Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate

Fig. 1

Study schematic and yeast tolerance to ethanol, hydrolysate and growth inhibitors. a Aim of the study. Schematic showing the hydrolysis of lignocellulosic material to convert large polymeric carbohydrates to mono-, di- and oligosaccharides, at the same time releasing toxic compounds that repel yeast growth (growth inhibitors). CRISPR interference or activation screens in hydrolysate allow for the identification of gene functions that contribute to stress sensitivity and resistance to enable the generation of robust strains for biotechnology applications. Schematic is inspired by Pérez et al. [66] and Patel et al. [63]. b Yeast growth in synthetic complete media with 2% glucose (SCM), in SCM + 10% spruce hydrolysate, and in SCM + 45% inhibitor cocktail (1 × IC stock mixture diluted to 45%). The optical density at 600 nm (OD600) (y-axis) of S. cerevisiae BY4743 strain cultures was measured in 50-mL flask cultures over time (x-axis). Curves denote the average of n = 3 biological replicates. Error bars denote standard deviations. c Ethanol yield obtained in different fermentation conditions is shown as g [EtOH produced] / g [glucose consumed], as calculated from HPLC measurements in n = 3 biological replicates

Back to article page