Skip to main content

Advertisement

Fig. 2 | Biotechnology for Biofuels

Fig. 2

From: A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

Fig. 2

Expression of photorespiratory bypass genes in camelina. a Constructs were generated for introducing photorespiratory bypass genes into Camelina. Each coding sequence was preceded by a constitutive promoter and fused to a chloroplast transit peptide sequence. The DEF2 construct contains GlcD, GlcE and GlcF sequences cloned into a modified pCAMBIA2300-mCherry vector where NPTII from pCAMBIA2300 has been replaced by the mCherry gene. The TG1 construct contains the GCL and TSR sequences cloned into the pEG100 vector. Plants were either transformed with the DEF2 construct alone, TG1 construct alone, or co-transformed with DEF2 and TG1. b Plants passing selection were tested for gene insertion using PCR of gDNA. Primers (Additional file 1: Table S1) were used to amplify the endogenous reference gene SVP1(+) and transgenes GlcD, GlcE, GlcF, TSR and GCL. c The expression of transgene mRNAs was tested by semi-quantitative RT-PCR using the same primers as above. d The proteins GlcD, GlcE and GlcF combine to form the glycolate dehydrogenase (GDH) enzyme complex. The activity of GDH was tested using isolated chloroplasts from transgenic and WT plants. e The activity of enzymes TSR and GCL was evaluated in a coupled NADH depletion assay. Using sodium glyoxylate as substrate, NAD generation in chloroplast extracts was compared

Back to article page