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Abstract

Background: Termites are highly effective at degrading lignocelluloses, and thus can be used as a model for
studying plant cell-wall degradation in biological systems. However, the process of lignin deconstruction and/or
degradation in termites is still not well understood.

Methods: We investigated the associated structural modification caused by termites in the lignin biomolecular
assembly in softwood tissues crucial for cell-wall degradation. We conducted comparative studies on the termite-
digested (i.e. termite feces) and native (control) softwood tissues with the aid of advanced analytical techniques:
13C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) spectroscopy, flash
pyrolysis with gas chromatography mass spectrometry (Py-GC/MS), and Py-GC-MS in the presence of
tetramethylammonium hydroxide (Py-TMAH)-GC/MS.

Results: The 13C CP/MAS NMR spectroscopic analysis revealed an increased level of guaiacyl-derived (G unit)
polymeric framework in the termite-digested softwood (feces), while providing specific evidence of cellulose
degradation. The Py-GC/MS data were in agreement with the 13C CP/MAS NMR spectroscopic studies, thus
indicating dehydroxylation and modification of selective intermonomer side-chain linkages in the lignin in the
termite feces. Moreover, Py-TMAH-GC/MS analysis showed significant differences in the product distribution
between control and termite feces. This strongly suggests that the structural modification in lignin could be
associated with the formation of additional condensed interunit linkages.

Conclusion: Collectively, these data further establish: 1) that the major b-O-4’ (b-aryl ether) was conserved, albeit
with substructure degeneracy, and 2) that the nature of the resulting polymer in termite feces retained most of its
original aromatic moieties (G unit-derived). Overall, these results provide insight into lignin-unlocking mechanisms
for understanding plant cell-wall deconstruction, which could be useful in development of new enzymatic
pretreatment processes mimicking the termite system for biochemical conversion of lignocellulosic biomass to
fuels and chemicals.

Background
Lignin is one of the structural components of the plant
cell wall, and provides strength and rigidity in plant tis-
sues [1]. It is highly resistant to enzymatic degradation
because of its insolubility, chemical complexity and lack
of hydrolysable linkages [2]. Softwood lignin is a poly-
mer of high molecular mass, made up of two phenylpro-
panoid units derived from p-coumaryl and coniferyl

alcohols. The phenyl moieties of these compounds are
referred to as p-hydroxyphenyl (H) and guaiacyl (G)
units, and they are linked together to form a complex
three-dimensional structure that has proved difficult to
characterize [3]. In general, characterization and compo-
sitional analysis for such biomacromolecules have been
performed by chemically or thermally degrading the lig-
nin into smaller monomeric derivatives, which are sub-
sequently separated by means of chromatographic
techniques [4].
In nature, cellulose and hemicelllulose, which com-

prise the major energy source in lignocellulosic biomass,
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are encrusted with lignin, which provides protection
against enzymatic attack in lignocellulosic materials.
However, wood-feeding termites (WFT) found in tropi-
cal savanna and forests are able to digest lignocellulosic
substrates efficiently [2]. Therefore, it is likely that WFT
have a lignin-preconditioning system that enables them
to manage such efficient degradation of woody plants
[2]. Several studies have reported on the degradation of
wood by WFT. In our previous work, we demonstrated
different oxygen concentrations and the lignin degrada-
tion/modification process degradation/modification pro-
cess both occur in the gut in the whole gut passage of
the lower termite, Coptotermes formosanus Shiraki [5,6].
Geib et al. [7] showed that there were significant levels
of propyl side-chain oxidation (depolymerization),
demethylation of the ring methoxyl group and ring
hydroxylation of lignin after passage through the gut of
a dampwood termite (Zootermopsis angusticollis). Like-
wise, Scharf and Tartar [8] suggested that marked lignin
degradation should be the first step in the process of
wood digestion in the gut of WFT. This statement has
recently been supported by Tartar et al. [9] and Coy et
al. [10] with the identification of lignin degrading/modi-
fying gene candidates in the Reticulitermes gut. In all
likelihood, the success of WFTs in wood-cellulose diges-
tion is not only attributable to cellulases, but also to
pretreatment factors that modify lignin and increase
accessibility of wood cellulose. Hence, it sems likely that
structural modification of lignin is crucial for decon-
struction of the plant cell wall and utilization of the cel-
lulose within it. However, how WFT overcome the
lignin barrier and produce such enhanced accessibility
to cellulose has not clearly been found yet.
In the present study, to further elucidate the lignin-

unlocking mechanism in WFT, we fed C. formosanus
Shiraki termites on Southern pine softwood, and ana-
lyzed the fecal materials using 13C crosspolarization
magic angle spinning with nuclear magnetic resonance
(CP/MAS NMR) spectroscopy, Py-GC/MS with internal
standard, and Py-GC/MS in the presence of S in the
presence of tetramethylammonium hydroxide (Py-
TMAH-GC/MS), in order to understand the lignocellu-
losic structural change associated with the digestion
process through the termite gut. Solid-state NMR can
address chemical changes in the structure of lignocellu-
losic biomass, because it can provide spectra of whole
wood and lignin without degradation or isolation of
components [11,12]. Recently, our understanding of the
diversity of structural modification in lignocellulosic bio-
mass conversion has been advanced, in large measure
due to the ability to explore such structures through 13C
CP/MAS NMR spectroscopy [13]. Crosspolarization
(CP) pulse sequences are intended to transfer magnetic
polarization from abundant nuclei (1H) to rare nuclei

(13C) (1.1% of the natural isotopic abundance), resulting
in enhancement of the resonance signal from the rare
nucleus [14]. This technique allows detection.] charac-
teristic resonance chemical shift values, corresponding
to individual cell-wall components of biomass such as
cellulose, hemicellulose and lignin. We report a solid-
state NMR study of control and WFT-digested softwood
tissues (feces) using CP-MAS NMR.
Likewise, Py-GC/MS is also a widely used analytical

tool to characterize recalcitrant macromolecules and
polymeric samples at the molecular level [5,15,16]. Pyro-
lysis is designed to thermally degrade polymers into
small fragments, which are then separated by gas chro-
matography and identified by MS [4]. The acquired pyr-
ogram constitutes a ‘fingerprint’ of the starting
macromolecule to give information about the relative
amount of its monomeric components [17]. It is well
established that analytical pyrolysis can be used to quan-
titatively assess the content of carbohydrates [18] and
lignin [19] in wood, and the lignin composition [20,21]
of the wood. Use of analytical pyrolysis to assess the lig-
nin amount in Maritime pine (Pinus pinaster) and
spruce wood samples, with a precision comparable with
that of the reference Klason method, have also been
reported [19]. Although there is plenty of information
on the analytical pyrolysis of different wood types
[22,23], reports on biologically modified wood are
scarce. In this study, we employed the Py-GC/MS tech-
nique to characterize and quantify the monomeric com-
position of lignin, using an internal standard (3,5-
dimethoxy phenol) added directly to the pyrolysis sam-
ple holder. With the correction factors calculated for
the lignin-pyrolysis fragments, the method was used to
determine absolute lignin amount in the softwood sam-
ple before and after termite degradation.
Although it is possible to obtain accurate quantifica-

tion of monomeric lignin composition by Py-GC/MS,
this technique is limited to analysis (by GC/MS) of
polar pyrolyzates generated from nitrogenous material
associated with the secondary reactions of pyrozylates
during the pyrolysis process [24]. However, co-injection
of a derivatizing chemical reagent (TMAH) during pyro-
lysis provides more flexibility to acquire structural infor-
mation than in conventional pyrolysis as it protects
thermolabile compounds and enables the chromato-
graphic separation of both polar and non-polar targets
in the same run, thus allowing the subsequent methyla-
tion of -COOH and -OH groups on lignin [15,16]. The
combination of pyrolysis with in situ methylation using
TMAH to depolymerize the fragments through methyla-
tion of methyl esters from carboxylic acids and methyl
ethers from alcohols/phenols is an easy and efficient
method for the characterization of lignin-derived com-
pounds. Methylation of polar compounds formed from
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pyrolysis renders them more volatile and less polar, so
that they may be analyzed more readily by GC, and pyr-
olytic reactions are accordingly minimized [25]. This
method has proved to be a very useful technique for the
characterization of polymers [26] and for in situ analysis
of lignin in biomass [27]. Thus, to further elucidate the
structural modification of lignin in softwood in response
to digestion by termites, methylation by TMAH at 250°
C for 30 minutes was used, which was later character-
ized by GC/MS analysis.
The analysis methods of 13C CP/MAS NMR, Py-GC/

MS with internal standard, Py-TMAH-GC/MS require
no solubilization, fractionation or isolation of compo-
nents, rendering it possible to evaluate directly the com-
positional changes of the native structure of
components such as lignin. This is different from one-
or two-dimensional solution-state NMR spectroscopic
structural analysis of lignin, for which isolation of lignin
from the plant biomass is absolutely necessary. It is pos-
sible that during this lignin-extraction process, minor
artificial structural modifications would be introduced
into the lignin polymeric framework.

Results and Discussion
Solid-state NMR analysis
Cell-wall tissues of control and termite-digested soft-
wood tissues were subjected to 13C CP/MAS analysis
under identical acquisition parameters. The resulting
NMR spectra were processed with similar signal:noise
ratio (Figure 1). A direct comparison of the overall pat-
tern in the carbohydrate region (cellulose and hemicel-
lulose region) of termite-digested and the softwood
control, within an approximate range of chemical shift
values of δc = 109 to 60 ppm in the one-dimensional
13C CP/MAS NMR spectra, revealed a considerable dif-
ference in the intensities and distribution of the chemi-
cal resonances (Figure 1). Interestingly, a drastic
decrease in the chemical resonance signal in the cellu-
lose and hemicellulose region was documented in the
termite-digested sample compared with the control. In
the termite-digested sample, the resonance spectra at 75
and 73 ppm, corresponding to the C-2, C-3 and C-5
sugar carbon resonances [28] were relatively high,
whereas the anomeric sugar C-1 and other C-4 and C-6
sugar carbon resonances, at 109, 90 and 65 ppm [29],
respectively, were relatively diminished. This indicated
the efficient degradation and/or hydrolysis of cellulose-
derived moieties, as result of the cell-wall degradation
by termites.
Attention was next directed to analysis of the aromatic

region from 105 to 200 ppm in the 13C CP/MAS NMR
spectra. The ascribed resonances in the aromatic region
at δc values of approximately 120, 140 and 150 ppm are
assigned to lignin and lignin-derived product in both

the spectra of control and termite-digested samples
(feces). Accordingly, the signal at δc = ~120 ppm repre-
sents the unsubstituted aromatic carbon ortho and/or
para to the substituted carbon, and the signal at δc =

~150 ppm corresponds to the substituted aromatic car-
bon of G units [13]. As the softwood lignin is mainly
guaiacyl-derived, no resonance signal corresponding to
syringyl (S) units (δc = ~170 to 180 ppm) was seen in
either termite feces or control softwood. Close inspec-
tion of the chemical resonance signal in the aromatic
region (primarily at δc = ~150 ppm) supported the exis-
tence of guaiacyl lignin-derived polymeric entities, in
both the spectra of termite feces and control softwood
but there was a significant divergence in the overall
intensities between them. Termite feces had an
increased level of the guaiacyl lignin-derived polymeric
entities (Figure 1) with a dominant signal at δc = ~150
ppm, which accounted for an increase of approximately
50% in the polymeric framework. This was also evident
from the enhanced signal intensities at δc = ~56 ppm,
analogous to the methoxyl group (-OMe) of the aro-
matic ring of G unit, as seen for the termite feces com-
pared with the undigested softwood control. Moreover,
these results further indicated that digestion in the ter-
mite did not abruptly affect the dominant characteristics
of the aromatic G units. These data suggest that during
the lignocellulosic bioconversion process in the termite,
no demethylation and/or demethoxylation reactions
associated with the aromatic ring of the lignin itself
occurred. Thus, the nature of resulting polymer in ter-
mite feces retained most of its original aromatic moi-
eties after utilization of carbohydrate by the termite.

Acetyl bromide analysis: lignin content analysis of control
and termite-digested softwood
To quantitatively demonstrate the enrichment of the lig-
nin-derived polymeric framework as result of the soft-
wood-digestion process in termite, acetyl bromide
(AcBr) analysis was performed on both the control and
the termite-digested softwood tissues. AcBr analysis is a
widely accepted method for estimation of lignin con-
tents in various plant cell-wall residues (CWR) [30,31].
Therefore, extractive-free CWRs of both the control and
termite-digested softwood tissues were individually trea-
ted with a reaction mixture consisting of 25% AcBr (v/v)
in glacial acetic acid containing 4% perchloric acid, with
the corresponding solubilized materials being individu-
ally measured by UV absorptivity (l = 280 nm). An
extinction coefficient of 20.09 l/g/cm [30,32] was used
for estimation of lignin content. On application of the
standard extinction coefficient to the AcBr analyses, the
lignin content was found to be approximately 21.2%
(212 mg/g of CWR) and 58.9% (589 mg/g of CWR) for
the control and termite-digested softwood tissues,
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respectively. We should mention here that, because of
the possibility of contamination by minor amounts of
undigested wood powder in the termite feces, the lignin
content as determined in the termite feces could be
slightly underestimated. These results strongly indicated
increased accumulation (~2.7 times) of lignin-derived enti-
ties in the termite-digested tissues. This is only possible if
efficient degradation and utilization of cellulose and hemi-
cellulose occurred to a significant scale compared with lig-
nin during the softwood-digestion process, resulting in
increased depostion of the lignin-derived polymeric frame-
work in the termite feces. These results strongly support
the results of the solid-state 13C CP/MAS NMR analysis,
which also indicated an increased level of the lignin-
derived polymeric entities in the termite feces.

Absolute quantification of pyrolysis products from
termite feces
Figure 2 shows the total ion chromatogram (TIC) of
each sample (1 mg) with addition of internal standard
(0.05 mg). The corresponding pyrolyzed lignin-derived
products with their absolute amounts (mg/g, mean value
of three analyses), calculated using the internal standard
method are also shown (Table 1; Figure 3).

As evident from 13C CP/MAS spectroscopic studies,
the lignin content in termite feces was concentrated
compared with the undigested wood, revealing the rela-
tive amount of lignin-derived components increased in
the termite feces. Py-GC/MS analysis displayed some
new pyrolyzed compounds from termite feces (com-
pounds 41I, 42I, and 43I in the spectra); indicative of
possible oxidation on the side chain of lignin itself.
Indeed, some pyrolyzed aromatic compounds largely
increased after digestion by termites, such as com-
pounds 34I and 38I, whereas the amounts of com-
pounds with di-substituted hydroxyl groups on the
aromatic ring decreased in the fecal samples (com-
pounds 18I, 21I, 24I and 26I), signifying a possible dehy-
droxylation reaction occurring on the ring of the lignin
G units, as a result of the termite-digestion process. The
most abundant compounds found in the pyrograms of
both the undigested control sample and of the feces
were 19I (122.662 ± 4.178 mg/g) and 32I (141.131 ±
0.502 mg/g). The satructures were similar in both sam-
ples, being mainly composed of G-derived units; how-
ever, structural modifications were identified in their
side chain-derived components. Some other important
pyrolysis fragments were compounds 14I, 17I, 29I and

0.0250.0 50.0200.0 150.0 100.0
ppm, t1

-50.0

200.0 160.0180.0 140.0 120.0 100.0

Figure 1 Spectroscopy. 13C 13C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) analysis of the
undigested control (red) and termite-digested softwood (black) samples. The inset represents the enlarged portion of the aromatic resonances.
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31I. These phenolics are the pyrolyzates from thermal
cleavage at different sites of the phenylpropanoid struc-
ture of lignin, and show characteristics of the lignocellu-
losic material [33]. However, the changes in their
relative amounts (Table 1) represented a plausible ter-
mite-induced modification of the lignin structure, lead-
ing to pyrolytic cleavage at diverse sites in the
undigested and fecal samples.
Previously, Bocchini et al. [4] reported the total

amount of phenolic compounds, related to the amount
of lignin present in the softwood, to be 23.5 g/g, but in
lignocellulosic samples, the pyrolysis yield for core lignin
was less than 20% of the reported amount [34]. Based
on a pyrolysis yield of 20%, the total amounts of lignin
thermal-degradation products in the undigested and ter-
mite-digested softwood material, as obtained using the
internal standard method, were 0.16 mg/g and 0.152
mg/g, respectively. These values are consistent with
available data obtained using more ‘classic’ analytical
techniques, such as neutral-detergent fiber analysis [35]
or Klason lignin determination [18,36], which were esti-
mated to be in the range of 0.1 to 0.2 mg/g. Further-
more, it is interesting to note here that, under identical

pyrolysis conditions, the overall yield of released thermal
lignin-degradation products in the feces (0.152 mg/g)
was slightly reduced, although the fecal material was
confirmed by13C CP/MAS analysis to contain a higher
amount of lignin-derived polymer. Such an observation
supports the possible structural modification within the
lignin polymeric framework (for example,, as a result of
dehydroxylation). Our previous data from three-stage
pyrolysis GC/MS analysis and thermogravimetric (TG)
analysis indicated that there was more lignin-derived
residue preserved in termite feces after pyrolysis even
after a temperature of > 600°C. This can be explained
by the presence of aromatic modifications in the lignin
itself during the digestion process in termites, which
could result in the formation of a more condensed and
stable structure that would require greater thermal
energy for thermolysis and/or thermal degradation [37].
These results closely correlate with our recent findings
for the TG analysis of termite feces, which found that a
higher energy of activation was needed for the lignin
region compared with the control, thereby indicating
the requirement for higher thermal energy to produce
oxidation of such structurally modified lignin.

5.00 10.00 15.00 20.00 25.00 30.00 35.00

41I 42I

43I

I.S.

Figure 2 Pyrogram of (A) undigested softwood and (B) termite feces (1 mg) with added internal standard (3,5-dimethoxyphenol, 50
μg). Numbers areas in Table 1. IS = internal standard. The peaks labeled from 41I to 43I are novel compounds that appeared in the fecal sample
after digestion by termites. The new peaks and the IS are labeled by arrows and numbers; all the other phenolics and levoglucosan are labeled
by arrows only. The structures of the labeled compounds are shown in Figure 3.
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Table 1 Pyrolysis products of each sample

Number RTb, minutes Compound identificationc Content of compound,
mg/g

Undigested wood Feces Change, %

1I 1.811 1-Propen-2-ol, acetate 10.75 ± 0.51 4.74 ± 0.23 -55.9 ± 2.7

2I 5.319 Furfural 5.47 ± 0.26 2.27 ± 0.11 -58.6 ± 2.8

3I 5.866 2-Furanmethanol 2.01 ± 0.09 1.02 ± 0.04 -49.2 ± 2.1

4I 6.547 2-Cyclopentene-1,4-dione 1.70 ± 0.08 0.60 ± 0.03 -64.5 ± 3.1

5I 7.274 2(5H)-Furanone 2.62 ± 0.12 1.34 ± 0.06 -48.7 ± 2.2

6I 7.533 1,2-Cyclopentanedione 6.58 ± 0.32 2.81 ± 0.13 -57.3 ± 2.8

7I 7.926 Dihydro-3-methylene-2,5-furandione 1.17 ± 0.04 0.43 ± 0.02 -62.6 ± 2.4

8I 8.409 3-Butyldihydro-2(3H)-furanone 2.97 ± 0.10 1.21 ± 0.04 -59.2 ± 2.0

9I 8.780 Resorcinol 1.33 ± 0.06 0.58 ± 0.03 -56.2 ± 2.7

10I 8.940 Phenol 1.04 ± 0.05 1.47 ± 0.07 +42.6 ± 2.0

11I 10.109 3-Methyl-1,2-cyclopentanedione 2.67 ± 0.11 1.16 ± 0.05 -56.6 ± 2.3

12I 10.553 4-Methyl-5H-furan-2-one 2.07 ± 0.09 N/A -

13I 10.739/11.263 3-Methylphenol 9.98 ± 0.47 3.99 ± 0.19 -60.0 ± 2.9

14I 11.567 2-Methoxyphenol 8.65 ± 0.41 8.64 ± 0.41 -0.1 ± 0.0

15I 12.283 Maltol 1.36 ± 0.06 N/A -

16I 13.038 2,5-Dimethylphenol 1.38 ± 0.06 1.33 ± 0.06 -3.7 ± 0.2

17I 13.314 5-heptyldihydro-2(3H)-Furanone 1.79 ± 0.08 N/A -

18I 13.469 2,3-Dihydroxybenzaldehyde 1.22 ± 0.05 N/A -

19I 13.724/14.125 2-Methoxy-4-methylphenol 12.27 ± 0.42 12.51 ± 0.48 +2.0 ± 0.1

20I 14.280 4-Methoxy-2,5-dimethyl-3(2H)-furanone 7.33 ± 0.25 N/A -

21I 14.569 1,2-Benzenediol 7.45 ± 0.35 4.08 ± 0.19 -45.2 ± 2.1

22I 15.027, 19.643, 20.902, 17.140-17.257,
21.101, 21.817, 22.102-22.500

O-D-Glucopyranosyl-D-glucopyranoside 34.14 ± 1.65 13.79 ± 0.67 -59.6 ± 2.9

23I 15.415 5-(Hydroxymethyl)-2-furancarboxaldehyde 8.80 ± 0.33 N/A -

24I 15.898 3-Methyl-1,2-benzenediol 2.33 ± 0.08 1.974 ± 0.06 -15.2 ± 0.5

25I 16.101 4-Ethyl-2-methoxyphenol, 3.28 ± 0.16 3.194 ± 0.15 -2.7 ± 0.1

26I 16.601 4-Methyl-1,2-benzenediol 8.33 ± 0.39 3.337 ± 0.16 -59.9 ± 2.8

27I 16.955 2-Methoxy-4-vinylphenol 11.29 ± 0.46 14.246 ± 0.57 +26.2 ± 1.0

28I 17.563 4-(2-Propenyl)phenol 0.97 ± 0.05 1.383 ± 0.06 +42.4 ± 2.0

29I 17.887 Eugenol 4.85 ± 0.23 5.336 ± 0.25 +10.0 ± 0.5

30I 18.072, 20.156 2-Methoxy-4-propylphenol 5.20 ± 0.25 3.878 ± 0.18 -25.5 ± 1.2

31I 18.935 Vanillin 7.67 ± 0.33 10.594 ± 0.46 +38.2 ± 1.7

32I 19.901 Isoeugenol 12.03 ± 0.44 14.113 ± 0.05 +17.3 ± 0.8

33I 20.730 1-(4-Hydroxy-3-methoxyphenyl)-ethanone 8.38 ± 0.32 6.966 ± 0.62 -16.8 ± 0.8

34I 21.618 1-(4-Hydroxy-3-methoxyphenyl)-2-propanone 1.95 ± 0.04 5.984 ± 0.26 +207.1 ± 0.4

35I 22.447/24.315/25.574 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol 8.13 ± 0.31 11.385 ± 0.33 +39.9 ± 0.8

36I 22.563 4-Hydroxy-3-methoxy-benzoic acid 2.72 ± 0.09 2.498 ± 0.29 -8.2 ± 0.3

37I 23.905 4-Hydroxy-3-methoxy-benzeneacetic acid 7.43 ± 0.31 7.508 ± 0.44 +1.0 ± 0.0

38I 25.458 4-Hydroxy-2-methoxycinnamaldehyde 1.75 ± 0.08 7.515 ± 0.28 +328.9 ± 2.3

39I 34.297 10,11-Dihydro-10-hydroxy-2,3-dimethoxydibenz 0.58 ± 0.02 0.706 ± 0.30 +22.2 ± 1.0

40I 34.703 Dihydrofisetin 0.81 ± 0.04 0.611 ± 0.29 -24.6 ± 0.0

41I 14.768 2,3-Dihydro-benzofuran N/A 1.150 ± 0.03 -

42I 21.265 Benzoic acid, 4-hydroxy-3-methoxy- methyl ester N/A 1.946 ± 0.09 -

43I 22.671 2,4’-Dihydroxy-3’-methoxyacetophenone N/A 1.330 ± 0.04 -
aIdentified products from thermal degradation of lignin and their absolute amounts (g/g, mean of three replicate analyses) calculated using the correction factor
value.
bRetention time.

cSee the structures of the labeled compounds in Figure 5.
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Py-TMAH-GC/MS analysis for lignin modification by
termite
The TICs obtained from the pyrolysis and methylation of
the initial control softwood and feces are depicted in
Figures 4 and 5. The relative proportions of hemicellulose/

cellulose-derived and lignin-derived products reflect the
composition of cellulose, hemicelluloses and lignin com-
ponents of both the control and termite feces. However,
the small area assigned to cellulose and hemicellulose con-
firms the low efficacy of thermochemolysis in detecting

15 16 17 18 19 20 21 22 23 24 25 26 27 28

21 4 5 6 7 9 10 11 128 13 143

30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52

53 54
55

57 58 59 60 61 62

63 64 676665 68 717069

7472 75 76 77 7978

2N1N80 4N3N 5N 6N 9N7N 10N

12N11N 16N15N14N13N 17N 18N

19N 20N 21N 22N 23N 24N 25N

Figure 3 Compound structures. Assignment of all the structures of compounds labeled in Figure 2.
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carbohydrate units in polysaccharides [38]. In the pyro-
gram of the undigested sample (Figure 4, compounds 2, 7-
11, 13-15, 17, 19, 20, 26, 37, 43; downward arrow), origi-
nating from pyrolysis of xylan and cellulose-derived moi-
eties, pyrolyzed monomer sugars were detected mostly as
unmethylated derivatives. This is possibly a result of the
presence of the lignocellulosic matrix, with lignin as a pro-
tective barrier between the hemicellulose and cellulose
polymeric framework, thereby preventing chemical access

to this framework by the derivatizing agent (TMAH), and
then making methylation difficult during the pyrolysis of
the undigested softwood tissues. By contrast, the termite
feces displayed relatively lower amounts of pyrolyzed pro-
ducts derived from xylan and cellulose moieties, and when
they were present, they were in the methylated form. This
might be the result of the degradation process of cellulose
and hemicellulose of the softwood by the termite, thus
allowing more of the remaining (unutilized) cellulose and

5.00 10.00 15.00 20.00 25.00 30.00 35.00

3

10
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24
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36

41
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50 55 65
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1N 2N

3N
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12N 13N
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15N

16N

22N
23N

24N

25N

20N
21N

19N
18N17N4N
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xylan-derived polymeric framework in the feces to be che-
mically accessible to TMAH derivatization, allowing for-
mation of pyrolyzed methylated compounds such as 37
and 2N.
It should be noted that gymnosperm lignin is known

to be primarily composed of monomethoxyyphenol
units (guaiacyl) [22]. The Py-GC/MS analysis of soft-
wood tissues resulted in intense GC signals, which were
primarily derivatives of guaiacyl structures (Figure 4;
Table 1). Similarly, Py-TMAH-GC/MS analysis of con-
trol softwood also produced abundant peaks, rich in the
dimethoxy-substituted benzenoid compounds. These
peaks arose from G-lignin, while the major substructural
attributes of the b-aryl ether subunits were retained.
The reason for this is that Py-TMAH effectively cleaves
the b-aryl ether subunits and by subsequent methyla-
tion, renders the released fragments detectable to GC/
MS analysis [39,40]. In addition, the selective methyla-
tion on the lignin-derived pyrolytic compounds could
also be explained by steric factors influencing the reac-
tion between TMAH and phenolic hydroxyl groups [41].
To confirm the nature of the product profile of the

fecal samples as obtained by Py-TMAH-GC/MS analy-
sis, the major compounds resulting from TMAH deriva-
tization and subsequent thermolysis were compared
with those of the control. Thus, the quantitative differ-
ences (represented by peak height ratios) between the
relative yields of pyrolyzed product were considered to
be indicative of differences in the lignin structure of the
original wood and termite feces. The product profile of
the fecal sample was qualitatively similar to that of the
control except for the presence of some new pyrolyzed
products. The major compound in the pyrogram of con-
trol sample was identified as compound 54, whereas the
most intense peak in the fecal sample, eluting at 22.69
minutes, was compound 62. Both these compounds
represent oxidized products of polymeric G-derived lig-
nin, which differ only in their side chain, as a result of
lignin modification by the termites. This result indicated
the generation of a lignin-derived polymeric entity in
the termite feces, which retained the identity of the ori-
ginal aromatic moieties (G unit). Moreover, the occur-
rence of the derived compounds 19N and 21N in the
pyrogram of the fecal sample represents the regiochem-
istry of the b-O-4’ (b-aryl ether)-linked phenylglycerol-
containing subunits in lignin, as reported from the
selective labeling studies previously presented by Filley
et al [40].
Furthermore, the cinnamyl alcohol and aldehyde end

groups are also important for the evaluation of the total
lignin structure because they can serve as a sensitive
index for the structural changes and the overall charac-
ter of the lignin [42]. Hence, the disappearance of com-
pound 72, the cinnamyl alcohol end group, which was

present in the undigested control but not in the fecal
sample, indicates lignin modification at the substructural
and/or interunit level by the digestion by termites. Some
dimeric aromatic structures (compounds 76 and 79)
were detected in the undigested softwood, as TMAH
thermochemolysis preserves derived pyrolyzed products
from the lignin b-5 and b-b substructure [24]. However,
these structures were not present in the pyrolyzed fecal
sample, indicating modification of these substructures as
a consequence of digestion by termites.
In addition, production of new, possibly lignin-derived,

pyrolyzed products (for example, compound 1N instead
of 25N; Figure 4) was also evident in the Py-TMAH-
GC/MS profile of the termite feces, in which 22N was
the most abundant product, although other compounds
including 11N, 21N and 23N, were also present in rela-
tively large amounts. The origin of the pyrolyzed pro-
ducts 21N and 22N could be attributed to the pyrolytic
dehydrogenation product of the b-aryl ether G-derived
lignin substructure and/or interunit linkages, indicating
conservation of the major b-O-4’ interunit linkage even
after digestion by termites. By contrast, formation of
11N and 24N suggested possible condensation of the
structure of the resulting lignin-derived polymer in the
termite feces, even though the abundant b-O-4’ interunit
linkage and most of its original aromatic residues were
retained, wand were probably interconnected by addi-
tional interunit linkages. Overall, Py-GC/MS in the pre-
sence of TMAH generated more new pyrolyzates,
indicating that the pyrolysis-methylation analysis with
TMAH helped to preserve more of the information
relating to the original lignin structure. Because TMAH
depolymerizes the lignin molecule into its aromatic sub-
units by specifically cleaving the b-O-4 linkages and
methylating all ring hydroxyls, it is different from the
non-selective pyrolysis cleavage [43]. On an absolute
level, the changes in the lignin structure are minor,
which is in accordance with our previous hypothesis
that there is not much degradation of lignin itself, but
rather modification of specific lignin functional groups
and linkages to assist in the unlocking of the
carbohydrate.
Notably, our evidence from both solid-state 13C CP/

MAS NMR and Py (TMAH) -GC/MS did not provide
support for the existence of demethylation reactions
associated with the aromatic ring of the lignin itself,
which has been reported in earlier studies on lignin
degradation by termites [7]. Further studies (using solu-
tion-state, long-range, two-dimensional heteronuclear
multiple bond coherence in combination with hetero-
nuclear multiple quantum coherence-total correlation
spectroscopy and NMR) on lignin isolates from both
termite feces and undigested control samples will be
carried out in the near future to establish and confirm
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the reaction and bond-cleavage pattern and the subse-
quent compositional changes in the interunit linkages
(substructures) of the lignin primary structure(s).
In this study, the 13C CP/MAS NMR spectroscopic

analysis provided clear evidence that the aromatic poly-
mer remaining after extensive cell-wall degradation in
termite was still recognizable as a lignin-derived poly-
mer. The Py-GC/MS method with internal standard
allowed the absolute quantification of the pyrolysis pro-
ducts of the resulting lignin-derived polymer, and indi-
cated that the main modification caused by the termites
was dehydroxylation and structural modification in the
intermonomer side-chain linkages of the native lignin.
In addition, the Py-TMAH-GC/MS studies substantially
suggest additional condensed interunit linkages.
In conclusion, our results strongly support that during

the efficient cell-wall degradation process and hydrolysis
of cellulose in softwood by termites, the native lignin
macromolecular assembly undergoes structural modifi-
cation but with conservation of the abundant b-O-4’
interunit lignin linkage and retention of the original aro-
matic properties.
We anticipate that further confirmation and elucida-

tion of the absolute structure of this remarkable
mechanism will enable the design of enhanced processes
for biochemical conversion of lignocellulosic biomass to
fuels and chemicals.

Methods
Termite cultivation and sample collection
C. formosanus termites, collected in Poplarville, Missis-
sippi, were kept at 28°C and 90% humidity, and fed on
blocks of Southern pine (Pinus australis F. Michx)
approximately 17.3 × 3.8 × 1.63 cm in size, The lignin
of this wood consists almost exclusively of guaiacyl pro-
pane subunits [44]. Termite feces were collected every
day and stored at -20°C. For analysis, 1 g each of feces
and of the control (the softwood in its natural state with
the similar particle size as feces) were freeze-dried and
individually ball-milled for 24 hours at room tempera-
ture to a fine powder for further analysis. Because the
feces were collected from the wood blocks, the possibi-
lity of contamination of the feces by minor amounts of
undigested wood powder was taken into consideration.

Solid-state 13C CP/MAS NMR analysis
Before investigating the thermal-degradation product of
the lignin biopolymer in the control and termite feces,
the nature of the polymeric material accumulated in the
corresponding cell-wall tissues was initially determined
by solid-state NMR spectroscopy studies. The finely
ball-milled tissues (~200 mg) of both control and ter-
mite-digested softwood materials were individually
packed into a 5-mm pencil-type rotor, and the 13C CP/

MAS spectra were individually recorded using similar
acquisition parameters. The solid-state 13C CP/MAS
analyses (100 MHz) were carried out at NMR Center,
Washington State University, using a Bruker Avance
400 spectrometer; (Bruker AXS Inc., Madison, WI,
USA), equipped with a double resonance probe (Che-
magnetics, Varian, Inc., Palo Alto, CA, USA). For acqui-
sition of 13C CP/MAS NMR spectra, a contact time of
0.5 ms, a proton field of approximately 40 kHz during
CP and data acquisition, a relaxation delay of 4 seconds
and a spinning speed of 5 kHz were used. The spectrum
shown is-derived from 18,000 scans, with the chemical
shifts given as δ ppm.

Acetyl bromide lignin content analysis
Both the control and termite-digested softwood tissues
(1 g each) were individually frozen in liquid nitrogen,
ground to powder in a blender (Waring Products, Tor-
rington, CT, USA), with the resulting powders subjected
to successive extractions at room temperature for 8 h
each with 1:1 toluene-EtOH (100 ml/g)), EtOH (100 ml/
g) and H2O (100 ml/g), respectively, and then freeze-
dried. The resulting extractive-free freeze- dried CWR
were ball-milled individually for 2 h to fine powder with
a planetary mill (Pulverisette; Fritsch GmbH, Idar-Ober-
stein, Germany) using agate bowls and balls, and then
subjected to acetyl bromide analysis. The lignin contents
of extractive-free CWR samples for both the control
and termite-digested softwood tissues were estimated by
the AcBr method as described previously [30,31].

Quantitative Py-GC/MS analysis with internal standard
To provide further insight at the structural level into the
modifications of the softwood lignin during the termite-
digestion process, Py-TMAH-GC/MS analysis was per-
formed. Both control and WFT-digested samples were
quickly frozen in liquid nitrogen to halt lignin digestion,
and then put directly into a quartz sample tube, with
3,5-dimethoxyphenol added as an internal standard
because of its resistance to pyrolysis process [45,46].
Each sample tube contained 1 mg sample and 0.005 mg
internal standard. Because the internal standard vapor-
ized in the hot pyrolysis interface during the 3 minute
equilibration time and was thus concentrated at the top
of the GC column, loss of the internal standard due to
thermal fragmentation was avoided. The pyrolysis pro-
cesses were performed with a pyrolysis autosampler
(Model 5000; CDS Analytical, Inc., Oxford, PA, USA)
attached to a GC/MS system (Thermo Trace GC
6890N/MSD 5975B; Agilent Technologies, Inc., Bellevue,
WA, USA). The samples were first pretreated at 210°C
for 3 minutes, then pyrolyzed at a temperature of 610°C
for 1 minute, and finally kept in the pyrolysis zone for
56 minutes. The volatile products were separated on a
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5% phenyl-methylpolysiloxane non-polar column 30
meters long, with an inner diameter of 0.25 μm, using
helium 4.6 as carrier gas (17.3 mL/min), and identified
by interpretation of their electron impact (EI) mass
spectra and comparison with the NIST MS Search (ver-
sion 2.0) electronic library. The pyrolysis interface was
kept at 210°C and the GC/MS interface at 280°C. The
GC/MS was programmed from 40°C (1 minute) to 280°
C (15 minutes) at a rate of 6°C/min. The mass spectro-
meter was operated in EI mode (70 eV) at a source tem-
perature of 230°C. Each analysis was replicated three
times using three different pieces of each sample col-
lected at different times.

Pyrolysis-methylation analysis
Pyrolysis methylation was performed using TMAH as the
derivatizing agent for the characterization of lignin in the
biomass, which was converted to its corresponding N-
and O-methyl derivatives by TMAH in the pyrolysis
chamber, followed by separation and detection by GC/
MS. Thermochemolysis reactions of TMAH with lignin
in undigested wood and termite fecal samples were car-
ried out as follows. Typically, 1 mg of each sample was
placed directly into a quartz sample tube, then covered
with 0.5 μL TMAH (25% in methanol). The pyrolysis
process was then performed as described above.
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