Skip to main content

Table 2 Comparison of metabolic engineered cyanobacteria for biobutanol production

From: Establishment of a resource recycling strategy by optimizing isobutanol production in engineered cyanobacteria using high salinity stress

Product

Host

Engineering genes

Specific modification

Titer productivity

References

Isobutanol

S. elongatus

alsS ilvC ilvD in NSII

kivD yqhD in NSI

Initial OD730 at 1.0

Enhancing rubisco

450 mg/L

150 mg/L/OD

[11]

Isobutanol

Synechocystis

kivD adhA

Mixotrophic condition

In situ removal of isobutanol

298 mg/L

24.8 mg/L/OD

[23]

Isobutanol

S. elongatus

alsS ilvC ilvD in NSII

kivD yqhD in NSI

Deleting a glgC gene

550 mg/L

122 mg/L/OD

[22]

Isobutanol

Synechocystis

alsS ilvC ilvD kivD slr1192

HCl-titrated culture

911 mg/L

227 mg/L/OD

[24]

Isobutanol

Synechocystis

kivD slr1192

Addition of isobutyraldehyde

290 mg/L

72.5 mg/L/OD

[33]

Isobutanol

S. elongatus

alsS ilvC ilvD kivD adhA in NSI

High salinity stress

637 mg/L

290 mg/L/OD

This study

n-Butanol

S. elongatus

ter in NSI

atoB adhE2 crt hbd in NSII

Anoxic condition

14.5 mg/L

5.8 mg/L/OD

[7]

n-Butanol

S. elongatus

ter in NSI

nphT7 bldh yqhD phaJ phaB in NSII

Engineering ATP consumption

30 mg/L

6.0 mg/L/OD

[8]

n-Butanol

Synechocystis

ter phaJ pduP nphT7 fadB slr1192

Modular pathway engineering

836 mg/L

199 mg/L/OD

[10]

n-Butanol

S. elongatus

ter in NSI

nphT7 pduP yqhD phaJ phaB in NSII

Using oxygen-tolerant PduP

404 mg/L

66.7 mg/L/OD

[9]