Skip to main content

Table 2 Comparison of metabolic engineered cyanobacteria for biobutanol production

From: Establishment of a resource recycling strategy by optimizing isobutanol production in engineered cyanobacteria using high salinity stress

Product Host Engineering genes Specific modification Titer productivity References
Isobutanol S. elongatus alsS ilvC ilvD in NSII
kivD yqhD in NSI
Initial OD730 at 1.0
Enhancing rubisco
450 mg/L
150 mg/L/OD
[11]
Isobutanol Synechocystis kivD adhA Mixotrophic condition
In situ removal of isobutanol
298 mg/L
24.8 mg/L/OD
[23]
Isobutanol S. elongatus alsS ilvC ilvD in NSII
kivD yqhD in NSI
Deleting a glgC gene 550 mg/L
122 mg/L/OD
[22]
Isobutanol Synechocystis alsS ilvC ilvD kivD slr1192 HCl-titrated culture 911 mg/L
227 mg/L/OD
[24]
Isobutanol Synechocystis kivD slr1192 Addition of isobutyraldehyde 290 mg/L
72.5 mg/L/OD
[33]
Isobutanol S. elongatus alsS ilvC ilvD kivD adhA in NSI High salinity stress 637 mg/L
290 mg/L/OD
This study
n-Butanol S. elongatus ter in NSI
atoB adhE2 crt hbd in NSII
Anoxic condition 14.5 mg/L
5.8 mg/L/OD
[7]
n-Butanol S. elongatus ter in NSI
nphT7 bldh yqhD phaJ phaB in NSII
Engineering ATP consumption 30 mg/L
6.0 mg/L/OD
[8]
n-Butanol Synechocystis ter phaJ pduP nphT7 fadB slr1192 Modular pathway engineering 836 mg/L
199 mg/L/OD
[10]
n-Butanol S. elongatus ter in NSI
nphT7 pduP yqhD phaJ phaB in NSII
Using oxygen-tolerant PduP 404 mg/L
66.7 mg/L/OD
[9]