Skip to main content

Table 2 Oxidation of HMF, DFF, HMFA and FFA with different enzymes after 72 h

From: Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity

Yield [%]EnzymeNo enzyme
AOGAOCATLACLPOHRP
Substrate: HMF
 HMF71.294.910010099.499.399.7
 DFF25.65.10.3
 HMFA0.60.7
 FFA3.1
 FDCA
Substrate: DFF
 HMF0.42.10.70.70.70.70.5
 DFF96.496.698.298.098.298.498.5
 HMFA
 FFA3.21.31.11.31.10.91
 FDCA
Substrate: HMFA
 HMF100
 DFF
 HMFA10097.110099.996.495.4
 FFA2.70.40.6
 FDCA0.20.13.14.0
Substrate: FFA
 HMF
 DFF
 HMFA18.20.30.20.9
 FFA70.299.499.198.695.999.399.5
 FDCA11.60.60.61.13.20.70.5
  1. Reaction conditions: final reaction volume 5 mL, 1, 2 or 8 µM enzyme (1 µM AO, 2 µM CAT and 8 µM GAO, LAC, LPO and HRP) or no enzyme (control), 10 mM HMF, DFF, HMFA or FFA in 50 mM sodium phosphate buffer (pH 7) at 30 °C and constant stirring at 150 min−1. Reactions with AO also included 1 µM FAD. HMF 5-hydroxymethilfurfural, HMFA 5-hydroxymethyl-2-furoic acid, DFF 2,5-diformylfuran, FFA 5-formyl-2-furoic acid, FDCA 2,5-furandicarboxylic acid, AO alcohol oxidase from Pichia pastoris, GAO galactose oxidase from Dactylium dendroides, CAT catalase Aspergillus niger, LAC laccase from Trametes versicolor, LPO fungal lignin peroxidase, HRP horseradish peroxidase. The average relative error was ± 11% and was estimated based on selected repeated experiments