Skip to main content
Fig. 1 | Biotechnology for Biofuels and Bioproducts

Fig. 1

From: Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate

Fig. 1

Engineering of an industrial S. cerevisiae strain for consumption of xylose. a Schematic illustration of gene expression modules integrated in the genome of the diploid (2n) industrial Ethanol Red strain. Expression of the integrated genes was driven by strong constitutive promoters as illustrated. The modules were integrated into the intergenic regions [111] (displayed on the left) or replacing GRE3 ORF. Ps Pichia stipitis, Cp Clostridium phytofermentans, XylA gene for xylose isomerase. b Growth and xylose consumption of the XylC2 V1 strain in YPX in shake flasks. Error bars represent standard deviation (N = 2). c Comparison of growth performance of the rationally engineered strain in different conditions (standard complex media with glucose, YPD or xylose, YPX as carbon source, and the Eucalyptus SSL supplemented with yeast extract, YE or mineral medium, MM at pH = 3.5)

Back to article page