Skip to main content
Fig. 7 | Biotechnology for Biofuels

Fig. 7

From: Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis

Fig. 7

Lignin engineered transgenic plants improve sugar yield by mild alkali pretreatment. a, b Glucose yield by enzymatic saccharification of dried inflorescence stems from wild type and transgenic plants grown for 8 weeks and completely dried for 4 weeks without watering (PkC4Hpro::F5H, PkC4Hpro::calB, PkC4Hpro::couA, and PkC4Hpro::F6H1) without pretreatment (a) or with dilute alkaline pretreatment (b). c, d Released xylose by the enzymatic saccharification from the cell wall residue of wild-type and transgenic plants without pretreatment (c) or with dilute alkaline pretreatment. Error bars indicate 95% confidential intervals (a, cn = 8, wild-type; n = 11, PkC4Hpro::F5H; n = 14, PkC4Hpro::calB; n = 10, PkC4Hpro::couA; n = 8, PkC4Hpro::F6H1. b, d; n = 8, wild-type; n = 13, PkC4Hpro::F5H; n = 16, PkC4Hpro::calB; n = 11, PkC4Hpro::couA; n = 11, PkC4Hpro::F6H1). Scores above each bars were fold-change from wild-type (upper) and P values (lower, * P < 0.05, ** P < 0.01, *** P < 0.001, respectively) according to Welch’s t-test or Brunner–Munzel test with Bonferroni–Holm correction compared with wild type

Back to article page