Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd)

Fig. 1

a Pathway engineering for promotion of carbon flux through PP pathway. The EMP and ED pathways were disrupted by deleting pgi, edd, and eda (red crosses), and the PP pathway was activated by the overexpression of zwf and gnd (bold blue arrows). b Theoretical carbon and energy balance of EMP, PP (non-cyclic), and ED pathway of base strain (SH5) for co-production of H2 and ethanol. Genes: pgi—phosphoglucose isomerase, pfk—phosphofructokinase, gapA—glyceraldehyde-3-phosphate dehydrogenase, pta—phosphotransacetylase, ackA—acetate kinase, adhE—alcohol dehydrogenase, zwf—glucose-6-phosphate dehydrogenase, gnd—6-phosphogluconate dehydrogenase, edd—Entner–Doudoroff dehydratase, eda—Entner–Doudoroff aldolase, udhA—soluble transhydrogenase, pntAB—membrane-bound transhydrogenase. Metabolites: G6P—Glucose-6-phosphate, F6P—fructose-6-phosphate, FBP—fructose-1,6-bisphosphate, DHAP—dihydroxyacetone phosphate, G3P—glyceraldehyde-3-phosphate, 1,3-PG—1,3-bisphosphoglycerate, PYR—pyruvate, FOR—formate, H2—hydrogen, AcCoA—acetyl-CoA, ACE—acetate, EtOH—ethanol, 6PG—6-phosphogluconate, RL5P—ribulose-5-phosphate, X5P—xylose-5-phosphate, E4P—erythrose-4-phosphate, KDPG—2-Keto-3-deoxy-6-phosphogluconate

Back to article page