Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans

Fig. 1

ESI-MS spectra showing the degradation products generated from several cellulosic and hemicellulosic substrates by PaLPMO9H under ascorbate conditions. a Cellulose; b lichenan; c MLG; d GM; e XyG. Species were detected as sodium adducts ([M+Na]+) except for XXXGXXXG which was detected as [M+2Na]2+. The main degrees of polymerization (DP) were annotated. Right panel enlarged view of the DP4 species, for all substrates; stars the non-modified product. Peaks indicated by an arrow were attributed to the oxidized species (−2, +16, +32 Da relative to the non-modified species) and were further characterized by tandem MS (full arrow data presented in the following sections; empty arrows data not shown). Labels of the oxidized species were proposed based on tandem MS results. For cellulose: “diol C4+ diol Cx” indicates a double oxidation (diols): one has been localized at C4 of the non-reducing end, while the second one could not be precisely localized and is either localized at the reducing end or non-reducing end

Back to article page