Skip to main content

Table 1 Comparison of Thermotoga maritima growths cultivated in serum bottles in the presence of different sulfured nutriments

From: Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth

 

Time

Cells

Glu cons

Lactate

Acetate

H2

H2/acet

C-recovery

Qcells

Qglu

QH2

h

mg L−1

mmol L−1

mol mol−1

%

mg L−1 h−1

mmol L−1 h−1

Control

0

4.8 ± 0.1

0.0

0.0

0.0

0.0

14.5

108.2 ± 10.8

3.8 ± 0.2

0.5 ± 0.1

5.4 ± 0.4

9.3 ± 0.9

1.71 ± 0.29

96.2 ± 12.7

7.14 ± 0.75

0.26 ± 0.01

0.64 ± 0.06

22.0

158.2 ± 15.8

7.1 ± 0.4

0.8 ± 0.1

10.1 ± 0.8

21.3 ± 2.1

2.10 ± 0.35

91.4 ± 12.1

6.98 ± 0.72

0.32 ± 0.02

0.97 ± 0.10

DMSO

0

6.0 ± 0.1

0.0

0.0

0.0

0.0

14.5

129.7 ± 13.0

5.2 ± 0.3

0.4 ± 0.0

7.4 ± 0.6

14.9 ± 1.5

2.01 ± 0.33

91.0 ± 12.0

8.53 ± 0.90

0.36 ± 0.02

1.02 ± 0.10

22.0

160.8 ± 16.1

9.2 ± 0.5

0.8 ± 0.1

13.3 ± 1.1

28.7 ± 2.9

2.17 ± 0.36

88.1 ± 11.7

7.03 ± 0.73

0.42 ± 0.02

1.31 ± 0.13

0

5.9 ± 0.1

0.0

0.0

0.0

0.0

14.5

191.8 ± 19.2

11.0 ± 0.5

1.3 ± 0.1

16.3 ± 1.3

28.0 ± 2.8

1.72 ± 0.29

91.7 ± 12.1

12.82 ± 1.32

0.76 ± 0.04

1.93 ± 0.19

22.0

158.2 ± 15.8

16.6 ± 0.8

3.4 ± 0.3

23.8 ± 1.9

46.1 ± 4.6

1.93 ± 0.32

88.3 ± 11.7

6.93 ± 0.72

0.75 ± 0.04

2.09 ± 0.21

Methionine

0

5.1 ± 0.1

0.0

0.0

0.0

0.0

14.5

217.7 ± 21.8

11.9 ± 0.6

1.1 ± 0.1

17.3 ± 1.4

30.0 ± 3.0

1.73 ± 0.29

90.2 ± 11.9

14.67 ± 1.50

0.82 ± 0.04

2.07 ± 0.21

22.0

227.8 ± 22.8

18.3 ± 0.9

3.1 ± 0.3

26.5 ± 2.1

53.3 ± 5.3

2.01 ± 0.34

89.2 ± 11.8

10.13 ± 1.04

0.83 ± 0.04

2.42 ± 0.24

Thiosulfate

0

4.1 ± 0.1

0.0

0.0

0.0

0.0

14.5

250.6 ± 25.1

15.4 ± 0.8

3.6 ± 0.4

22.0 ± 1.8

39.7 ± 4.0

1.80 ± 0.30

94.5 ± 12.5

16.96 ± 1.73

1.06 ± 0.05

2.74 ± 0.27

22.0

157.0 ± 15.7

17.5 ± 0.9

6.3 ± 0.6

24.1 ± 1.9

47.3 ± 4.7

1.97 ± 0.33

93.0 ± 12.3

6.92 ± 0.71

0.79 ± 0.04

2.15 ± 0.21

Cysteine

0

4.7 ± 0.1

0.0

0.0

0.0

0.0

14.5

300.6 ± 30.1

16.8 ± 0.8

2.2 ± 0.2

25.4 ± 2.0

45.0 ± 4.5

1.77 ± 0.30

94.5 ± 12.5

20.41 ± 2.07

1.16 ± 0.06

3.10 ± 0.31

22.0

158.2 ± 15.8

20.4 ± 1.0

4.1 ± 0.4

30.5 ± 2.4

58.5 ± 5.8

1.92 ± 0.32

90.0 ± 11.9

6.98 ± 0.72

0.93 ± 0.05

2.66 ± 0.27

Na2S

0

4.7 ± 0.1

0.0

0.0

0.0

0.0

14.5

264.6 ± 26.5

20.4 ± 1.0

4.7 ± 0.5

28.1 ± 2.2

50.9 ± 5.1

1.81 ± 0.3

89.3 ± 11.8

17.92 ± 1.82

1.41 ± 0.07

3.51 ± 0.35

22.0

234.2 ± 23.4

20.4 ± 1.0

4.7 ± 0.5

30.7 ± 2.5

54.9 ± 5.5

1.79 ± 0.3

94.4 ± 12.5

10.43 ± 1.06

0.93 ± 0.05

2.49 ± 0.25

  1. All sulfured compounds were added at the rate of 0.3 mmol L−1 sulfur equivalent in a medium containing glucose (25 mmol L−1), yeast extract (1 g L−1), and salts (see “Methods” section). DMSO, S°, and Na2S meant Dimethyl Sulfoxyde, elementary sulfur, and sodium sulfide, respectively. “glu cons” was glucose consumed during fermentation. Carbon recovery was calculated by taking into account the carbon moles of products (cells, lactate, acetate, and CO2) and substrate (glucose). C-cells represented 50% (p/p) of the cells dry weight. CO2 was estimated by considering 1 mol of CO2 produced per mole of acetate. Qglu was the volume rates of glucose consumption expressed in mg cdw per hour and per liter of culture medium. Qcells and QH2 were the productivity of cells and hydrogen, respectively. These productivities were expressed in millimoles cdw per hour and per liter of culture medium. All batch cultures were performed in triplicate in serum bottles