Skip to main content

Table 4 Applications of different dosages of nano-particles on biofuels and combinations of biofuel nano-particle blend and application output

From: Latest development in microalgae-biofuel production with nano-additives

Microalgal and other biofuel Sources for biofuel extraction Nano-particles (NPs) Dosage Combinations of biofuel and nano-particle blends Application output References
Biodiesel Caulerpa racemosa ZrO2 50 ppm
100 ppm
B2050 ppm
B20100 ppm
Reduction of hydrocarbon (HC), carbon-mono oxide (CO)
Nitrogen oxides (NOx) emission increase
[59]
Biodiesel Madhuca longifolia TiO2 100 ppm
200 ppm
BD100T100 ppm
BD100T200 ppm
Reduction of 5.8% unburned HC, 9.3% CO, 2.7% smoke and 6.6% NOx emission [128]
Biodiesel blended with diesel Jatropha curcas Al2O3
CeO2
30 ppm
30 ppm
B20A30C30 ppm 12% improved brake thermal efficiency
Reduction of 30% NOx, 60% CO, 44% HC and 38% smoke
[61]
Biodiesel Jatropha curcas Al2O3
CeO2
30 ppm
30 ppm
B100A30C30 ppm Improved brake thermal efficiency
Reduction of NOx, CO, HC and smoke
[61]
Biodiesel Botryococcus braunii TiO2
SiO2
50 ppm
100 ppm
B20TiO2SiO250 ppm
B20TiO2SiO2100 ppm
Increased calorific value
Decrease in brake-specific fuel consumption (BSFC)
Improved brake thermal efficiency (BTE)
Reduction of ignition delay time
Improved brake thermal efficiency
Improvement of combustion characteristics
Minimum CO, HC
Maximum NOx, CO2
[60]
Biodiesel Pongamia pinnata Rh2O3 100 nm B100Rh2O3 Reduces CO, 37% NOx, 45% unburnt HC
Improvement of thermal efficiency
[58]
Biodiesel Glycine max Co3O4 100 mg/l
38–70 nm
B100Co3O4 1.03% better engine performance than usual biodiesel combustion
Reduction of smoke and 7.46% NOx emission
[56]
Biodiesel Glycine max Al–Mg 100 mg/l
38–70 nm
B100Al-Mg Better engine performance than usual biodiesel combustion
Reduction of smoke and 16.33% NOx emission
[56]
Biodiesel Jatropha curcas Al2O3
Al2O3
Carbon nano-tube (CNT)
Al2O3CNT
25 ppm
50 ppm
BAl2O3 ppm
BAl2O3 ppm
BCNT25 ppm
BCNT50 ppm
BAl2O3CNT
25 ppm
Considerable enhancement of brake thermal efficiency
Marginal reduction of harmful emissions
Improved heat transfer rate
Short ignition delay effect
Enhancement of heat conduction properties and surface area/volume ratio
[129]
Biodiesel Azadirachta indica Ag2O 5 ppm B100Ag2O
5 ppm
Decrease of 12.22% CO, 10.89% HC, 4.24% NOx and 6.61% smoke
Enhancement of brake thermal efficiency with reduction in brake-specific fuel consumption
[63]
Biodiesel Azadirachta indica Ag2O 10 ppm B100Ag2O
10 ppm
Reduction of 16.47% CO, 14.21% HC, 6.66% NOx and 8.34% smoke
Significant improvement of brake thermal efficiency with reduction in brake-specific fuel consumption
[63]
Biodiesel Jatropha curcas Co3O4 B10Co3O4
B20Co3O4
B100 Co3O4
Reduction of the ignition delay
Improvement of combustion by its’ catalytic effect
Burning of the carbon deposits
Reduction of black smoke
[57]
Biodiesel–bioethanol Vegetable oil–alcohol Fe2O3 150 ppm BB Fe2O3150 ppm 1% increase in thermal efficiency
60% reduction of emission characteristics, reduction of NOx, CO, HC and smoke
Better mixing
Presence of secondary atomization, disruption of primary droplet
Complete combustion
[57]
Biodiesel Azadirachta indica CaCO3 nano-fluids 3 mg/l
5 mg/l
B100CaCO3 Reduction of 4.08% specific fuel consumption reduction
3.9% increase of brake thermal efficiency
8.57% higher mechanical efficiency
Reduction of NOx and HC emission
[130]
Biodiesel Linum usitatissimum CuO 80 ppm
40 μmol/L
80 μmol/L
120 μmol/L
B20CuO80 ppm Significant increase in thermal efficiency
3–4% increase of brake thermal efficiency
25% reduction of CO
Reduction of NOx and HC emission
[62]
Biodiesel–castoroil–diesel–bioethanol Vegetable oil–Ricinus communis oil
Vegetable oil–alcohol
CeO2-CNT 25 ppm
50 ppm
100 ppm
Reduction of HC, CO, CO2, smoke and NOx
Increase of calorific value and brake thermal efficiency
[84]
Biodiesel   FeCl3 20 μmol/l BFeCl325 Reduction of HC, CO, CO2, smoke and NOx
Increase of calorific value and brake thermal efficiency
[84]