Skip to main content
Fig. 8 | Biotechnology for Biofuels

Fig. 8

From: Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation

Fig. 8

a Illustration of structural units in xyloglucan (XG) and b schematic representation of XG cleavage patterns by NcLPMO9C (blue arrows) and NcLPMO9M (red arrows), respectively. G unit, glucosyl residues only (blue circle); X unit, glucosyl-xylosyl residues (xylose, star); L unit, glucosyl-xylosyl-galactosyl residues (galactose, yellow circle) and F unit, glucosyl-xylosyl-galactosyl-fucosyl residues (fucose, red triangle). Positions of galactosyl units may vary and fucosyl units are present in black currant XG, but not in tamarind seed XG. NcLPMO9C showed substitution-intolerant mode-of-action meaning that its oxidative cleavage towards XG was (predominately) at the non-reducing end of unbranched G units, while NcLPMO9M oxidatively cleaved XG regardless of substitution (substitution-tolerant) with seemingly preference on substituted glucosyl units. Whether NcLPMO9M can cleave between two L units remains to be studied and is shown as red question mark. The size of the arrows is indicative for more pronounced cleavage sites, which was based on (the number of) structures found of identifiable (oxidized) oligosaccharides by using HILIC-ESI-MS

Back to article page