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Abstract 

Background:  Recent advancements in omics measurement technologies have led to an ever-increasing amount 
of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integra‑
tion of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular 
physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk 
Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be 
used as guidance for formulating alternative metabolic engineering strategies.

Results:  We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during 
mixed glucose–xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor 
fermentations, we characterized network flux and concentration profiles representing possible physiological states of 
the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). 
For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was 
positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves 
xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the 
predictions of the pruned population of kinetic models were in agreement with the experimental data collected on 
the HXK2-deficient S. cerevisiae strain.

Conclusions:  We present a design–build–test cycle composed of modeling efforts and experiments with a glucose–
xylose co-utilizing recombinant S. cerevisiae and its HXK2-deficient mutant that allowed us to uncover interdependen‑
cies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with 
improved prediction capabilities. The present study demonstrates the potential of integrated “modeling and experi‑
ments” systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug 
discovery.
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Background
Nature provides abundant plant biomass that can be 
potentially converted into biofuels as a promising sus-
tainable source of energy [1, 2]. The main sugar con-
stituents of biomass are stored in the form of hexoses, 
primarily glucose, and pentoses, primarily xylose. Sac-
charomyces cerevisiae, which is widely used in indus-
try for production of a variety of chemicals, including 
bioethanol from glucose, is a promising candidate for 
bioethanol production from sugars. However, the native 
strain of this organism is unable to utilize xylose because 
of the lack of a mechanism converting xylose into meta-
bolic intermediates [3, 4].

In efforts to enable xylose utilization in S. cerevisiae, 
the wild-type strains have been modified in two ways: (1) 
by introducing heterologous XYL1 and XYL2 genes from 
Scheffersomyces stipitis (previously Pichia stipitis) [5] or 
XYL1 from Candida tenuis and XYL2 from Galactocan-
dida mastotermitis [6, 7] that encode for xylose reduc-
tase (XR) and xylitol dehydrogenase (XDH), respectively, 
which enable the two-step transformation from xylose to 
xylulose; (2) by expressing a heterologous xylose isomer-
ase (XI) from fungi such as Piromyces [8] and Orpinomy-
ces [9], or from Clostridium phytofermentans [10] which 
converts xylose to xylulose in one step. Comparison of 
the two engineered pathways in the same background 
strain revealed that strains with XR/XDH pathway show 
higher xylose uptake rates under anaerobic conditions 
and better aerobic growth [11]. In contrast, it appears 
that strains with XI have higher ethanol yields due to bet-
ter cofactor balancing as compared to XR/XDH strains.

While the genetically engineered XR/XDH yeast 
strains successfully acquired the capability of utilizing 
xylose as a carbon source, a number of factors cause the 
suboptimal performance of bioconversion from xylose to 
bioethanol: low transport efficiency of xylose across the 
cellular membrane through hexose transporters; differ-
ent cofactor specificities of XR and XDH reactions; high 
accumulation of xylitol; and excessive activity of the oxi-
dative pentose phosphate pathway [12].

In an attempt to improve xylose uptake rate and obtain 
a high ethanol yield from xylose fermentation using 
recombinant S. cerevisiae strains, a number of metabolic 
engineering efforts have been carried out targeting dif-
ferent enzymes of the metabolic network [13]. Some of 
the enzymes that have been investigated include hexose 
transporters (GTR and XTR) [14–17], xylose reduc-
tase (XR) [18, 19], xylulose kinase (XK) [20], xylitol 

dehydrogenase (XDH) [21], and glucose-6-phosphate-
1-dehydrogenase (ZWF) [22]. More recently, alteration 
of the cofactor specificity of XR and XDH has become 
an important part of efforts to alleviate the cofactor 
imbalance and to reduce production of xylitol [7, 22, 
23]. Despite their sophisticated genetic design, these 
approaches have not achieved yet commercially viable 
improvements in the utilization of xylose sugar and its 
subsequent conversion to ethanol. Therefore, it appears 
that metabolic engineering strategies stemming from a 
systems-level analysis of cellular pathways can play an 
important role in creating potential breakthroughs and 
advancing the research in this area.

Mathematical methods are well suited to address com-
plex metabolic engineering problems that lack extensive 
experimental data. These methods allow quantification of 
the impact of individual enzymes on the overall perfor-
mance of the metabolic network through response analy-
sis of metabolic fluxes with respect to various enzymatic 
modifications [24]. A mathematical framework named 
metabolic control analysis (MCA) has been introduced 
for this purpose [25]. As an outcome of this analysis, the 
enzymes whose activity has greater impact on desired 
metabolic flux rates (e.g., xylose uptake) could be identi-
fied and they can be considered as high-priority targets 
for metabolic engineering.

Kinetic models of xylose metabolism have been pro-
posed by different groups previously [26–28]. Eliasson 
et  al. built a four-reaction model (XRI, XRII, XDH, and 
XK) to find a XR/XDH/XK ratio that minimizes xylitol 
formation during xylose utilization [26]. Parachin et  al. 
constructed models for XR/XDH and XI xylose uptake 
pathways starting with xylose transporters and end-
ing with XK, and found that in both cases increased XK 
activity led to improved xylose utilization [27]. Recently, 
Trausinger et  al. integrated data from enzyme activity 
analyses and quantitative metabolite profiling into an ad 
hoc reduced model that included XR/XDH pathway, pen-
tose phosphate pathway (PPP), and two lumped reactions 
describing glycolysis, and used this model for MCA [28].

In this work, we used the Optimization and Risk Analy-
sis of Complex Living Entities (ORACLE) framework 
[29–36] to construct a population of large-scale kinetic 
models of glucose–xylose co-utilizing S. cerevisiae that 
includes XR/XDH pathway, glycolysis, PPP, tricarbox-
ylic cycle (TCA), and electron transport chain (ETC). 
ORACLE accounts explicitly for mechanistic properties 
of enzymes and integrates available experimental data, 
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network thermodynamics, and physico-chemical con-
straints of metabolic networks. ORACLE employs Monte 
Carlo sampling methods to explore the kinetic space of 
metabolic networks whenever information about kinetic 
properties is incomplete or missing, and it generates pop-
ulations of models that are consistent with the experi-
mental information. One of the steps in the ORACLE 
workflow involves pruning, where the populations of the 
generated models are further classified into subpopula-
tions with distinct characteristics based on existing or 
follow-up experiments. The basic principles of ORACLE 
have been introduced in [32, 33, 37], and the method was 
developed and extended in [24, 29–31, 34, 36].

The main goals of this study were to: (1) analyze the 
impact of the network enzymes on pentose sugar utiliza-
tion in a genetically recombinant XR/XDH S. cerevisiae 
strain caused by network-wide couplings and limitations 
rather than by a substrate competition for hexose trans-
porters; (2) identify the sources of interdependencies 
between upper glycolysis and xylose uptake rate; (3) engi-
neer genetically a recombinant S. cerevisiae strain with 
improved xylose uptake capabilities based on hypoth-
eses generated in (2); and (4) use the experimental data 
acquired on the engineered strain to further improve 
predictive capabilities of the kinetic models.

For this purpose, we opted for a rational metabolic 
engineering approach involving a loop between experi-
mental lab work and intensive computational studies. 
We constructed large-scale kinetic models of S. cerevi-
siae central metabolism with the XR/XDH xylose uptake 
pathway wherein we integrated the data collected from 
a recombinant S. cerevisiae strain growing anaerobi-
cally in a medium with a mixture of glucose and xylose. 
We performed an ORACLE analysis and we identified 
the enzymes that control the flux through XTR. How-
ever, for some of these enzymes such as HXK we could 
not discern with confidence whether an increase of their 
activities would lead to a positive or negative effect on 
the flux through XTR. In order to address this issue, we 
designed a follow-up computational pruning experiment 
that helped us classify models into two subpopulations 
of models with HXK having a positive and a negative 
control over XTR. We next tested experimentally how 
changes in hexokinase (HXK) activity would affect xylose 
uptake rates. The performed experiment with an HXK2 
deletion strain showed an increase in the maximum spe-
cific consumption rates of xylose. We used this result to 
further prune our kinetic models, and the predictions of 
the refined models were consistent with the cultivation 
data of the engineered HXK-negative recombinant S. cer-
evisiae strain.

Results
Cultivation and flux analysis of the glucose–xylose utilizing 
base strain
The strain VTT C-10880 was anaerobically cultivated in a 
batch reactor using minimal mineral medium with 20 g/l 
glucose and 50 g/l xylose as the main carbon source for 
170  h (for more details see “Methods”). The concentra-
tions (g/l) of glucose, xylose, xylitol, glycerol, acetate, and 
ethanol were measured (Fig.  1). We observed that the 
organism started to consume perceptible quantities of 
xylose between 8 and 10  h, whereas at this time period 
glucose was at 33% of its starting concentration. Glucose 
was rapidly consumed, and from T = 15 h onwards the 
yeast consumed xylose only. At T =  140  h, xylose was 
not completely consumed yet and xylitol accumulated to 
approximately 22 g/l.

We formulated a stoichiometric model that describes 
glucose–xylose co-metabolism under the studied condi-
tions (Fig. 2; Additional file 1), and we performed the flux 
analysis using the specific accumulation rates calculated 
as the output of the kinetic model based on the cultiva-
tion data (“Methods”). We used in the flux analysis the 
calculated rates at time point T  =  12  h when glucose 
and xylose were consumed simultaneously. We then per-
formed thermodynamics-based flux analysis (details in 
“Methods”) to find a flux profile that was consistent both 
thermodynamically and with the available experimental 
data. We computed the displacement of reactions from 
thermodynamic equilibrium, and we found that a major-
ity of reactions were far from equilibrium and no reac-
tions were near equilibrium (Fig.  2; Additional file  2). 
This implies that for all the enzymes in the network their 
control over fluxes and concentrations would depend on 
their kinetic properties and saturation state [33, 35, 38]. 
We assumed that the reaction catalyzed by malic enzyme 
(MAE) was operating in the direction of decarboxylation 
because it has been observed that pyruvate carboxylase-
negative strains of S. cerevisiae are not capable of growing 
on glucose indicating that MAE cannot assume the ana-
plerotic role of pyruvate carboxylase [39]. The upper limit 
on oxygen uptake rate was set to 2 mmol/gDW h for the 
following reasons: (1) the medium was saturated with air 
oxygen at the beginning of the fermentation and its con-
centration gradually reduced over time; we set the upper 
bound on oxygen utilization rate to reflect the possibility 
that there was a residual oxygen activity at the analyzed 
time point; (2) molecular oxygen appears as a substrate 
of the used biomass reaction (Additional files 1, 3); at the 
analyzed time point, the organism was still growing and 
the model required a small amount of oxygen to describe 
the growth.
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Factors affecting xylose uptake during glucose–xylose 
co‑metabolism
It has been proposed that the reason for slow consump-
tion of xylose in the beginning of the glucose–xylose 
co-utilization phase is due to substrate competition for 
high-affinity hexose transporters [40]. In this study, we 
investigated if the other factors that emerge from the 
properties of the metabolic network and that are unre-
lated to the competition for transporters could also 
impact the xylose uptake. For example, it has been dis-
cussed in the literature that availability of the cofactors 
NAD+ and NADPH in the metabolic network can be one 
of the limiting factors in xylose utilization [12].

We used the ORACLE methodology (“Methods”) to 
build a population of consistent models. More precisely, 
we generated ~467,000 system-wide profiles of flux and 
concentration control coefficients.1 We then focused on 

1  Matlab files containing sets of computed flux and concentration control 
coefficients together with sampled metabolite concentrations, steady-state 
reference flux profile and stoichiometric matrix are available at https://doi.
org/10.6084/m9.figshare.5028770.

the flux control coefficients of the xylose uptake (XTR) 
and identified the top 18 enzymes with respect to the 
absolute value of their control coefficients (Fig.  3). 
Among the 18 enzymes, 7 were from the pentose phos-
phate pathway (ZWF, XTR, XRI, XRII, XDH, XK, and 
XLT), 3 were from the upper glycolysis (HXK, PGI, and 
TPI), 3 were related to energy balance through oxidative 
phosphorylation and its consumption through mainte-
nance (ASN, NDR, and ATPM), 3 were enzymes control-
ling the formation of ethanol (ADH1), acetate (ALD), and 
glycerol-3-phosphate (GPD1), and 2 were enzymes cata-
lyzing exchanges with the extracellular environment 
(ETOHt and PIt). Downstream enzymes relating to lower 
glycolysis, citric acid cycle, and glyoxylate shunt were 
found to have little to almost no control over xylose 
uptake (Additional file 4).

The positive control over the xylose uptake was dis-
tributed over ten enzymes, i.e., ZWF, XTR, XRI, XRII, 
XDH, XK, XLT, TPI, ALD, and PIt, whereas 5 enzymes, 
i.e., PGI, ASN, ADH1, GPD1, and ETOHt, had negative 
control (Fig. 3). XRI had the highest positive control over 
XTR with CXTR

XRI  ~ 0.29 indicating that a twofold increase 
(100%) of XRI activity would result in a 1.29-fold increase 
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Fig. 2  Schematic representation of the VTT C-10880 metabolism together with the displacement of the reactions from thermodynamic equilib‑
rium. Reactions can operate (i) strictly far from thermodynamic equilibrium (light green), i.e., 0 < Γ ≤ 0.1; (ii) with the middle displacements (blue), 
i.e., 0.1 ≤ Γ ≤ 0.9; and (iii) strictly near equilibrium (light red), i.e., 0.9 ≤ Γ < 1. Reactions whose displacements belonged to more than one of these 
ranges were denoted with (iv) dark red, for 0 < Γ ≤ 0.9; (v) dark green, for 0.1 ≤ Γ < 1; and (vi) gray, for 0 < Γ < 1. The numerical values next to 
reactions denote flux values
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(29%) in the xylose uptake rate. ADH1 had the highest 
negative control over this rate with CXTR

ADH1 ~ −0.07 indi-
cating that a twofold increase of ADH1 activity would 
result in an ~7% decrease in the xylose uptake rate.

For three enzymes, i.e., HXK, ATPM, and NDR, the 
distributions of the control coefficients, CXTR

HXK, CXTR
ATPM , 

and CXTR
NDR, were spread around the zero value (Fig. 3), and 

with the available data we were unable to predict with 
certainty if the manipulation of these enzymes would 
affect the xylose uptake rate in a positive or negative 
manner. This implied that we might have two distinct 
subpopulations of models with one population predicting 
a negative control of HXK over XTR (CXTR

HXK < 0), and the 
other predicting a positive control (CXTR

HXK > 0).
In addition, we observed a rather strong negative corre-

lation between the values of CXTR
HXK and the values of both 

CXTR
ATPM and CXTR

NDR. We computed the correlation between 
these control coefficients and the Pearson coefficient for 
the correlation of CXTR

HXK and CXTR
ATPM was −0.68, the one of 

CXTR
HXK and CXTR

NDR was −0.67, whereas the one for the cor-
relation of CXTR

ATPM and CXTR
NDR was +0.76.

Factors affecting ATP consumption and generation
Interestingly, the enzymes participating in the generation 
and consumption of ATP appeared to have considerable 
control over xylose uptake, even though they have been 
traditionally overlooked when the system was studied 
from the perspective of carbon flow.

Therefore, we further investigated how changes in the 
activities of the enzymes would affect the levels of cyto-
solic ATP (Fig.  4). We used the population of  ~467,000 
kinetic models to identify the top 16 enzymes controlling 
the levels of this metabolite. Out of the top 16 enzymes, 
three were from the upper glycolysis (HXT, HXK, and 
TPI), two were from the pentose phosphate pathway (RKI 
and XDH), two were directly related to ATP consump-
tion and production (ADK and ATPM), two were from 
acetate metabolism (ACS and ACE), five were exchange 
reactions with the extracellular environment (ETOHt, 
NH4t, SO4t, PIt, and CO2t), and one was COH which is 
catalyzing the reversible conversion of carbonic acid to 
CO2 and water. HXK had the primary negative control 
on the levels of ATP with Catpc

HXK  ~ −1.07 indicating an 
important increase in the levels of cytosolic ATP upon 
reduction in the activity or deletion of HXK2. HXT also 
had a strong negative control over the levels of cytosolic 
ATP (Catpc

HXT ~ −0.93). The strongest positive control over 
this metabolite was surprisingly in CO2t (Catpc

CO2t
  ~  1.1) 

and in ADK (Catpc
ADK ~ 0.95).

Considering that ATP impacts a large number of reac-
tions in the network including HXK and that HXK had a 
strong control over ATP implied that there was a strong 
coupling through ATP in the network. This together with 
the hypothesis that an increase in the activity of HXK 
would decrease the xylose uptake rate was intriguing, 
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and we decided to verify this hypothesis by performing 
an experiment on a strain with attenuated HXK activity.

HXK2 deletion improves xylose uptake
Saccharomyces cerevisiae has three enzymes phosphorylat-
ing glucose, HXK1, HXK2, and GLK1, of which HXK2 is 
the predominant enzyme under consumption of glucose. 
HXK2 is expressed when growing on glucose, but when 
growing on non-fermentable carbon sources HXK2 expres-
sion is repressed and the expression of HXK1 and GLK1 
de-repressed [41]. As HXK2 contributes to the predomi-
nant hexokinase activity on glucose and is the main enzyme 
conveying catabolite repression of these two hexokinases, 
we constructed a recombinant S. cerevisiae HXK2-defi-
cient strain (see Methods). The engineered strain indeed 
displayed a clear improvement of the xylose uptake rate 

with values of specific rate of xylose consumption con-
sistently higher than the ones of the base strain with the 
maximum values showing improvement by approximately 
60% (Fig. 5a). The increase in the xylose consumption led 
also to an increase in the production of xylitol with a 60% 
increase in the maximum specific xylitol production rate 
(Fig.  5c). Conversely, deletion of the HXK2 gene resulted 
in (a) reduced maximal glucose specific consumption rate 
by 26% with the depletion of glucose occurring at approxi-
mately T = 36 h compared to T = 16 h of the base strain 
(Fig. 5b); and (b) reduction of the maximal specific accu-
mulation rate of ethanol by 13% (Fig. 5d).

The computed control coefficients for specific glu-
cose uptake, CHXT

HXK, and for specific productivity of 
ethanol, CADH1

HXK , were in qualitative agreement with the 
experiments, i.e., the trends of the expected metabolic 
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responses and the relative magnitudes of these con-
trol coefficients were in agreement with the experi-
ments. The computed mean values of CHXT

HXK and CADH1
HXK  

were, respectively, 0.18 and 0.095 (Fig.  6b, d), i.e., a 
twofold decrease in the activity of HXK would lead 
to 9 and 4.75% decrease in the corresponding specific 
productivities.

Pruning the models
Based on the experimentally obtained information, we 
rejected all sampled models with CXTR

HXK > 0 and ended up 
with a population of  ~204,000 models. The mean value 
of CXTR

HXK shifted to a value of −0.11 after the pruning 

compared to 0.02 before the pruning (Fig. 6a). The value 
of −0.11 indicated that a twofold increase in the activ-
ity of HXK would result in the reduction of the specific 
xylose uptake by 11%.

Interestingly, the pruning based on CXTR
HXK did not have a 

significant effect on the distribution of most of the other 
control coefficients with the exception of CXTR

ATPM and 
CXTR
NDR. Before the pruning, these two control coefficients 

had distributions spread around the zero value with the 
means of −0.02 and −0.05, respectively (Fig.  6a). After 
the pruning, the distributions of both CXTR

ATPM and CXTR
NDR 

were shifted toward positive values with their respective 
means of 0.10 and 0.13. The pruning results suggested 
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that the negative correlation between the values of CXTR
HXK 

and the values of both CXTR
ATPM and CXTR

NDR that we discov-
ered on the whole population of 467,000 models still 
existed on the pruned population. We computed the cor-
relations for the pruned population of control coefficients 
and the Pearson coefficient for the correlation of CXTR

HXK 
and CXTR

ATPM was −0.56, the one of CXTR
HXK and CXTR

NDR was 
−0.58, whereas the one for the correlation of CXTR

ATPM and 
CXTR
NDR was +0.73.
In silico predictions of the pruned control coefficients 

were consistent with all the experimentally observed 
effects of HXK2 deletion on the behavior of the engi-
neered strain. More precisely, in qualitative agreement 
with the performed experiments the refined popula-
tion of control coefficients predicted that HXK2 dele-
tion would (a) decrease the glucose uptake, i.e., the 
mean of computed CHXT

HXK was ~0.14 (Fig. 6b); (b) reduce 
the ethanol production, i.e., the mean CADH1

HXK  was  ~0.05 
(Fig. 6d); and (c) increase the xylitol production, i.e., the 
mean CXLT

HXK was  ~−0.14 (Fig.  6c). The refined models 
also consistently predicted that the HXK2 deletion would 
increase the flux through xylulose kinase (XK) with the 
mean CXK

HXK of  ~−0.08 (Additional file  5). Indeed, com-
puted as the difference between the experimental values 
for xylose consumption and xylitol production fluxes 
(Fig. 4a, c), the estimated flux through XK was higher in 
the HXK2 deletion strain than in the reference strain.

Network‑wide effects of altered HXK activity
Metabolic control analysis indicated that HXK2 deletion 
would cause significant rewiring of the metabolic net-
work. Reactions from the glycolysis, pentose phosphate 
pathway with the exception of xylose uptake pathway, 
oxidative phosphorylation with the exception of lac-
tate-related reactions, glycerol metabolism, acetate and 
ethanol production, and exchange with the extracellular 
environment would reduce their fluxes compared to the 
parental strain (Fig. 7; Additional file 4). For instance, a 
twofold decrease of the activity of HXK would reduce the 
fluxes in the glycolysis from 5.6% (PYK) to 14% (HXK) 
and the fluxes in the pentose phosphate pathway from 
4% (TKL2) to 141% (RPE). In contrast, decreasing the 
activity of HXK would result in an increased activity of 
the xylose uptake pathway, glyoxylate shunt, tricarbo-
xylic acid cycle, and ATPM which manages a series of 
energy-requiring events inside the cell without leading 
to net formation of biomass including futile cycles and 
maintenance of the proton gradient and electrical poten-
tial (Fig. 7). A twofold decrease of activity of HXK would 
increase fluxes through XTR (by 5%), XRI (by 7%), XLT 
(by 6.6%), XDH (by 4%), and XK (by 4%) in the xylose 
uptake pathway, fluxes through MDHc (by 30%) and ICL, 
MLS, and ACOc in the glyoxylate shunt (by 43%), fluxes 

through KGD, LSC, SCD, and FUM in the TCA cycle (by 
6%), and ATPM (by 18%).

Furthermore, a twofold reduction in the HXK activity 
would reduce ATP turnover (by  ~3.2%) where all ATP-
producing reactions (PGK, PYK, and AAC) and most of 
ATP-consuming reactions (HXK, PFK, PYC, ADK, ACS, 
PEPCK, and biomass) would have reduced fluxes (Fig. 7; 
Additional file 4). The only exceptions would be XK and 
ATPM, whose fluxes would increase (by 4.2 and 18%, 
respectively).

Network‑wide correlations of HXK, NDR, and ATPM
Interestingly enough, an increased activity of NDR and 
ATPM, whose control over XTR negatively correlated 
with the one of HXK (“Results”), would have similar 
effects on the metabolic network as the HXK2 deletion 
(Additional files 4, 6, 7). Notable differences in the meta-
bolic responses would be in (1) a reduced flux through 
XK and XDH (by 15%) with a twofold ATPM increase, 
and by 21% with a twofold increase of NDR activity; this 
implies that metabolic engineering strategies involving 
NDR and ATPM would improve xylose uptake but the 
carbon taken up would be used almost exclusively for 
xylitol production; (2) reduction in the TCA fluxes (ACO, 
IDH, KGD, LSC, SCD, FUM, and MDH) from 33 to 94%, 
and reduced ATPM by 11%, with a twofold increase of 
the NDR activity. The twofold increase in ATPM and in 
NDR activity would also result in reduced turnover of 
cytosolic ATP by 9 and 17%, respectively (versus 3.2% 
of the one in the case of HXK) and reduced turnovers of 
cytosolic NADH (by 11% for ATPM and 14% for NDR 
versus 3.4% for HXK) and NADPH (by 41% for ATPM 
and 31% for NDR versus 15% for HXK).

The negative correlation between HXK and ATPM was 
expected as the reduced HXK activity results in reduced 
glycolytic fluxes and as a consequence in reduced ATP 
production and availability. A similar effect on ATP 
can be reproduced by increasing non-growth-associ-
ated ATP maintenance (ATPM). In contrast, the cor-
relation between NDR and both HXK and ATPM was 
more surprising. Our analysis revealed that this cor-
relation is due to the stoichiometric coupling between 
NDR and the growth in the analyzed physiological con-
dition (Additional file  8). Specifically, we performed 
the flux variability analysis (FVA), sampled the space of 
steady-state fluxes, and found that the growth is per-
fectly coupled with NDR. For the smallest feasible val-
ues of the flux through NDR (0.016 mmol/gDW/h), the 
growth was small (0.002 1/h). In contrast, for the high-
est feasible values of NDR flux (0.48 mmol/gDW/h), the 
growth increased almost 100-fold to 0.19 1/h (Addi-
tional file 8). The growth increase resulted in an increase 
of the growth-associated ATP requirements, and the 
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maximal feasible flux value of ATPM for low growth of 
18.28 mmol/gDW/h reduced to the one of 12.55 mmol/
gDW/h for high growth.

Discussion
HXK2 is the gene that has a main role in glucose phos-
phorylation, and it could be expected for a strain that 
lacks this gene to exhibit decreased glucose consump-
tion levels. In the performed experiment, HXK2 dele-
tion decreased the maximal glucose consumption rate by 
26% compared to the parental strain. However, for pre-
dicting the responses of the other fluxes in the network 
like xylose uptake rate, a systems-oriented tool such as 
MCA is needed. HXK2 deletion would have been an 
unlikely target for improving xylose consumption with-
out the MCA analysis. Indeed, the pruned MCA models 
successfully predicted an increase in xylose consumption 
and xylitol production and a decrease in glucose con-
sumption and ethanol production of the HXK2-deficient 
strain.

Considering that we modeled the transporters of 
glucose and xylose as enzymes without competitive 
inhibition and that we neglected the HXK2 catabolic 
repression, MCA results implied that there are factors 
other than competition for the transporters or glucose 
repression that could negatively affect the xylose uptake. 
MCA suggested that decreasing HXK activity would 
increase the concentration of cytosolic ATP (Fig. 4) and 
the rate of xylulose kinase (XK) (Additional file 5), thus 
allowing improved xylose uptake (Fig. 7).

Previous experimental studies investigated some of 
the enzymes identified here for improved xylose uptake 
rate (Fig. 3). Jeppsson et al. [22] reported that a reduced 
flux through the oxidative branch of pentose phosphate 
pathway (PPP) causes reduced xylose uptake rate in a 
xylose-only fed recombinant S. cerevisiae strain. Con-
sistent with [22] where the ZWF1 gene was deleted to 
reduce the NADPH-producing flux, our predictions indi-
cate that lowering the activity of glucose-6-phosphate-
1-dehydrogenase (ZWF) would result in reduced xylose 
uptake rate. Our predictions are also in agreement with 
two experimental studies regarding the effects of xylose 
reductases (XRI and XRII) [18] and xylitol dehydroge-
nase (XDH) [21] on xylose uptake rate.

Our predictions additionally suggest that increasing 
the PGI activity would result in a reduced xylose uptake 
rate. During glucose–xylose fermentations studied here, 
PGI converts glucose 6-phosphate to fructose 6-phos-
phate, and therefore a higher PGI activity results in a 
reduced flux through the oxidative branch of PPP. This 
is consistent with the experimental study [22], since in 
batch fermentations with xylose as the sole carbon source 
performed in [22] PGI converts fructose 6-phosphate to 

glucose 6-phosphate, and a lower PGI activity reduces 
the flux through the oxidative branch of PPP.

Toivari et al. [20] obtained improved xylose uptake with 
a CEN.PK2 strain with an increased xylulose kinase (XK) 
activity both in xylose-only and glucose–xylose anaero-
bic batch fermentations. These experimentally observed 
effects of XKS1 overexpression are in agreement with 
the quantitative predictions (Fig.  3). In contrast, XKS1 
overexpression in a different strain background (includ-
ing overexpressed non-oxidative PPP genes, gre3 dele-
tion, and xylB originating from Escherichia coli) and in 
an anaerobic xylose-only batch fermentation resulted in 
slightly reduced xylose uptake [27]. These findings are 
in line with the results from other studies on XK role in 
xylose uptake for S. cerevisiae which indicate that only a 
fine-tuned XK overexpression leads to improved xylose 
fermentation [42–45].

Furthermore, in a recent study, Trausinger et  al. [28] 
performed MCA of xylose assimilation of S. cerevisiae 
strain grown under anaerobic conditions on xylose as 
a sole carbon source. The computed flux control coeffi-
cients for xylose uptake with respect to XR, XDH, XK, 
and ZWF in [28] are consistent with the ones found in 
the current study.

While the refined models successfully predicted the 
trends of the metabolic responses of the HXK2 dele-
tion, the magnitudes of the responses predicted by the 
refined control coefficients did not accurately match the 
experimentally observed ones. These discrepancies can 
originate from any of the following reasons or their com-
bination: (a) control coefficients represent a log-linear 
approximation of the metabolic responses upon small 
changes around the studied steady state in an enzyme 
activity, and they typically provide a good ranking of 
enzymes that control the studied fluxes or concentra-
tions. In this study, we performed a gene deletion that is 
a major perturbation of a metabolic network; (b) it has 
been shown that in a HXK2-deficient S. cerevisiae strain 
the transporters HXT2, HXT4, HXT6, HXT7, HXT8, and 
HXT16 have higher gene expression levels [46]. Of these 
hexose transporters, especially the high-affinity trans-
porters HXT2, HXT4, and HXT7 are active in xylose 
transport [14, 47]. The absence of HXK2 repressive effect 
on the hexose transporters involved in the transport of 
xylose might be the reason for the higher than predicted 
consumption rate of xylose in the HXK2-deficient strain; 
and (c) the population of kinetic models was computed 
for the time point T = 12 h when glucose and xylose were 
co-utilized, whereas the maximal consumption and pro-
duction rates compared in two strains were measured at 
T = 3.5 h when glucose was predominantly utilized.

Finally, although the estimated values for specific rates 
of xylose and glucose conversion and ethanol and xylitol 
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production may be affected by variations in experimental 
measurements and by a bias in data smoothing, there was 
a clear and significant improvement in specific xylose 
conversion rate upon HXK2 deletion and it was pre-
dicted by the model. ORACLE is designed to handle the 
uncertainty in data, and the populations of sampled mod-
els capture the trends in the metabolic responses upon 
HXK2 deletion.

Conclusions
We described here a design–build–test cycle including 
the steps of modeling, identifying targets for engineer-
ing, testing the gene modification in a engineered strain, 
and further refining the models. More specifically, we 
used MCA to explore potential improvements of xylose 
utilization in glucose–xylose co-fermenting S. cerevisiae. 
From this analysis, we postulated a hypothesis that the 
HXK enzyme has negative control over specific xylose 
uptake rate and we performed an experiment to verify 
it. Although the effects of HXK2 deletions on glucose 
repression have been studied before [48–50], a deletion 
of HXK2 has not been studied as a means to improve 
xylose consumption in glucose–xylose co-fermenting 
S. cerevisiae strains. The influence of carbon catabolite 
repression on xylose metabolism in S. cerevisiae strains 
through deletion of MIG1 and MIG2 genes was studied 
previously; however, no improvement of xylose con-
sumption during batch cultivations was observed [51].

The performed in silico analysis demonstrated that 
modifying HXK activity would substantially rebalance 
the network fluxes, and that these effects strongly cor-
relate with the ones of NDR and ATPM. We discovered 
that the correlation of effects of HXK, ATPM, and NDR 
on the whole network is an emerging property of the stoi-
chiometric coupling through ATP.

We engineered an HXK2-deficient strain and the cul-
tivation results validated the postulated hypothesis. We 
used the experimental information to prune the popula-
tion of our kinetic models and the refined models were 
in qualitative agreement not only with the response of 
XTR to HXK2 deletion but also with the responses of 
HXT, ADH1, XLT, and XK. Pruning is one of the impor-
tant features of ORACLE as it allows a straightforward 
refinement of models based on experimental information 
about the metabolic responses to gene modifications and 
it improves the efficiency of the design–build–test cycle. 
This is an advantage with respect to the conventional 
parameter estimation methods where the integration of 
this kind of information is challenging.

The present study aims to improve the xylose uptake 
rate during a mixed glucose–xylose co-utilization and to 
elucidate a complex interplay between upper glycolysis 
and xylose uptake. It is a step toward obtaining strains 

with economically viable yields and specific productiv-
ity of ethanol from both glucose and xylose as carbon 
sources. The next step in this direction is to identify tar-
gets that will allow for recovered glucose uptake and eth-
anol specific productivity while retaining the improved 
xylose uptake of the HXK2 deletion strain. Our models 
suggest that one of such targets might be TPI which can 
also be used together with XDH to improve the yield of 
ethanol from both glucose and xylose.

Methods
Strains and plasmids
The yeast strain used in the study was VTT C-10880, 
i.e., [CEN.PK113-1A (URA3. HIS3. LEU2. TRP1. MAL2-
8c.SUC2), ura3::XYL1 XYL2, xks1::XKS1]. XYL1 and 
XYL2 genes of S. stipitis were chromosomally integrated 
into URA3 locus under PGK1 and ADH1 promoters, 
respectively. The integration cassette was constructed 
as described earlier [20]. XKS1 of S. cerevisiae was inte-
grated into XKS1 locus as described below.

The XKS1 expression cassette pADH1m-XKS1-
tADH1 was released as a BamHI fragment from plasmid 
pMLV14 (BluescribeM13) and ligated into the bacterial 
plasmid pMLV24. The plasmid pMLV24 contains loxP-
S. cerevisiae MEL5 (encoding α-galactosidase)-loxP 
marker cassette with 60-bp flanking regions for target-
ing to the XKS1 locus. The XKS1 flanking regions were 
from nucleotides −250 to −192 and from nucleotides 
1801 to 1861, where numbers are relative to the nucleo-
tide A in the XKS1 ATG start codon. The BamHI clon-
ing site was included in the XKS1 5′ flanking sequence. 
The resulting plasmid, containing XKS1, was named 
pMLV46. The expression cassette for XKS1, together with 
the loxP-MEL5-loxP marker, was released from pMLV46 
with PstI and SpeI and introduced into yeast cells by 
transformation. Blue-colored, MEL5 (α-galactosidase)-
expressing yeast colonies were collected from agar-solid-
ified YP containing 2% w/v d-galactose, supplemented 
with 5-bromo-4-chloro-3-indolyl-α-d-galactopyranoside 
(X-α-Gal, 40  μg/ml). To remove the MEL5 marker cas-
sette from the yeast chromosome, the transformant was 
retransformed with a plasmid pSH47 [52], expressing 
the Cre recombinase. Integration of the expression cas-
sette pADH1m-XKS1-tADH1 into the XKS1 locus in the 
genome was verified with PCR. The yeast strain gener-
ated was named VTT C-10880.

Plasmid pKK27-1 was constructed by releasing 
KanMX4 from pFA6a-KanMX4 [53] by BamHI + EcoRI 
digestion. KanMX4 was further ligated into YEplac195 
[54] digested with BamHI + EcoRI resulting in pKK27-1.

HXK2 of VTT C-10880 was deleted by integration of 
KanMX4 into HXK2 locus. KanMX4 deletion cassette 
was amplified by PCR from pKK27-1 plasmid using 
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forward 5′ TCTGTTTAGCTTGCCTCGTC and reverse 
5′ CACTGGATGGCGGCGTTAGTA primers with the 
homologous flanking sequences to HXK2 locus (−27 to 
−33 for the forward primer and +1 to +60 for the reverse 
primer). The resulting PCR product was integrated into 
the genome of VTT C-10880 by homologous recombina-
tion by following the transformation procedure of Woods 
and Gietz [55]. Transformants were selected on YPD 
medium containing 200  µg/ml G418. The deletion of 
HXK2 was verified by PCR using primer pairs 5′GGTTG-
TAGGAATATAATTCTC3′ and 5′CAACGCTACCTTT-
GCCATGT3′ and 5′ATCCTGATATGAATAAATTG3′ 
and 5′CATGTTCACATAAGTAGAAAAAGGGCACC3′.

Bioreactor cultivations
The strain VTT C-10880 and the HXK2 deletion strain 
were studied for 170  h in 1.5-l batch cultures in Bio-
stat B bioreactor (Sartorius, Göttingen, Germany) 
at pH 5 and 30  °C using agitation at 200  rpm, under 
anaerobic conditions with 0.5  l/min nitrogen flushed 
to reactor headspace. The HXK2 deletion strain was 
cultivated in duplicate experiments. The inocula were 
prepared by transferring the cells from an YPD plate 
to 25  ml mineral medium in 100-ml Erlenmeyer flasks 
and incubated on a plate shaker (150  rpm, 30  °C) 
overnight. The inocula were further transferred into 
75  ml mineral medium in 250-ml Erlenmeyer flasks 
and incubated (150  rpm, 30  °C) for 4-6  h. The inocula 
were centrifuged (2000 rpm, 4  °C, 5 min) and the cells 
were resuspended into the growth medium lacking the 
source of carbon. Initial cell dry weight in bioreactor 
was 0.15  g/l. The minimal mineral medium [56] con-
tained 20  g glucose/l, 50  g xylose/l, 22  mg uracil/l, 5  g 
(NH4)2SO4/l, 3 g KH2PO4/l, 0.5 g MgSO4·7H2O/l, 15 mg 
C10H14N2Na2O8·2H2O (EDTA)/l, 4.5 mg ZnSO4·7H2O/l, 
0.84  mg MnCl2·2H2O/l, 0.3  mg CoCl2·6H2O/l, 0.3  mg 
CuSO4·5H2O/l, 0.4  mg Na2MoO4·2H2O/l, 4.5  mg 
Na2MoO4·2H2O/l, 3.0  mg FeSO4·7H2O/l, 1.0  mg 
H3BO3/l, 0.1  mg KI/l, 0.05  mg biotin/l, 1.0  mg Ca-
Pantothenate/l, 5  mg nicotinic acid/l, 25  mg myo-
inositol/l, 1.0  mg thiamine HCl/l, 1.0  mg pyridoxol 
HCl/l, and 0.2 mg p-aminobenzoic acid/l.

Sampling and analyses
Samples were taken frequently with a sampling robot 
(Medicel, Helsinki, Finland) into a cold bath where the 
samples froze at the temperature of −30  °C. The frozen 
samples were thawed, OD600 and cell dry weight (CDW) 
measurements were performed, and supernatants were 
collected for HPLC and CE measurements. Concentra-
tions of xylose, glucose, glycerol, xylitol, ethanol, and 
acetate were measured with a Waters Alliance 2690 
HPLC system with a Waters 2410 RI detector (Waters 

Corporation, Milford, USA). Aminex HPX-87H column 
and Aminex fast acid analysis column (BioRad, USA) 
were used in series with 5  mM H2SO4 (Merck Titrisol) 
with a flow rate of 0.6 ml/min to separate the analytes at 
55  °C. Concentrations of lactic acid, succinic acid, and 
malic acid were measured using a P/ACE MDQ capillary 
electrophoresis system (Beckmann Coulter Inc., Fuller-
ton, USA) equipped with a PDA detector [57]. Concen-
trations of CO2, O2, and ethanol in the exhaust gas of the 
bioreactor were measured using an Innova gas analyzer 
(Innova Air Tech Instruments A/S, Ballerup, Denmark).

Quantitative analysis of fermentation measurements
A kinetic model was applied to smooth the measurement 
data to reduce the noise for better estimation of the cal-
culated continuous variables such as specific accumula-
tion rates. Performing these calculations directly from 
the measured data would provide data too noisy for 
interpretations. The dynamic system of anaerobic yeast 
cultivation was described by a set of non-linear ordinary 
differential equations (ODEs), with the system compo-
nents comprising concentrations of biomass, the sub-
strates glucose and xylose, the products ethanol, glycerol, 
xylitol, acetate, lactate, succinate, and malate, and the off-
gas CO2.

The consumption of both substrates, glucose and 
xylose, was described by Monod kinetics with an initial 
lag phase. Concentrations are written as c, the subscript 
s stands for either of the substrates, glucose and xylose, 
respectively, and the subscript x for biomass. The maxi-
mum specific substrate uptake rate is denoted by Ys, and 
the monod dynamics are characterized by the parameter 
km,s. The lag phase is determined by the time constant τ.

Growth of the biomass is determined by the rate of 
substrate consumption, and thus

with the specific maximum growth rates µglu and µxyl on 
glucose and xylose, respectively.

The products, i.e., ethanol, xylitol, glycerol, acetate, and 
minor acids, as well as the off-gas CO2, denoted by the 
subscript p, are released proportionally to substrate con-
sumption with a yield parameter Ys,p specific to the sub-
strate and the respective product.

Ethanol is evaporating from the broth during the cul-
tivation in non-negligible amounts. In order to fit the 
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model to the measurement data, ethanol evaporation is 
included in the model by first-order dynamics. The meas-
ured ethanol concentration is then described by

with the evaporation parameter e being a linear function 
of the fermentation broth volume v

The parameters of the model were fit to the avail-
able measurement data by means of a maximum likeli-
hood estimator in two subsequent steps. In a first step, 
the parameters for the coupled system containing the 
ODEs for glucose, xylose, and biomass concentrations 
were identified, and in a following step all the remaining 
parameters were estimated (Additional file 9). Parameter 
estimations and simulations were performed with Matlab, 
version 7.10.0 (R2010a) (Mathworks, Natick, MA, USA).

Mathematical models of xylose–glucose utilizing 
metabolic network
Stoichiometric model
The model of the S. cerevisiae recombinant xylose–glu-
cose co-utilizing metabolic network consists of 102 reac-
tions and 96 intracellular metabolites distributed over 
cytosolic and mitochondrial compartment and extracel-
lular environment (Fig. 2). The model contains XR/XDH 
xylose assimilation pathway [12]. The metabolites have 
been categorized as cytosolic or mitochondrial according 
to the physiological information on their cellular com-
partmentalization. All reactions in the model are com-
pletely balanced, i.e., reactions are atomically balanced 
with respect to carbon, protons, nitrogen, phosphorus, 
etc.

Although a family of hexose transporters, Hxt1p–
Hxt17p, Gal2p, and Snf3p [40, 58, 59], facilitates the 
xylose assimilation in S. cerevisiae, in this study the 
xylose and glucose transport were modeled as independ-
ent reactions catalyzed by separate enzymes. This way, we 
are able to investigate the relations between upper glycol-
ysis and xylose uptake pathway that are not caused by the 
competition for transporters of these two pathways.

Kinetic model
For each of the reactions within the studied metabolic 
network, a kinetic mechanism has been assigned based 
on the available literature data. The kinetic mechanisms 
used include reversible Michaelis–Menten kinetics, 
ordered Bi–Bi, Bi–Ter, and Ter–Bi [60]. Whenever the 
exact kinetic mechanism was not known, generalized 
approximations of enzymatic mechanisms such as gen-
eralized reversible Hill [61] or convenience kinetics [62] 
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dceth
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− eceth

e = a− bv.

have been used. The kinetic model includes also a model 
of allosteric regulation for the phosphofructokinase 
(PFK) reaction. The mechanism for this reaction is mod-
eled as Hill kinetics with the Hill coefficient h = 4, where 
adenosine monophosphate (AMP), acting as an external 
activator, and adenosine triphosphate (ATP), acting as an 
inhibitor, bind to the same site. Detailed account about 
the used kinetic mechanisms is given in the Additional 
files 3 and 10.

Displacement from thermodynamic equilibrium
For any metabolic reaction, the displacement from the 
thermodynamic equilibrium can be expressed as a func-
tion of the equilibrium constant, Keq, defined as the ratio 
between the products of the forward and backward rate 
constants, and the concentration of the involved sub-
strates, Si, and products, Pj, i.e.

The equilibrium displacement, Γ , is related to the 
Gibbs free energy difference, �G, through the following 
thermodynamic equation [38, 63]:

with R being the ideal gas constant and T  the standard 
temperature. We assume that the reactions produce 
spontaneously the products Pj, i.e., �G < 0 and conse-
quently Γ < 1. When a reaction gets close to its thermo-
dynamic equilibrium, Γ  is approaching 1. At equilibrium, 
Γ = 1 and

where �G◦ denotes the standard Gibbs energy of 
reaction.

Efficient building of large‑scale kinetic models
The optimization and risk analysis of complex living enti-
ties (ORACLE) methodology used in this contribution 
is based on the MCA paradigm. ORACLE is composed 
of several successive computational procedures, each of 
them bringing a new level of information about meta-
bolic networks (Fig. 8). Conceptually, ORACLE is organ-
ized as follows:

Level 1
We first determine the stoichiometry of the meta-
bolic network using biochemical data or genome 
reconstructions [64–70]. For organisms with incom-
pletely sequenced genomes, the part of the stoichiom-
etry concerning missing pathways or compounds can 

Γ =
1

Keq

∏

Pj
∏

Si
.

�G = RT lnΓ

∏

Pj
∏

Si

∣

∣

∣

∣

eq

= −RT lnKeq = �G◦,
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be hypothesized. We proceed further by integrating the 
available information from metabolomics and fluxomics 
analyses [71–73], and using the estimates of the standard 
free energy of reactions [74–77] we perform the ther-
modynamics-based flux balance analysis (TFA) [78, 79]. 
Integration of thermodynamics at this stage allows us 
to eliminate thermodynamically unfeasible reactions, to 
establish reaction directionality, and to compute thermo-
dynamically feasible flux profiles.

Level 2
Accurate and consistent determination of the space of 
metabolite concentrations plays a significant role in 
appraising all viable kinetic models sharing the same 
steady-state flux profile for two reasons: (1) the metab-
olite concentration levels intrinsically affect the Gibbs 
free energy difference; consequently, these have to be 
consistent with the reaction feasibility and directionality 
of computed flux profiles; (2) the metabolite concentra-
tion levels are one of the factors determining local stabil-
ity of the kinetic models [32]. Uniform random sampling 
techniques are commonly used to investigate the space 
of metabolite concentrations [80]. However, the volume 
reduction of the thermodynamically feasible metabolite 
concentration space becomes so important in higher 
dimensional metabolite networks that acceptance–rejec-
tion methods are prohibitively inefficient in generating 
feasible random samples [81]. Furthermore, the thermo-
dynamically feasible metabolite concentration space is 
not in the form of a parallelotope (nor it is in the form 
of a simplex or a hypersphere), and consequently the 
transformation techniques for the generation of ran-
dom samples are not applicable [82, 83]. Therefore, we 
recur to Monte Carlo Markov Chain methods to gen-
erate random samples with distributions approaching 
the uniform distribution asymptotically. When experi-
mental measurements or estimates from experimental 
data under similar physiological conditions are available 
for some metabolites in the network [84–86], we inte-
grate these data as bounds on metabolite levels for the 
sampling.

We use the levels of allowable metabolite concentra-
tions along with the standard Gibbs energy of reaction, 
�G◦, to compute the equilibrium displacements of ther-
modynamically feasible reactions, Γ . Knowledge about 
equilibrium allow us, before even going to kinetics, 
to discern the reactions that are near thermodynamic 
equilibrium, i.e., the reactions that are not potential tar-
gets for metabolic engineering. The generated pairs of 
the metabolite concentration levels and the equilibrium 

displacements will subsequently be called ‘equilib-
rium displacement profiles’ as they are intrinsically 
inseparable.

Level 3
We integrate the kinetic properties of enzymes at this 
level. Available kinetic data from literature are incorpo-
rated. Whenever kinetic information about enzymes is 
incomplete or missing, we sample to recover the missing 
kinetic data. This is performed either through sampling 
of enzyme states [31], or through sampling of the degree 
of saturation of the enzyme active site [32].

At this level, we also perform consistency checks and 
pruning. In these tests, we evaluate the local stability of 
the resulting kinetic models and the consistency with the 
experimental information. As a result of the computa-
tional procedures performed at this level, we obtain the 
populations of elasticities consistent with thermodynami-
cally feasible metabolite concentrations.

Level 4
Using the information gathered in previous levels, we 
compute populations of control coefficients and store them. 
Only the control coefficients stemming from stable sys-
tems are retained. If at a later time experimental evidence 
about the control coefficients becomes available, e.g., the 
response of a metabolic flux to an increase of activity of 
an enzyme becomes known, we prune the samples of the 
population with inconsistent control coefficients.

Level 5
We perform statistical analysis and data mining on the 
populations of control coefficients in order to quantify 
the importance of the enzymes in possible metabolic 
engineering strategies [87–89]. Hypotheses about pos-
sible couplings within the metabolic network are postu-
lated at this level as well.

All the above-mentioned levels include visualization of 
the obtained knowledge about the metabolic network.

Turnover control coefficients
The turnover of a metabolite, tMet, can be defined as the 
sum of fluxes that produce, or alternatively as the sum 
of fluxes that consume, the metabolite: tMet =

∑n
i=1 vi. 

Here, n represents the number of producing (or consum-
ing) fluxes vi. The turnover control coefficients can then 
be calculated as

C tMet
q =

q

tMet

dtMet

dq
=

n
∑

i=1

vi

tMet
Cvi
q ,
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where q denotes the set of system parameters, such as the 
enzyme activity and extracellular metabolite concentra-
tions, and Cvi

q  is the flux control coefficient of the flux vi.

Stoichiometry Metabolomics Fluxomics

Sample
elasticities

      Sample
  metabolites

MCA

Consistency
     check

Reject

Analyze results
& design strategies

∆G’o

No

Yes

Enzyme
kinetics

Thermodynamically
feasible flux profiles

Thermodynamically feasible
metabolite concentrations
and equilibrium displacements

Elasticities consistent with
thermodynamically feasible
metabolite concentrations

Populations of concentration
and flux control coefficients

Metabolic engineering
strategies identified

In
cr

ea
si

ng
 k

no
w

le
dg

e 
ab

ou
t m

et
ab

ol
ic

 n
et

w
or

k

Fig. 8  Flowchart of the ORACLE framework. The successive application of computational procedures integrates biological information from differ‑
ent sources, thereby refining kinetic models and providing guidance for metabolic engineering

Additional files

Additional file 1. Stoichiometry of used reactions and the correspond‑
ing mass balances.

Additional file 2. Thermodynamic displacement of reactions, Γ. Reac‑
tions can operate: (i) strictly far from thermodynamic equilibrium, i.e. 
0 < Γ ≤ 0.1; (ii) with the middle displacements, i.e. 0.1 ≤ Γ ≤ 0.9; and (iii) 
strictly near equilibrium, i.e. 0.9 ≤ Γ < 1. Reactions whose displacements 
spanned more than one of these ranges were denoted with: (iv) I + II, for 
0 < Γ ≤ 0.9; (v) II + III, for 0.1 ≤ Γ < 1; and (vi) I + II + III, for 0 < Γ < 1.

Additional file 3. List of reactions, their substrates and products, 
together with the used kinetic mechanisms (Additional file 10).

Additional file 4. Sheet “Flux Control Coefficients”: (i) Control coef‑
ficients of the xylose uptake (XTR) for a set of most important enzymes; 
(ii) Correlation of the distributions of the XTR control coefficients for HXK, 
ATPM and ZWF; (iii) The effects of manipulations of HXK, ATPM and NDR 
on metabolic fluxes. Sheet “Concentration Control Coeffs”: Control coef‑
ficients of the cytosolic ATP, cytosolic NADH and cytosolic NADPH during 
glucose-xylose co-utilization. Sheet “Turnover Control Coefficients”: (i) 
Turnover control coefficients of cytosolic ATP, mitochondrial ATP, cytosolic 

NADH, cytosolic NADPH, cytosolic protons and mitochondrial protons 
for HXK, ATPM and NDR; (ii) Flux control coefficients of producing and 
consuming reactions of cytosolic ATP, mitochondrial ATP, cytosolic NADH, 
cytosolic NADPH, cytosolic protons and mitochondrial protons for HXK, 
ATPM and NDR.

Additional file 5. Control coefficients of the flux through xylulose kinase 
(XK) during glucose-xylose co-utilisation for the original (purple) and 
refined (green) kinetic models. The bars represent the mean values of the 
control coefficients, and the error bars denote the 1st and the 3rd quartile 
of the control coefficients with respect to their mean value, i.e. 50% of the 
samples closest to the mean value are within the error bars.

Additional file 6. Predicted effects of changes in ATPM on the metabolic 
fluxes. The increased ATPM would result in reactions with: increased flux 
(red), decreased flux (green) or negligible changes in flux (grey). Higher 
intensity of red or green indicates larger changes in fluxes. The numerical 
values shown above reactions denote the mean control coefficients upon 
changes in ATPM, i.e. C∗

ATPM
 where * denotes any metabolic flux in the 

network.

Additional file 7. Predicted effects of NDR manipulations on the meta‑
bolic fluxes. The increased activity of NDR would result in reactions with: 
increased flux (red), decreased flux (green) or negligible changes in flux 
(grey). Higher intensity of red or green indicates larger changes in fluxes. 
The numerical values shown above reactions denote the mean control 
coefficients upon activity changes in NDR, i.e. C∗

NDR
 where * denotes any 

metabolic flux in the network.

Additional file 8. Flux Variability Analysis (FVA): (i) obtained ranges of the 
fluxes of reactions involved in the cytosolic ATP and NADPH metabolism 
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Abbreviations
ORACLE: optimization and risk analysis of complex living entities; TFA: 
thermodynamics-based flux balance analysis; S. cerevisiae: Saccharomyces 
cerevisiae; XTR: hexose transporters for xylose; XRI and XRII: xylose reductase; 
XLT: xylitol excretion transporter; XDH: xylitol reductase; XK: xylulokinase; GTR: 
hexose transporters for glucose; HXK: hexokinase; PGI: glucose-6-phosphate 
isomerase; PFK: phosphofructokinase; FBA: fructose-bisphosphate aldolase; 
TPI: triose phosphate isomerase; TDH: glyceraldehyde-3-phosphate dehydro‑
genase; PGK: phosphoglycerate kinase; GPM: phosphoglycerate mutase; ENO: 
enolase; PYK: pyruvate kinase; ZWF: glucose-6-phosphate-1-dehydrogenase; 
RKI: ribose-5-phosphate isomerase; RPE: ribulose-5-phosphate 3-epimerase; 
TKL1: transketolase; TKL2: transketolase; TAL: transaldolase; PDC: pyruvate 
decarboxylase; ALD: aldehyde dehydrogenase; ACS: acetyl-CoA synthase; CAT: 
carnitine o-acetyltransferase; ACARt: acetylcarnitine diffusion; YAT: carnitine 
o-acetyltransferase; CARt: carnitine diffusion; PYRt: pyruvate carrier; PDA: pyru‑
vate dehydrogenase; PYC: pyruvate carboxylase; PCK: phosphoenolpyruvate 
carboxykinase; OAtrans: oxaloacetate carrier; MAE: malic enzyme; CIT: citrate 
synthase; ACO: aconitase; IDH: isocitrate dehydrogenase; KGD: a-ketoglutarate 
dehydrogenase; LSC: succinate-CoA ligase; SDH: succinate dehydrogenase; 
FUM: fumarase; MDH: malate dehydrogenase; NDH: external NADH dehy‑
drogenase; NDI: NADH dehydrogenase; FDH: FADH2 dehydrogenase; NDR: 
NADPH reductase; QCR: ubiquinol cytochrome C reductase; COX: cytochrome 
C oxidase; ASN: ATP synthase; AAC: ADP/ATP carrier protein; ADK: adenylate 
kinase; ATPmt: ATP maintenance; ADH: cytosolic alcohol dehydrogenase; SCD: 
succinate dehydrogenase (ubiquinone-6), mitochondrial; ACET: acetate diffu‑
sion; COH: carbonic acid hydro-lyase; PPP: Pyrophosphate phosphohydrolase; 
MLPIT: malate transport, mitochondrial; ICL: Isocitrate glyoxylate-lyase; MLS: 
l-malate glyoxylate-lyase (CoA-acetylating); MDHc: (S)-malate:NAD+ oxidore‑
ductase; CITc: citrate oxaloacetate-lyase cytosolic; ACOc: citrate hydro-lyase 
cytosolic; LACm2r: d-lactate transport, mitochondrial; CITt2m: citrate transport, 
mitochondrial; LDH: (R)-lactate:ferricytochrome-c 2-oxidoreductase; O2m: 
O2 transport (diffusion); CO2m: CO2 transport (diffusion), mitochondrial; PIm: 
phosphate transporter, mitochondrial; CO2t: CO2 transport via diffusion; GLYCt: 
glycerol transport in/out via diffusion reversible; PYRst: pyruvate transport via 
proton symport; SO4t: sulfate transport via proton symport; Pit: phosphate 
transport via proton symport; O2t: O2 transport via diffusion; NH4t: ammo‑
nia transport via diffusion; LACt2r: d-lactate transport via proton symport; 
SUCCt2r: succinate transporter in/out via proton symport; MALt2r: l-malate 
transport in via proton symport; GND1: 6-phospho-d-glucono-1,5-lactone 
lactonohydrolase; GND2: 6-phospho-d-gluconate:NADP+ 2-oxidoreductase 
(decarboxylating); GPD1: glycerol-3-phosphate:NAD+ 2-oxidoreductase; 
GPD2: glycerol-3-phosphate phosphohydrolase; XL: xylose; XLT: xylitol; XYLL: 
xylulose; GLC: glucose; G6P: glucose-6-phosphate; F6P: fructose-6-phosphate; 
FBP: fructose 1,6-diphosphate; T3P: glyceraldehydes-3-phosphate; DHAP: 
glycerone phosphate; DPG: bisphosphoglycerate; 3PG: 3-phosphoglycerate; 
2PG: 2-phosphoglycerate; PEP: phosphoenolpyruvate; PYR: pyruvate; 6PGL: 
glucono-1,5-lactone 6-phosphate; RL5P: ribulose 5-phosphate; R5P: ribose 
5-phosphate; X5P: xylose-5-phosphate; E4P: erythrose 4-phosphate; S7P: sedo‑
heptulose 7-phosphate; AALD: acetaldehyde; ACET: acetate; ACCOA: acetyl-
CoA; CAR: carnitine; ACAR: acetylcarnitine; OAA: oxaloacetate; CIT: citrate; 
ICIT: isocitrate; AKG: 2-oxoglutarate; SUCCOA: succinyl-CoA; SUCC: succinate; 
FUM: fumarate; MAL: malate; GL: glycerol; ETH: ethanol; PPi: pyrophosphate; 
Pi: phosphate; 6PGC: 6-phospho-d-gluconate; GLYC3P: glycerol-3-phosphate; 
ACET: acetate; LAC: d-lactate; GLYX: glyoxylate.
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