Skip to main content
Fig. 3 | Biotechnology for Biofuels

Fig. 3

From: Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides

Fig. 3

Functional characterization of OLE1. a Genetic and chemical complementation of ole1Δ. ole1C strain is an ole1Δ derivative containing a randomly inserted construct comprising 641-bp OLE1 promoter, full-length OLE1 cDNA and 328-bp OLE1 terminator derived from ATCC 10,657. Cells were cultured on YPD agar in the presence ( +) or absence (−) of various fatty acids at 1% w/v. b Unsaturated fatty acid profiles in R. toruloides wild-type (WT), ole1Δ and ole1C strains. Strains were cultured in YPD broth or YPDtO broth (YPD broth supplemented with 0.1% w/v OA and 0.5% w/v Tergitol NP40) until exponential phase. Water-washed (2 times) cells were inoculated to GJm3 medium and cultured for 5 days. c Fatty acid profiles of R. toruloides WT and ole1Δ mutant. Cells were cultured in GJm3 medium supplemented with different fatty acids (0.1%, w/v) for 4 days. CTL represents the cells cultured in GJm3 medium in the absence of any fatty acid. (d) Fatty acid profiles in wild-type strain (WT) and OLE1 overexpression mutant (OLE1GPD1). Both strains were cultured in GJm3 medium for 5 days. %TFA represents the weight percentage of total fatty acid. Error bars represent the standard derivations of triplicates. Student’s t-test was used for statistical analysis, where possibility less than 0.05% and 0.01% was marked as * and **, respectively

Back to article page