Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli

Fig. 1

a Chemical synthesis of n-butyraldehyde from petrochemical feedstock. Propylene and syngas are reacted under high temperature and pressure to form n-butyraldehyde. Commercially important downstream products are shown as representative applications. b Metabolic pathway for n-butyraldehyde biosynthesis from glucose. Six genes are overexpressed to produce n-butyraldehyde. Native adh genes coding for alcohol dehydrogenases are knocked out to prevent excessive reduction of n-butyraldehyde. Fdh formate dehydrogenase; AtoB acetyl-CoA acetyltransferase; Hbd 3-hydroxybutyryl-CoA dehydrogenase; Crt crotonase; Ter trans-enoyl-CoA reductase; Aldh CoA-acylating aldehyde dehydrogenase

Back to article page