-
mentary flux modes [21], and reduce the dimensional-
ity of the optimization problem using yield analysis [22]. 
Our method accounts explicitly for an arbitrary number 
of fermentation stages, and allows metabolic fluxes to 
change continuously over the course of the entire simu-
lation. The method therefore prioritizes finding reason-
able upper bounds for the productivities and yields of a 
given bioprocess over the faithful representation of a 
cell’s response to genetic perturbation. Since productiv-
ity and yield cannot be simultaneously maximized, we 
demonstrate how this method can be easily extended 
to calculate the complete productivity vs. yield Pareto 
frontier. We apply our method to succinic acid produc-
tion in two microbial hosts: engineered Escherichia coli 
and native Actinobacillus succinogenes. Succinic acid is a 
precursor to commodity chemicals in several industries, 
and a promising intermediate in the development of sus-
tainable chemical production routes [23]. We show that 
the method can be useful in strain choice by comparing 
optimal productivity–yield surfaces for two organisms, 
and further demonstrate that nearly optimal yields and 
productivities can be achieved with only two discrete flux 
stages.

Methods
Dynamic flux balance analysis
In flux balance analysis (FBA) models, intracellular 
metabolic reactions are represented by a stoichiometric 
matrix S, such that Sij represents the quantity of metab-
olite j produced (or consumed) by reaction i. Fluxes 
through each reaction are represented by the vector v. 
It is assumed that the time scales associated with intra-
cellular metabolite equilibria are much faster than those 
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associated with cell growth or changes to external metab-
olite concentrations, and therefore that metabolites in the 
cell can be modeled using a pseudo-steady-state approxi-
mation, Sv ≈ 0.

FBA models can be extended to consider the dynam-
ics of substrate consumption and biomass formation by 
including specific bounds on exchange fluxes and allow-
ing the accumulation or depletion of external metabolites. 
The dynamic system for cell growth considered in this 
paper is

where x(t) represents the concentration of external 
boundary species, chosen such that x0(t) is the con-
centration of dry cell weight (DCW, in grams), and v(t) 
represents the flux through each reaction in the cell (in 
mmol g−1

DCW h−1), chosen such that v0(t) through vN rep-
resent the exchange flux for species x0 through xN, respec-
tively. The flux through the first reaction is therefore 
the specific growth rate (v0(t) ≡ µ(t)), and is in units of 
h−1. The resulting dynamic flux balance analysis (DFBA) 
model takes the form of an ordinary differential equation 
with an embedded linear program, for which efficient 
methods for the solution of the initial value problem have 
been developed [24]. However, unlike in dynamic flux bal-
ance analysis, in this study we do not impose the optimal-
ity of a given cellular objective at each moment in time.

The objective considered in this paper is to maximize 
productivity of the desired metabolite, xp, by finding the 
optimum intracellular flux profiles v(t) and final fermen-
tation time tf, subject to steady-state constraints, reaction 
reversibility, and substrate uptake:

The optimization in Eqs.  1 and 2 therefore takes the 
form of an optimal control problem, which can be 
solved by discretizing in time and solving the problem 
using dynamic optimization. In previous applications 
of dynamic optimization in DFBA models, intercellular 
fluxes are either optimized directly [20] or replaced with 
representative input–output reactions found via path-
way analysis [19]. As each dynamic variable requires a 
number of parameters to fully specify its shape over the 
course of the fermentation, minimizing the number of 
modeled fluxes helps ensure the optimizations converge. 
In this study, we take advantage of the productivity objec-
tive to select Pareto-optimal pathways, greatly reducing 
the dimensionality of the optimization.

(1)
dxi(t)

dt
= vi(t) x0(t) for i ∈ [0,NX ],

(2)

max
v(t),tf

xp(tf)− xp(t0)

tf

such that Sv(t) = 0,

vlb(t) ≤ v(t) ≤ vub(t).

Calculation of elementary flux modes
To select the optimal metabolic pathways, we calculate 
elementary flux modes (EFMs) for both of the consid-
ered metabolic networks. An EFM is a vector r in the 
right nullspace of S (Sr ≡ 0), such that no other elemen-
tary mode has nonzero entries that are a subset of the 
nonzero entries of ri [21, 25]. EFMs contain the impor-
tant property that any vector in the right nullspace of S , 
i.e.,  any feasible steady-state flux, can be expressed as a 
nonnegative combination of the elementary modes r [26]. 
Because of this property and because we are only inter-
ested in the effect of an elementary mode on the maxi-
mum productivity, we can condense the complete set of 
EFMs to a convex hull in the projection in which we are 
interested [22]. We further restrict our analysis to the 
Pareto front of EFMs which allow optimum productivity, 
removing inefficient modes without affecting the optimal 
solution.

Dynamic optimization
We find the flux profiles that achieve the maximum pro-
ductivity via orthogonal collocation on finite elements, 
a method for solving endpoint problems involving a 
dynamic system without an embedded ordinary differ-
ential equation (ODE) integrator [18]. In the method, the 
dynamic system is represented by a series of algebraic 
constraints that implement an implicit Runge–Kutta 
method. The resulting sparse nonlinear program is then 
solved via a large-scale nonlinear programming (NLP) 
solver. Following the approach of orthogonal collocation 
[27], we represent the state variables x(t) from Eq.  1 as 
a collection of Lagrange interpolating polynomials. A 
summary of the dimensions and variables used in this 
method are presented in Tables 1 and 2.

The time domain t of the fermentation is divided into 
NK  finite elements with a nondimensionalized internal 
time τ ∈ [0, 1]. Within each finite element, we represent 
the state vector by a polynomial of degree ND at ND + 1 
collocation points, denoted τn. We use Gauss–Radau col-
location for its stiff decay, and therefore for ND = 5, we 
set τk ∈ {0, 0.06, 0.28, 0.58, 0.86, 1.00}:

Table 1  Dimensions of the NLP problem

Dimension Index Description

NX i Number of state variables

NK j Number of finite elements

ND k Degree of collocation polynomials

NF l Number of fermentation stages

NR m Number of elementary flux modes



Page 4 of 13St. John et al. Biotechnol Biofuels  (2017) 10:28 

To model changes in the flux distribution, the finite ele-
ments are allocated between NF distinct fermentation 
stages. Within each stage, we assume the fractional dis-
tribution of elementary modes is held constant, while 
the total flux through the system is allowed to vary. The 
dynamic system can thus be calculated by

in which R is a matrix of shape (NR,NX ) that contains 
the chosen elementary modes; yl contains the fractional 
distribution of each elementary mode in the given stage; 
ajk is the time-varying combined flux through all elemen-
tary modes; and x0jk represents the current biomass con-
centration at the given collocation point. In addition to 
changes in fractional EFM distribution, the step size hl is 
also optimized by the nonlinear program and allowed to 
vary between fermentation modes.

Solution of the problem involves the constrained opti-
mization over the variables found in Table 2 of the pro-
ductivity objective

Orthogonal collocation imposes a number of constraints 
during the optimization process (Eqs. 6, 7, 8, 9, 10). The 
first of these constraints is that state variable profiles 
must obey system dynamics, accomplished by ensur-
ing that the derivative of the interpolating polynomial 
defined in Eq. 3 is equal to the dynamics defined in Eq. 4 
at each collocation point. Limits are also placed on the 
specific uptake and secretion rates at each collocation 

(3)

xj(τ ) =

ND
∑

k=0

ℓk(τ )xjk

where ℓk(τ ) =

ND
∏

n=0, n�=k

τ − τn

τk − τn

(4)
dxij

dt
=

1

hl

dxij

dτ
= ajkx0jkR yl

(5)max
X,Y,A,h

xp,NK (1)− xp,0(0)
∑NK

j=0 h(j)
.

point in accordance with biological measurements, and 
the sum of the fractional expression of each elementary 
mode for the given fermentation stage is constrained to 
unity.

Furthermore, the finite elements are constrained to be 
continuous:

Bounds are also placed on each of the optimization 
variables:

Finally, two additional constraints are imposed in order 
to avoid numerical instability and trivial solutions. The 
relative change in step size between fermentation modes 
is constrained to a factor of 10,

and the fermentation must consume at least 80% of the 
initial glucose:

Implementation
Metabolic models are specified using cobrapy [28]. EFMs 
for each metabolic model are calculated via efmtool [26]. 
All calculations were performed in Python, using the 
CasADi library [29] to implement the orthogonal collo-
cation method. IPOPT [30] was used to solve the result-
ing NLP problem.

Results and discussion
We demonstrate the usefulness of the method by calcu-
lating the maximum theoretical productivities of suc-
cinic acid from glucose for two organisms, E. coli and A. 
succinogenes. In a developing a DFBA model, we inte-
grate knowledge of the core-carbon metabolic pathways 
present in the organism together with experimental data 
on biomass production and substrate uptake rates. An 

(6)

for j ∈ [0,NK ]; k ∈ [1,ND]:

hlajkx0jkR yl −

ND
∑

n=0

dℓn(τk)

dτ
xjn = 0

vlb(xjk) ≤ ajkR yl ≤ vub(xjk)

NR
∑

m

ylm = 1.

(7)xj(1)− xj+1(0) = 0 for j ∈ [0,NK − 1].

(8)

0 < X < 1000
0 < Y < 1
0 < A < ∞

0.1 < h < 30

(9)
hmax

hmin
≤ 10,

(10)
xfglc

x0glc
≤ 0.2.

Table 2  Variable matrices optimized by  nonlinear pro-
gramming

These matrices are flattened to a single parameter vector prior to being passed 
to IPOPT

Variable Shape Description

X (NX ,NK ,ND) Nodes of the Lagrange polynomials interpolat-
ing x(t)

Y (NF,NR) Fractional expression of each elementary mode 
by stage

A (NK ,ND) Total flux at each collocation point

h (NF) Length of each of the finite elements within a 
stage
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overview of the computational method is provided in 
Fig. 1.

Core‑carbon models of A. succinogenes and E. coli
Actinobacillus succinogenes
A stoichiometric model of core-carbon metabolism in 
A. succinogenes was created based on genomic evidence 
and a previous metabolic reconstruction [31]. The model 
consists of 72 metabolites and 89 mass- and charge-bal-
anced reactions. A reaction describing A. succinogenes 
cell growth was constructed from a number of experi-
mental measurements. First, a biomass yield was calcu-
lated from measured values of the specific growth rate 
and glucose uptake rate, 0.414 h−1 and 9.5 mmol, respec-
tively [32]. As the models after reduction only map the 
input–output relationships of glucose to product, the 
internal details of the biomass function could be approxi-
mated without introducing significant error into the 
method. The stoichiometry of precursor metabolites for 
biomass synthesis was therefore adapted from an E. coli 
core-carbon model [33], and scaled to match the known 

cell composition [34]. Energetic requirements of biomass 
synthesis, including ATP, NADH, and NADPH demand, 
were adapted from literature values to match the desired 
biomass yield [35]. A nongrowth-assisted maintenance 
value of 4.7 mmol g−1

DCWh−1 was also enforced, which 
was determined from the value estimated by Lin and 
coworkers [36] by finding the amount of ATP that can be 
produced from 0.308 g of glucose. Dynamic constraints 
on substrate uptake were also imposed. Substrate and 
product inhibition on growth rate in A. succinogenes have 
previously been quantified with a Han–Levenspiel model 
[36]. Using the calculated biomass yield of 0.044 gDCW
mmol−1 glucose−1, the experimentally determined 
parameters were converted to constraints on glucose 
uptake:

The parameters used in Eq. 11 are presented in Table 3. 
Additionally, the lower bound of the flux through 

(11)vglc,min =
vmax xglc

xglc + Ks

∏

n

(

1−
xn

C⋆
n

)an

.
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Fig. 1  Method overview. A flow chart for how productivity–yield surfaces are calculated. Stoichiometric metabolic models (a) are generated from 
literature sources or genome annotations and are used to calculate the extreme elementary modes of the system (c). Literature data from growth 
experiments (b) are used together with stoichiometric models to fit dynamic expressions for substrate uptake kinetics and cellular growth (d). 
Bounds on substrate uptake are used with the set of EFMs in dynamic optimization (e) in order to calculate optimal flux profiles. This procedure is 
repeated to maximize product yield for a number of specified productivity constraints (e), generating the surface of maximum yield as a function of 
desired productivity, (f)
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nongrowth-associated ATP maintenance was con-
strained to the estimated value:

No oxygen uptake was allowed to simulate anaerobic 
growth.

Escherichia coli
A core-carbon model for E. coli central metabolism was 
taken from Orth et al. [33], which consists of 72 metab-
olites and 94 reactions. Dynamic models for glucose 
uptake in E. coli typically assume Michaelis–Menten 
kinetics, in which high concentrations of glucose ulti-
mately saturate the import mechanisms at their maxi-
mum value [37–39]. However, this assumption leads 
to the erroneous result that maximum productivity is 
achieved at an infinite initial glucose concentration. Since 
no suitable literature model for substrate-level growth 
inhibition from the considered substrates could be found, 
glucose uptake kinetics were adapted from those used for 
A. succinogenes. Additional bounds on ATP maintenance 
and oxygen uptake were adapted from those determined 
by Feist and coworkers [40]:

Calculation and selection of elementary models for A. 
succinogenes and E. coli
Elementary flux modes were calculated to reduce the 
dimensionality of the optimization and to alleviate the 
necessity of enforcing stoichiometric equilibrium con-
straints during the dynamic optimization. For A. succino-
genes, 4763 EFMs were calculated for growth on glucose 
and normalized by the glucose uptake rate. After reduc-
ing EFMs to the considered boundary species, duplicate 
EFMs were removed. The boundary species considered 
for A. succinogenes included biomass, ATP, glucose, 

vatp,min = 4.7.

vatp,min = 8.39

vo2,min = −18.2.

succinate, formate, acetate, and pyruvate. Since any fea-
sible flux state can be expressed as a nonnegative com-
bination of elementary flux modes, the flux space in the 
reduced dimensionality can be spanned without loss of 
generality by only those EFMs at the vertices of a convex 
hull. Furthermore, as optimal succinate productivity will 
be achieved using flux modes on the Pareto front of cell 
growth, ATP production, and succinate secretion, the 
reduced set of EFMs were further reduced to a final set 
of 22 Pareto-optimal modes. As EFMs are normalized 
by glucose consumption, glucose need not be explicitly 
included in the Pareto surface. For E. coli, the additional 
aerobic growth modes led to a total of 100,273 EFMs. The 
boundary species for E. coli were the same as those used 
for A. succinogenes, with the addition of oxygen and the 
omission of pyruvate, which was not found to be present 
in any optimal growth mode. In addition to biomass, 
ATP, and succinate production, the convex hull of opti-
mal modes in E. coli must also consider oxygen consump-
tion. After reduction, 137 modes were kept for E. coli.

The selected EFMs for each organism are shown in 
Fig.  2, which plots 2D slices of the 3D (A) and 4D (B) 
yield surfaces. In A. succinogenes, the chosen elementary 
modes can span the entirety of the yield space for the 
considered boundary species. In E. coli, modes that con-
sume high amounts of oxygen while yielding low amounts 
of ATP are omitted by the algorithm, as they are unlikely 
to be utilized in the optimal productivity solution.

Orthogonal collocation
Optimum productivities are found via a dynamic optimi-
zation framework. To further reduce the dimensionality 
of the optimization, and to allow the effects of discrete 
fermentation stages to be explicitly simulated, we divide 
the fermentation time into a number of discrete stages. 
Within each stage, fluxes are represented by a total flux 
profile through all elementary modes along with a frac-
tional breakdown of flux through each elementary mode. 
An example optimum solution for maximum produc-
tivity from a 3-stage fermentation in A. succinogenes 
is shown in Fig.  3. For clarity, this example uses only 4 
finite elements per fermentation stage, while all other 
calculations use a minimum of 20 total finite elements 
evenly divided between stages. The figure demonstrates 
how the step sizes h are optimized to achieve the desired 
dynamic profile. Additionally, since EFMs are scaled by 
glucose uptake, the activity parameter smoothly tracks 
the maximum allowable uptake rate. ATP production 
is enforced at each collocation point by requiring that 
the flux through the ATP boundary reaction is greater 
than the nongrowth-associated maintenance require-
ment. This constraint has the effect of requiring the cells 
to choose pathways that produce extra ATP for cellular 

Table 3  Parameters for  the maximum specific glucose 
uptake, adapted from values estimated by Lin et al. [36]

Parameter Value Units

vmax −11.47 mmol g−1
DCW

Ks 11.27 mM

C
⋆
glucose 860.4 mM

C
⋆
succinate 385.7 mM

C
⋆
formate 235.3 mM

C
⋆
acetate 538.8 mM

aglucose 0.603 –

asuccinate 1 –

aformate 1 –

aacetate 1 –
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a

b

Fig. 2  Elementary Flux Mode Surfaces. Projections of the yield surfaces are shown for the 3D yield surface of A. succinogenes (a) and 4D surface 
of E. coli (b). Elementary flux modes are normalized by glucose uptake, and therefore points in yield space represent the amount of product (in 
mols) which can be produced from 1 mol of glucose. Modes which lie along the Pareto-optimal surface are highlighted in red, and the convex hull 
spanned by these points is shaded gray. For A. succinogenes, in which succinate production is coupled to optimal growth, the Pareto frontier of suc-
cinate vs. biomass yield is sharply curved. Compared with the corresponding plot in E. coli, this shape suggests that higher succinate production can 
be achieved in A. succinogenes without a linear penalty in growth and ATP yield. The entire flux cone need not be spanned by the selected EFMs, as 
demonstrated by the lack of high oxygen consuming—low ATP-producing EFMs selected for the E. coli network



Page 8 of 13St. John et al. Biotechnol Biofuels  (2017) 10:28 

demands, instead of funneling all carbon towards bio-
mass or product production. The selected EFMs in 
Fig. 3b demonstrate that optimal productivity is achieved 
by prioritizing cell growth early in the fermentation and 
succinate production in later stages. The elementary 
mode that represents the maximum theoretical yield for 
succinate on glucose, 1.71 mol succinate per mol glucose, 
is used only partially in the last fermentation stage, high-
lighting that constraints on cell maintenance prohibit the 
system from achieving the maximum theoretical yield.

Effect of increasing the number of fermentation stages
In addition to reducing the dimensionality of the prob-
lem, splitting the fermentation time into discrete stages 

with independent EFM expression allows a systematic 
investigation into the effect of stage count on maximum 
theoretical productivity. Relative flux ratios within each 
stage are fixed, and therefore represent consistent enzyme 
expression. Optimal productivities achieved for a varying 
number of fermentation stages are shown in Fig. 4 for A. 
succinogenes and E. coli. The right-hand side of Fig. 4 plots 
the dynamic constraints imposed on the solution, includ-
ing ATP maintenance production rate, maximum glucose 
uptake rate, and the oxygen uptake rate (for E. coli). These 
constraints are normalized to specific uptake or produc-
tion rates, and therefore ATP and oxygen uptake con-
straints remain constant over the fermentation, while the 
glucose uptake varies based on external concentrations. In 

a

b

Fig. 3  Schematic of the dynamic optimization approach. Example optimum solution for maximum production of succinate in A. succinogenes. 
Time-course trajectories in a are broken down into three stages, each of which is composed of a number finite elements (4 in this example, 
indicated by light/dark shading). Within each finite elements, state variables are represented by a lagrange interpolating polynomial at each of 4 
collocation points (τ0 → τ3), with continuity constraints between finite elements. The step size of the finite elements, h, within each stage is also 
optimized. Metabolic fluxes are optimized by simultaneously optimizing the fractional expression of each elementary mode by stage (b) with the 
overall activity of all elementary modes (a, lower plot). In this example, high-growth modes are replaced by high succinate yielding modes in later 
fermentation stages
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all cases, the solutions closely track the maximum allow-
able glucose uptake rate. In A. succinogenes, the transition 
from one to two stages allows the cell to divide its succi-
nate production strategy into separate growth and prod-
uct formation stages. The addition of subsequent stages 
permits slightly higher productivities by the gradual tran-
sition from growth to product formation. Additionally, as 
the flux ratios are fixed within each fermentation stage, 
the fraction of input carbon diverted to ATP production 
is also fixed. Thus, as lower extracellular glucose con-
centrations result in lower glucose uptake rates, the cell 
must dynamically allocate a higher percentage of energy 
towards meeting its ATP maintenance requirement. 

Higher numbers of stages therefore allow the cell to more 
efficiently meet the maintenance constraint, as demon-
strated by lower excess ATP produced with additional 
stages.

In E. coli, maximum succinate production using a sin-
gle stage is achieved microaerobically. With the addition 
of a second stage, the optimal fermentation time drops 
appreciably as succinate production is divided into an 
aerobic growth phase followed by a microaerobic pro-
duction phase. The addition of further stages beyond two 
has little effect on either the succinate productivity or the 
concentration profiles, serving mainly to keep ATP pro-
duction closer to the constrained minimum.

A. succinogenes

1 stage

2 stage

4 stage

E. coli

1 stage

2 stage

4 stage

a

b

Fig. 4  Optimal productivity traces for different numbers of fermentation stages. a In A. succinogenes, additional stages achieve higher titers 
while only slightly reducing the optimal fermentation time. This result is achieved by prioritizing growth early in the fermentation and succinate 
production during the later stages. Additionally, the greater flexibility afforded by more stages allows ATP production to be tailored to meet cellular 
demand, and less ATP is wasted. b In E. coli, additional stages drastically reduce the optimum fermentation time as aerobic growth modes are used 
to increase biomass early in the fermentation. Additional stages beyond two do not drastically change the optimum results, indicating that a simple 
change from aerobic growth to microaerobic succinate production is close to the global optimum production strategy
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Pareto surfaces of yield versus productivity
While separate estimates of maximum theoretical yield 
and productivity can provide information on the eco-
nomic feasibility of a bioprocess, in optimized settings 
one often cannot be increased without decreasing the 
other. We therefore show how the given method can be 
easily extended to calculate a full productivity–yield 
Pareto surface: the envelope in the multi-objective opti-
mization on which productivity cannot be increased 
without sacrificing yield. The surface is found by first 
calculating the maximum productivity (Pmax, defined by 
Eq. 5) via the method described previously.

The nonlinear program is then solved again with yield 
as the objective,

in which xg represents the glucose concentration, while 
holding productivity constrained to a fraction of the 
maximum productivity,

Computational efficiency in the repeated optimizations is 
improved by using IPOPT’s warm solve method, which 
preserves the optimal solution as a starting guess for the 
next iteration.

Figure  5 plots the resulting yield–productivity sur-
faces for 50 linearly spaced α values. By varying the 
number of allowed fermentation stages, these surfaces 

max
X,Y,A,h

xp,NK (1)− xp,0(0)

xg,0(0)− xg,NK (1)
,

xp(tf)− xp(t0)

tf
− αPmax = 0 for α ∈ [0, 1].

reveal the performance gains which can be achieved by 
allowing additional metabolic flexibility. For A. succi-
nogenes, higher yields can be obtained due to the lower 
specific ATP maintenance requirement. Addition-
ally, as succinic acid is the naturally predominant fer-
mentation product in A. succinogenes, high yields are 
obtained even at close to the maximum productivity. 
In E. coli, notable performance gains are achieved by 
moving to a 2-stage fermentation, as it enables effi-
cient usage of aerobic growth modes. In both cases, 
moving beyond two distinct flux modes does not sub-
stantially increase the yields or productivities that can 
be achieved.

The calculated optimal surfaces are compared to 
data on succinate yield and productivity that have been 
achieved experimentally from both wild-type and engi-
neered organisms, compiled in Tables 4 and 5. For con-
sistency with the assumptions of the method, we limit the 
data to experimental values in batch cultures on grown 
on glucose without fed-batch operation or biomass recy-
cling. The measured values of biomass yields and glucose 
uptake kinetics used in modeling vary from experiment 
to experiment, and thus the estimated productivity–yield 
surfaces include a degree of uncertainty. However, the 
data largely fall within the predicted envelope of single-
stage processes, confirming the accuracy of the assump-
tions made in each model. These results illustrate how 
the proposed method can be useful for guiding experi-
mental effort: as wild-type A. succinogenes fermenta-
tions naturally fall close to the optimal productivity–yield 

Fig. 5  Productivity–yield pareto surfaces for A. succinogenes and E. coli. Productivity–yield surfaces are calculated by holding productivity constant 
while maximizing yield for a given number of stages. Experimentally realized productivity and yields are shown in gray, with most points falling 
in the space predicted by single-stage strategies. References for the experimental points are given in Tables 4 and 5 for A. succinogenes and E. coli, 
respectively. The results indicate that improving existing yields in A. succinogenes fermentations would lead to greater gains than improving produc-
tivity. Similarly in E. coli, the results show that higher productivities could likely be achieved by leveraging aerobic growth modes more effectively
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surface, further genetic manipulation of this organism 
is unlikely to yield significantly improved performance. 
Similarly with E. coli, improving succinate productivity 
beyond the values previously recorded will likely require 
a two-stage process involving aerobic growth and anaero-
bic succinate production.

Conclusions
This study represents a computationally efficient 
method for determining the maximum theoretical pro-
ductivity for a batch culture system. As the fields of 
metabolic engineering and synthetic biology continue 
to develop techniques for the dynamic manipulation of 
metabolism, our methodology will enable experimental 
efforts to be focused on where the greatest improve-
ments can be expected. While this study has focused 
on finding globally optimal solutions, future implemen-
tations might search for optimal strategies using only 

experimentally tractable EFM selections (i.e., ones that 
are growth-optimal for 1 or 2 gene knockouts). The 
method can also easily be generalized for conversion of 
multiple substrates as long as appropriate experimen-
tal data exist to fit detailed models to substrate uptake 
kinetics. It could also be extended to explicitly optimize 
final titer instead or in addition to yield and productiv-
ity. Overall, this work emphasizes the need for better 
empirical models of substrate and product exchange 
rates and growth kinetics in designing dynamic meta-
bolic interventions.
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