Skip to main content
Fig. 3 | Biotechnology for Biofuels

Fig. 3

From: Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

Fig. 3

ATP generation for acetone production as the sole end product. According to the mechanism of energy conservation for autotrophic growth in M. thermoacetica, 1 mol ATP, 2 mol NADH, and NADPH each, are required in the Wood–Ljungdahl pathway (WLP) for the fixation and conversion of CO2 to acetyl-CoA. When CO2 serves as carbon source, reduced ferredoxin is required to reduce CO2 to CO. This mol reduced ferredoxin which is additionally available to the cell when CO serves as electron donor and carbon source, which explains the ATP generation when CO serves as substrate. acac acetoacetate, acac-CoA acetoacetyl-CoA, ac-CoA acetyl-CoA, ac-P acetyl phosphate, ATP adenosine triphosphate, CODH/ACS CO dehydrogenase/acetyl-CoA synthase, ECH membrane-associated [NiFe]-hydrogenase, Fd ferredoxin (oxidized form), Fd 2− ferredoxin (reduced form), HydABC electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-Hydrogenase, NAD + nicotinamide adenine dinucleotide (oxidized form), NADH nicotinamide adenine dinucleotide (reduced form), NADP + nicotinamide adenine dinucleotide phosphate (oxidized form), NADPH nicotinamide adenine dinucleotide phosphate (reduced form), NfnAB electron-bifurcating transhydrogenase

Back to article page