Skip to main content


Fig. 2 | Biotechnology for Biofuels

Fig. 2

From: CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh.

Fig. 2

Expression patterns of BnCIPK9 in the high-oil content parent (P1). a Spatial and temporal expression analyses of BnCIPK9 in roots, stem, leaves, 24 days after pollination (DAP) seeds, 24DAP slique wall, buds, and flowers using quantitative real-time PCR (qRT-PCR). Total RNA was isolated from the different tissues (roots, stem, leaves, 24DAP seeds, 24DAP silique wall, buds, and flowers); qRT-PCR was performed with BnCIPK9-specific primers and BnaUBC9-specific primers. Gene BnaUBC9 was used as an internal control for normalization. The data shown are mean ± standard deviation (SD) of three technical replicates. b BnCIPK9 expression profile using qRT-PCR at different seed-development stages (10, 10DAP; 15, 15DAP; 20, 20DAP; 25, 25DAP; 30, 30DAP; 35, 35DAP; 40, 40DAP; 43, 43DAP). Tissues were collected at different seed-development stages, and RNA was isolated to obtain first-strand cDNA. The qRT-PCR was performed with BnCIPK9-specific and BnaUBC9-specific primers. BnaUBC9 expression levels were used as an internal control. The data shown are mean ± SD of three technical replicates. c GUS staining of different tissues in BnCIPK9:GUS transgenic plants. Gus activity in 7-day-old seedlings (4) and individual organs of adult plant (1–3, 5, 6), siliques (1, 2), whole inflorescence (3), stem (5), mature leaf (6). Scale = 2 mm (siliques, whole inflorescence, stem, mature leaf), 1 mm in 7-day-old seedlings

Back to article page