Skip to main content
Fig. 4 | Biotechnology for Biofuels

Fig. 4

From: Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity

Fig. 4

One-pot multi-enzyme reactions. Oxidation products of HMF with one or more enzymes after 72 h. a AO alone or with CAT or CAT and HRP. Reaction conditions: final reaction volume 5 mL, 1 µM AO and 2 µM CAT or 1 µM AO, 2 µM CAT and 8 µM HRP, 1 µM FAD, 10 mM HMF in 50 mM sodium phosphate buffer (pH 7) at 30 °C and constant stirring at 150 min−1. b GAO alone or with CAT or CAT and HRP. Reaction conditions: final reaction volume 5 mL, 8 µM GAO and 2 µM CAT or 1 µM AO, 2 µM CAT and 8 µM HRP, 10 mM HMF in 50 mM sodium phosphate buffer (pH 7) at 30 °C and constant stirring at 150 min−1. c AO or GAO alone or both with CAT and HRP. Reaction conditions: final reaction volume 5 mL, 1 µM AO, 8 µM GAO, 2 µM CAT and 8 µM HRP, 1 µM FAD, 10 mM HMF in 50 mM sodium phosphate buffer (pH 7) at 30 °C and constant stirring at 150 min−1. HMF 5-hydroxymethilfurfural, HMFA 5-hydroxymethyl-2-furoic acid, DFF 2,5-diformylfuran, FFA 5-formyl-2-furoic acid, FDCA 2,5-furandicarboxylic acid, AO alcohol oxidase from Pichia pastoris, GAO galactose oxidase from Dactylium dendroides, HRP horseradish peroxidase, CAT catalase from Aspergillus niger. The average relative error was ± 11% and was estimated based on selected repeated experiments

Back to article page