Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus

Fig. 1

Bioinformatics analysis of DUF266 proteins. a Phylogenetic tree. A total of 169 DUF266 proteins were collected by amino acid sequence similarity analysis through Phytozome (v11.0) (https://phytozome.jgi.doe.gov/pz/portal.html). These 169 DUF266 proteins with 300–500 amino acids in length were identified from Populus, grape, Eucalyptus, soybean, Arabidopsis, rice, maize, Amborella, lycophyte, and moss. Shown is the maximum likelihood phylogenetic tree constructed by means of the mtREV model fitting method. aLRT SH-like branch support method was used to determine likelihoods of branch and node. PdDUF266A is marked in red font. Rice BC10 protein is indicated in blue font. Five groups (from A to E) are classified by clustering. The clades containing the monocot- (highlighted by light red), dicot- (highlighted by light blue) and moss-specific (highlighted by light green) DUF266 proteins are highlighted. b Amino acid sequence of PdDUF266A. The Core/I-branching/DUF266 domain and TM domain are indicated in red and blue boxes, respectively. c Three-dimensional structure prediction and molecular recognition feature (MoRF) analysis of PdDUF266A by means of I-TASSER and ANCHOR. The MoRF region is composed of seven residues from A298 to K304 (ATKMENK) on PdDUF266A (marked by red circle). This region is predicted to have high potential to bind macromolecules

Back to article page