Skip to main content
Fig. 9 | Biotechnology for Biofuels

Fig. 9

From: Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation

Fig. 9

Unrooted topology tree based on active site segments only of AA9 LPMOs with numbering on the terminal nodes. Corresponding organism name, Genbank accession number, LPMO name (if characterized) and PDB entry (if applicable) of each number in the terminal node is listed in Additional file 1: Table S4. Background colors in the topology tree show the long (+)/short () of Seg1 and Seg2 segments [red, +Seg1Seg2; light blue, Seg1+Seg2; dark blue, Seg1+Seg2 but extended Seg3 (+Seg3); yellow, Seg1Seg2]. Reported characterized LPMOs are indicated by colored dots; XG product patterns alike that of NcLPMO9C (blue, Substitution-intolerant), alike that of NcLPMO9M (red, Substitution-tolerant) or not XG-active (yellow, Inactive). Grey dots indicate that the LPMOs were reported for 1) their activity on cellulose only and not tested on XG (e.g., No. 10, HiLPMO9B) or 2) their cellulolytic enhancing activity and not tested on XG (e.g., No. 35, AfAA9_B) or 3) tested with XG but the data were not conclusive (e.g., No. 20, PaLPMO9D). Green dots indicate that oxidative XG cleavage has been shown, but reported data are inconclusive to be determined as substitution-intolerant or -tolerant. LPMOs with red dots: 5. NcLPMO9M; 7. GtLPMO9A-2; 15. FgLPMO9A; 31. TaLPMO9A; 38. GcLPMO9B; 39. GcLPMO9A. LPMOs with blue dots: 41. MtLPMO9J; 43. NcLPMO9C; 51. NcLPMO9D; 54. CvAA9A; 56. LsAA9A. LPMOs with yellow dots: 47. NcLPMO9A; 63. MtLPMO9B; 66. MtLPMO9I; 76. TtLPMO9E; 78. NcLPMO9F. *17. PaLPMO9D: XG catalytic performance was determined based on a colorimetric H2O2-production assay [31]. *45. PaLPMO9H: XG product profiles were shown to be either NcLPMO9C-like (“Substitution-intolerant”) via HPAEC [31] and NcLPMO9M-like (“Substitution-tolerant”) via direct infusion ESI-MS/MS [26], hence inconclusive. *47. NcLPMO9A: “Inactive” on XG alone but “Substitution-intolerant” in combination with cellulose [20]. *62. PaLPMO9B: XG catalytic performance was determined based on a colorimetric H2O2-production assay [31]. *73. AN3046: Only one XG product profile was shown (MALDI-TOF mass spectrum), hence inconclusive [29]. *76. TtLPMO9E: Inactive towards XG using ascorbic acid, but XG-active when using photosynthetic pigments with light [33]. *84. PaLPMO9E: XG catalytic performance was determined based on a colorimetric H2O2-production assay [31]

Back to article page