Skip to main content


Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli

Fig. 1

Synthetic route of 2-PE. A 2-PE chemical synthesis. a Friedel–Craft reaction of ethylene oxide. b Catalytic reduction of styrene oxide. B 2-PE biosynthesis in E. coli. Metabolite abbreviations: PTS, phosphotransferase system; G6P, glucose 6-phosphate; F6P, fructose-6-phosphate; F16BP, fructose-1,6-diphosphate; GAP, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate; R5P, ribose-5-phosphate; Xu5P, ribulose-5-phosphate; STP, sedoheptulose-7-phosphate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-d-arabino-heptulosonate-7-phosphate; DHQ, 3-dehydroquinate; DHS, 3-dehydro-shikimate; SHK, shikimate; S3P, shikimate-3-phosphate; EPSP, 5-enolpyruvylshikimate-3-phosphate; CHA, chorismate; PPA, prephenate; PPY, phenylpyruvate; PPAL, phenylacetaldehyde; PEA, phenylethylamine; l-Phe, l-phenylalanine; l-Tyr, l-tyrosine; l-Trp, l-tryptophan. Genes and enzymes: zwf, glucose 6-phosphate dehydrogenase; pgi, glucose 6-phosphate isomerase; fbaA, fructose-1,6-diphosphate aldolase; pykA, pyruvate kinase II; pykF, pyruvate kinase I; ppsA, phosphoenolpyruvate synthase; tktA, transketolase; talB, transaldolase B; aroG, DAHP synthetase feedback inhibited by Phe; aroH, DAHP synthetase feedback inhibited by Trp; aroF, DAHP synthetase feedback inhibited by Tyr; aroB, 3-dehydroquinate synthase; aroD, 3-dehydroquinate dehydratase; aroE, shikimate dehydrogenase; aroL, shikimate kinase 2; aroK, Shikimate kinase 1; aroA, 3-phosphoshikimate 1-carboxyvinyltransferase; aroC, chorismate synthase; pheA, fused chorismate mutase and prephenate dehydratase; tyrB, aromatic-amino-acid aminotransferase; AADC, aromatic amino acid decarboxylase; MAO, amine oxidase; KDC, alpha-keto-acid decarboxylase; Adh, alcohol dehydrogenase; PAAS, phenylacetaldehyde synthase; TCA cycle, tricarboxylic acid cycle

Back to article page