Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Development of Agave as a dedicated biomass source: production of biofuels from whole plants

Fig. 1

Ethanol fermentation of unpretreated Agave biomass with and without active inulinase present during the hydrolysis by a cellulase cocktail. a SSF fermentation of five unpretreated Agave biomass without inulinase: ethanol and residual sugar after 35 °C 304-hour fermentation as mg/g dry biomass. n = 3 with standard deviation. b Weight loss during SHF ethanol 35 °C production of unpretreated A. americana BB and A. tequilana biomass with different levels of inulinase. Numbers are ethanol mg/g dry biomass with standard deviation. Legend numbers are the level of inulinase added (INU/g biomass) with inulinase activity of 329 INU/mL (see “Methods” section). n = 2. c Impact of time on enzymatic hydrolysis with inulinase prior to ethanol fermentation of two unpretreated Agave biomass. Ethanol level and residual sugar after 35 °C 48-hour fermentation: mg/g dry biomass. Identical hydrolysis tests were initiated and one removed on days indicated and frozen waiting analysis. d 35 °C 42-hour SHF conversion of five unpretreated Agave with addition of native or heat killed inulinase including in the hydrolysis step. Starting sugar levels, ethanol levels, and remaining residual sugars is mg/g dry biomass with standard deviation. n = 2; inul inulinase enzyme; heat heated inulinase enzyme, A amer BB A. americana Big Blue, A amer marg A. americana marginata, A amer gain A. americana gainesville

Back to article page