Skip to main content
Fig. 1 | Biotechnology for Biofuels

Fig. 1

From: Tailoring renewable materials via plant biotechnology

Fig. 1

Schematic depiction of the current versus future potential product portfolio of renewables from lignocellulosic biomass. A Current situation, where the polymeric cellulose is used for the production of paper and packaging materials, textiles, and cellulose derivatives. The same polysaccharides could be hydrolysed to monosaccharides, which could then be fermented to a plethora of products. Noting that the conversion of polysaccharides to monosaccharides requires harsh chemicals and significant energy, and the required energy could be, completely or partially, derived from burning the phenolic polymer. B Strategically, by selection, breeding, or genetically modification of biomass crops, the major plant polymeric fractions would be separated with greater ease, preserving their inherent chemistry and structure, and concurrently increasing the yields of monomers and fermentable products. More importantly, the rescued polymers could be used for the production of high-value products, of which only a few are highlighted in the figure. By combining biotechnology with upstream optimization, innovative downstream separation and material development, lignocellulosic biomass could provide a plethora of green, alternatives for fossil fuels, solidifying the bio-based economy of the future. Pectin is not noted in this figure, as their fractional weight in lignocellulosic biomass is rather small (yet not of any less importance)

Back to article page