Skip to main content
Fig. 3 | Biotechnology for Biofuels

Fig. 3

From: Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

Fig. 3

ABPP developments for live cell profiling of protein cysteine thiol redox dynamics. a ABP structures derived from iodoacetamide (IAM) and N-ethylmaleimide (Mal) electrophiles known to react with reduced thiols. b A fluorescent gel of in vitro and in vivo IAM-RP labeling of the cyanobacterium Synechococcus 7002. Oxidation due to lysis clearly results in significant aberrations to the protein redox status of the cell; c Synechococcus 7002 cells were grown in a photobioreactor and available carbon was limited. The cells were then starved of carbon followed by addition of CO2. Protein redox dynamics were profiled before and after the addition of carbon for 60 min. The heat map of in vivo IAM-RP and Mal-RP-labeled proteins shows large temporal dynamics in probe labeling. The heat map portrays times when specific proteins are most reduced (red) versus more oxidized (light yellow). Gray coloring indicates that oxidation is so significant that no detectable probe labeling was observed. Reprinted with permission from [64]. Copyright 2014 American Chemical Society

Back to article page