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Abstract

Background: As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential
for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique
physiological and metabolic characteristics is required to further improve its performance on cellulosic
ethanol production.

Results: A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of
its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites,
and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the
metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different
growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of
constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and
the optimization strategies for the overproduction of ethanol were proposed from both genetic and
environmental perspectives.

Conclusions: Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus,
this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment
designs aimed at identifying the metabolic bottlenecks of this important yeast.
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Background
Along with the increasing stress on the shortage of oil
reserves and the negative ecological impacts of green-
house gas emissions, there is a trend for searching of the
renewable clean fuels to substitute the traditional fossil
fuels worldwide [1-3]. Currently, bioethanol produced
from lignocellulosic biomass (second generation bioetha-
nol) has been widely recognized as one of the most at-
tractive alternatives [4]. However, owing to the complex
components and rigid structure of plant biomass [5], it
is particularly vital to get a robust industrial strain for
the efficient bioconversion of lignocellulosic sugars to
ethanol [6]. However, none of the screened or engi-
neered strain has been capable of highly efficient
bioethanol production from lignocellulosic biomass yet
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reproduction in any medium, provided the or
[7]. Thus the searching of an optimal microbial host is
still in process. Among the diverse exploited ethanol
producers, Saccharomyces cerevisiae is considered as the
most suitable biocatalyst for industrial ethanol produc-
tion from sugars or starch feedstocks for its well-
characterized genetics, ample genetic tools, high ethanol
productivity and so on [8]. Another intensively studied
microorganism possessing several appealing characteris-
tics for ethanol production is Zymomonas mobilis. It was
reported that for Z. mobilis the maximum yield of etha-
nol could reach 97% of the theoretical yield and the tol-
erance of ethanol was up to 120 g/l [9]. However, an
unnegligible drawback of the above-mentioned ethanolo-
genic microbes is that they cannot naturally ferment
pentose sugars, the main components of hemicellulose.
Although many metabolic engineering strategies, typic-
ally the introduction of xylose metabolic pathway to
Z. mobilis and S. cerevisiae, have been carried out to
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develop more efficient ethanol producers, the success is
not very satisfactory [10,11].
A naturally occurring xylose-fermenting yeast Scheffer-

somyces stipitis, formerly known as Pichia stiptis [12],
was proposed as one of the potential cellulosic bioetha-
nol strain. The most dominant feature of this unconven-
tional yeast is that it’s capable of catabolizing glucose,
mannose, galactose, rhamnose, xylose, arabinose, cello-
biose, and even some lignin-related compounds [13].
Other advantages include high production capability
with a maximum ethanol yield of 0.48 g/g xylose [14],
simple growth requirements, strong resistance to con-
tamination and detoxification of the biomass-derived
inhibitors [15]. However, some metabolic mechanisms
involved in the production of bioethanol in S. stipitis
were unclear, such as the slow sugar consumption rate
[16] and the tough control of precise oxygenation [17].
Besides, the physiological and genetic features of S. stipi-
tis were poorly characterized, which hinders the effective
gene manipulation for strain improvement. Hence, a sys-
tematic understanding of physiological features and
metabolic capacities of S. stipitis is in great need and
genome-scale metabolic model (GSMM) could provide
such a platform.
Up to now, there are more than 80 published genome-

scale metabolic models (http://systemsbiology.ucsd.edu/
InSilicoOrganisms/OtherOrganisms) and the number is
still growing owing to the high-throughput genome se-
quence technologies. GSMMs have been successfully ap-
plied to many aspects, such as the design of the
metabolic engineering strategies, the understanding of
microbial physiology, the contextualization of various
omics data, etc. [18,19]. Recently, A GSMM for S. stipitis
has been reconstructed to investigate some key meta-
bolic traits [20]. Using a different approach, a new
constraint-based model iTL885 is presented. Compared
with the previous model, our model captured more
metabolic genes for the adoption of an integrated gen-
ome annotation way. In addition, many carbohydrate
metabolic pathways were included to represent the
unique characteristic of S. stipitis. Aside from the
study of the physiological changes of ethanol produc-
tion, the new model was mainly used to make predic-
tions in prior to experiment validation, which is one of
the most important applications of constraint-based
models. In this research, the proposed model was used
to predict the essentiality of the genes and evaluate
the capacity of ethanol production with xylose as car-
bon source.

Results and discussion
Reconstruction and description of model iTL885
Genome-scale metabolic network was reconstructed
using an automated procedure in combination with the
manual refinement (see Methods section). Following the
main reconstruction steps described in Figure 1, func-
tional annotation of the whole genome was firstly per-
formed by two different sequence similarity search
programs. All the matched genes of S. stipitis were
retrieved from the genome of S. cerevisiae, Pichia pas-
toris, and Aspergillus niger respectively by the Basic
Local Alignment Search Tool (BLAST). Meanwhile, a
‘KO list.xlsx’ with KEGG ORTHOLOGY (KO) identifiers
corresponding to the assigned genes was obtained by
KEGG Automatic Annotation Server (KAAS). By the in-
tegration of the two genome annotation results, a draft
model including 1139 reactions and 850 genes was
achieved. Then, the draft model was curated with the
biochemical information from databases and literature
(Figure 1). Detailed genome annotation result was pro-
vided in Additional file 1.
During model reconstruction, various sugar transport

reactions and metabolic pathways were manually
checked and added to the draft model for a better
understanding of the carbohydrate metabolism in S. sti-
pitis. By the combination of information from the
sequenced genome, transcriptional expression [21] and
experimental data [22], 36 putative sugar transporters
were reannotated (Additional file 1). Of them, 22 were
with detectible transcripts and 5 were experimentally
characterized. The 8 disaccharide transporters exhibited
high homologues to the corresponding transporters in S.
cerevisiae, but not the remaining 28 monosaccharide
transporters for some of which were unique to S. stipitis,
such as the arabinose-proton symporter (AUT) and xy-
lose transporters (XUT), reflecting the capabilities of
pentose utilization [23]. The newly annotated sugars
transporters not only give us a sight into the molecular
basis of sugar transport but also could be used as foun-
dation for the identification and functional illumination
of the various sugar transporters supposed to exist in S.
stipitis. A map illustrating the central carbohydrate me-
tabolism is provided (Figure 2). Upon entry into the
cell, hexose (glucose, mannose, and galactose) are easily
phosphorylated to enter the central metabolism while
the pentose (xylose and arabinose) must pass through
oxidoreductase reactions before phosphorylation. For
instance, L-arabinose must go through four oxidore-
ductase steps via L-arabitol, L-xylulose, D-xylitol, and
D-xylulose to enter pentose phosphate pathway (PPP).
The additional steps in pentose converting pathways
cause the loss of substrate carbon into the cell mass
which may account for the less efficient of pentose
than hexose for cell growth [23]. Except for the com-
mon lignocellulose-derived sugars (glucose, mannose,
galactose, xylose, and arabinose), the novel sugar meta-
bolic pathways such as cellobiose metabolism encoded
by eight genes (BGL1-7 and SUN4) and rhamnose
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Figure 1 Procedure of the model reconstruction. In BLASTp, Sst, Sce, Ppa, and Ani refer to S. stipitis, S. cerevisiae, P. pastoris, and A. niger
respectively, and genes mean the matched genes between the two genome.

Liu et al. Biotechnology for Biofuels 2012, 5:72 Page 3 of 11
http://www.biotechnologyforbiofuels.com/content/5/1/72
metabolism encoded by four genes (LRA1-4) were
also added to the model by extensive literature mining
[23-25].
The resulting genome-scale metabolic model iTL885

comprises 885 metabolic genes, 1240 reactions, and 870
metabolites. The 1240 metabolic reactions were distribu-
ted over 61 metabolic pathways and located into three
cellular compartments. Compared with iMM904 (13.9%)
and iBB814 (13.7%), the gene coverage of iTL885 is the
highest, about 15.2% (Figure 3A). Altogether, there are
421 metabolites shared by the three models, and the
unique metabolites were 589, 644, and 713 for iTL885,
iBB814, and iMM904, respectively. The relatively small
number of metabolites in iTL885 was caused by the ex-
cluding of tRNA-charging and dipeptide metabolism be-
cause of the presence of dead ends in these subsystems.
For the reactions, 836 reactions are shared by the three
models (Figure 3B), and the 76 unique reactions in
iTL885 were mainly associated with the degradation of
polysaccharide (chitin, xylan, mannan, and glycogen)
and metabolism of glycerolipid and sphingolipid. In
addition, nearly 92% of the metabolic reactions were
associated with certain genes and the carbohydrate me-
tabolism contained the largest percentage of metabolic
genes, which was consistent with the physiological prop-
erty of S. stipitis to use most of the sugars present in



Figure 2 Schematic illustration of metabolic pathways of cellobiose, rhamnose and five lignocellulose-derived sugars (glucose,
mannose, galactose, xylose and arabinose). The abbreviations of the metabolites and genes are available in Additional file 2.
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biomass substrates [26]. Meanwhile, this model captured
252 non-gene associated reactions, among which 183
were transport reactions (Figure 3C). The numerous
transport reactions were included to represent the ex-
change of metabolites between different compartments
although most of them didn’t have known gene associa-
tions due to the insufficient gene annotations or litera-
ture data. See Additional file 2 for the detailed
description of the model structure.

Gene essentiality study
The essentiality of each gene to cell growth was evalu-
ated by removing each individual reaction from the stoi-
chiometry matrix (see Method section). In the model
iTL885, 130 genes (14.7% of the total genes) were pre-
dicted to be essential on a minimal medium with glucose
as carbon source. This percentage was close to that of S.
cerevisiae (12.9%) [27]. As illustrated in Figure 4, ap-
proximately 82% of the predicted essential genes were
focused on amino acid metabolism (49 genes), nucleo-
tide metabolism (22 genes), lipid metabolism (18 genes),
and carbohydrate metabolism (17 genes), highlighting
the significance of them to cell growth. Compared
with the glucose medium, four additional essential
genes were identified on the xylose medium. The four
genes exclusively belonged to xylose metabolism
were XYL1 (PICST_89614), XYL2 (PICST_86924), PGI1
(PICST_84923), and TAL1 (PICST_74289). Of them,
XYL1 (xylose reductase) and XYL2 (xylitol dehydrogen-
ase) encode the two initial enzymes of xylose metabolic
pathway, which has been introduced to S. cerevisiae for
the production of lignocellulosic ethanol [28]. The other
two genes PGI1 (glucose-6-phosphate isomerase) and
TAL1 (transaldolase) link the pentose phosphate path-
way to glycolysis by the formation of key glycolysis inter-
mediate D-fructose 6-phosphate (Figure 2). Many
nonessential genes for cell growth could be explained by
the existence of isoenzymes or alternative metabolic



Model parameters S. stipitis (i S. stipitis (i

Genome size (Mb) 15.4 12.1 15.4

Total ORFs 5841 6607 5841

Gene coverage 15.2% 13.7 % 13.9%

Total reactions 1240 1577 1371

Internal reactions 834 1018 783

Boundary reactions 250 395 308

Exchange reactions 156 164 288

Metabolites 870 1228 971

Unique metabolites 589 713 644

Compartments 3(c,e,m) 8 (c,e,m,x,n,r,v,g) 3(c,e,m)
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Figure 3 Model characteristics of iTL885. A) Model contents of two S. stipitis (iTL885 and iBB814) and one S. cerevisiae (iMM904). B) Venn
diagram showing the number of total, shared and unique reactions in the three yeasts GSMMs. C) Statistics of the number of total reactions,
gene-associated reaction and total genes in the seven cellular subsystems. Each reaction (except exchange reactions) in the model was assigned
to a single subsystem. Abbreviations: CM (carbohydrate metabolism), LM (lipid metabolism), AM (amino acid metabolism), NM (nucleotide
metabolism), CV (cofactors and vitamins metabolism), TR (transport reactions), and EM (energy metabolism).
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pathways. For example, the five ethanol dehydrogenase
genes (ADH1-5) were predicted to be nonessential on
the xylose medium. Actually, two independent ethanol
synthesis pathways were identified. One is the common
cytoplasmic ethanol pathway, the other is the mitochon-
drial pathway encoded by ADH3 (PICST_88760), a mito-
chondrial alcohol dehydrogenase (absented in iBB814).
38%
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Figure 4 Percentage of essential genes in each subsystems
with glucose as carbon source. The abbreviations of each
subsystems are the same with that in Figure 3.
However, the latter pathway functioned only when the
cytoplasmic pathway was eliminated, which had been ex-
perimentally validated [29]. The list of essential genes
was provided in Additional file 3.

Physiological characteristic of ethanol fermentation
Oxygen is a key factor that affects the production of
ethanol in S. stipitis [14,30,31]. Here, the influence of
oxygen on ethanol formation was studied by a computa-
tional robustness analysis with xylose as carbon source
and ethanol synthesis as the objective function. The pre-
dicted result was illustrated in Figure 5. It was found
that ethanol production rate increased sharply when
oxygen uptake rate was at the range of 0.34 to
0.88 mmol/gDCW/h. The maximum ethanol production
rate reached to 4.72 mmol/gDCW/h when oxygen
consumption rate was 1.15 mmol/gDCW/h, in agree-
ment with earlier experimental observation [14]. How-
ever, when oxygen consumption rate exceeded
1.15 mmol/gDCW/h, ethanol production rate began to
decrease, and eventually to zero (oxygen consumption



Figure 5 Robustness analysis of oxygen uptake rate. By fixing
the xylose uptake rate and cell growth rate, the production of
ethanol was maximized at each oxygen uptake rates.

Figure 6 Flux distributions of central metabolic reactions under
four different growth conditions. The length of each bar indicates
the flux value of each reaction. Four conditions are GA (glucose
aerobic), GSA (glucose semiaerobic), XA (xylose aerobic), and XSA
(xylose semiaerobic). Briefly, G is for glycolysis, C for citrate cycle, X
for xylose degradation, P for Pentose Phosphate Pathway, and E for
ethanol synthesis. The detailed information of abbreviated reactions
is available in Additional file 3.
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rate of 27.1 mmol/gDCW/h), due to the oxidation of
ethanol in the presence of excessive oxygen [32]. The re-
sult indicates that ethanol production is strongly affected
by the intracellular reduction-oxidation status. The se-
cretion of ethanol occurs under oxygen-limited condi-
tions and the maximum ethanol production could be
achieved only under the relatively low oxygen condition.
Besides, the produced ethanol can be reassimilated when
oxygen is excessive.
More specifically, the distributions of carbon flux

under different oxygen levels (aerobic and semiaerobic)
were investigated by flux balance analysis (FBA)
(Figure 6). It was found that (i) the glycolytic flux wasn’t
obviously affected by the oxygen levels by either glucose
or xylose, but the flux channelled into tricarboxylic acid
cycle (TCA cycle) increased about twofold when the
cells were shifted from semiaerobic to aerobic, which
were consistent with the reported results that genes
involved in TCA cycle were downregulated as oxygen
availability decreased [33]; (ii) at the node of pyruvate,
the flux to acetaldehyde (leading to fermentation)
increased about tenfold with the decreased oxygen level,
which was in accordance with the experiment that the
expression of key fermentative genes (PDC, ALD and
ADH) for ethanol production were greatly improved
under the oxygen-limited condition [34]. Meanwhile, the
effects of different carbon sources (xylose and glucose)
on the flux distribution of central metabolism were
also analysed. Xylose greatly increased the carbon flux
channelled into the PPP. The sufficient PPP activity in
S. stipitis has spurred numerous studies on the overex-
pression of non-oxidative PPP genes (TAL1, RPE1, RKI1)
to improve the utilization of xylose in the recombinant
S. cerevisiae [8] as well as in S. stipitis [35]. However, the
metabolic fluxes through TCA cycle do not change sig-
nificantly with the two carbon sources, indicating the ex-
pression of the enzymes-coding genes remained
constant [21].

Ethanol production from xylose
Previous study of xylose utilization in S. stipitis was
mainly focused on the illustration of transport mechan-
ism and metabolic pathway [36,37]. In the model
iTL885, seven putative high-affinity xylose transporters
(XUT1-7) were annotated, and one of them (XUT1) has
been biochemically characterized from S. stipitis [38].
However, the low-affinity xylose proton symport systems
could not be found just by gene annotation. So, kinetics
experiment was necessary to determine the low-affinity
xylose transporters. Four Sut proteins (SUT1-4) with
higher affinity for glucose than xylose had been charac-
terized in this way, indicating this low-affinity system is



Liu et al. Biotechnology for Biofuels 2012, 5:72 Page 7 of 11
http://www.biotechnologyforbiofuels.com/content/5/1/72
shared by glucose and xylose [16,38]. As a result, the in-
flux of xylose could be attributed to the cooperation of
the two xylose transport systems. Besides, sugar sensors
(SNF3, RGT2, etc.) were also identified in S. stipitis gen-
ome, which ensures the quick cellular response to the
change of xylose in the environment, as the transcrip-
tional data showed that the transcription of RGT2 with
xylose could increase 65-fold [21].
The assimilated xylose can be metabolised via two

catabolic routes: xylulokinase pathway and D-arabinose
utilization pathway (Figure 2). Xylulokinase pathway is a
well characterized pathway including three reactions
encoded by three genes XYL1 (PICST_89614), XYL2
(PICST_86924), and XKS (PICST_68734), respectively
[39]. Based on our simulation, this pathway is thought to
be the only route redirecting carbon flux from xylose to
PPP in the wild-type cell. The D-arabinose utilization
pathway consists of three biochemical reactions cata-
lyzed by D-arabinitol dehydrogenase (AAD1), D-ribulose
reductase (ARD2) and D-ribulokinase (RKS1), which was
found due to the fact that xylose still can be metabolised
in the XKS disruption strain [40]. This pathway was also
responsible for the degradation of D-arabinose, as illu-
strated in Figure 2.
Efficient production of xylose-derived ethanol is of

particular interest for S. stipitis [41,42]. To gain a higher
productivity of ethanol, three promising gene knockout
strategies were identified by OptKnock algorithm
(Figure 7A). The first one was a straightforward strategy
to increase the available pool of the acetaldehyde precur-
sor by knocking out of two threonine aldolase (GLY)
genes (PICST_7413 and PICST_71203), which blocked
the flux from acetaldehyde to threonine. But this method
showed only a slight increase of ethanol production rate.
The second one was to enhance the mitochondrial pyru-
vate pool through the deletion of alanine transaminase
gene ALA2 (PICST_70108), which led to a considerable
increase of ethanol accumulation rate. The third effect-
ive strategy was to augment the supply of NADPH by
deleting the NADP-dependent glutamate dehydrogenase
gene GDH3 (PICST_82969). This optimization approach
not only increased ethanol production rate about 3.4%,
but had a negligible influence on cell growth (with the
maximum growth rate remain at 0.07 mmol/gDCW/h).
The optimization of organic nitrogen sources had been

reported to be able to enhance the bioconversion of xy-
lose [43], thus the influence of specific amino acids on
the production of ethanol were computationally investi-
gated (Figure 7B). The addition of 17 of the 20 amino
acids could improve both cell growth and ethanol pro-
duction. Of those positive additions, the addition of glu-
tamate had the most significantly impact, leading to the
ethanol production rate increased by 27.7% compared to
the control. Combined the above two strategies, i.e. gene
deletion and glutamate addition, the production rate of
ethanol was predicted to increase by over 20.0% for all
the deletion strains, among which the addition of glu-
tamate to the ALA2 deletion strain could improve etha-
nol production rate up to 1.29 fold of the control
(Figure 7C). The results suggested that future work for
the optimization of ethanol fermentation in S. stipitis
should also consider the availability of nutrients aside
from carbon source, which perhaps will be more benefi-
cial as the cost-effective media often contain complex
mixtures of nutrient derived from natural substrates.

Conclusions
In summary, an in silico model named iTL885 was
developed representing a comprehensive knowledge of
the metabolism of S. stipitis. Compared with the
reported iBB814, iTL885 possessed a higher gene cover-
age rate in despite with a slightly smaller model size.
Model-driven study of the gene essentiality validated the
role of key metabolic genes in xylose metabolism and
ethanol synthesis. Nevertheless, a further large-scale
gene knockout study of S. stipitis is necessary for a bet-
ter elucidation of its genotype-phenotype relationships.
Robustness analysis demonstrated the profile of ethanol
formation and FBA pointed out the impacts of oxygen-
ation and carbon sources on the flux distribution of
central metabolism. In light of the fermentation charac-
teristic, we suggested the well-controlled oxygen concen-
tration to achieve the maximum production of ethanol.
The investigation of xylose utilization from the perspec-
tives of sugar transport and metabolism partly accounts
for the high efficient bioconversion of xylose in S. stipi-
tis. For the overproduction of ethanol from xylose, can-
didate knockout targets were identified and the effects
of amino acids addition were simulated, which proves
that GSMM is capable of designing optimal culture con-
ditions and metabolic engineering strategies. Therefore
future work for S. stipitis can be focused on the experi-
mental testing of strain design hypothesis generated by
the computational analysis.

Methods
Model reconstruction and refinement
The availability of whole genome of P. stipitis [44]
enables us to carry out the model reconstruction follow-
ing the general workflow of GSMM reconstruction
described before [45,46]. Firstly, the sequenced genome
data of P. stipitis CSB 6054 was downloaded from Uni-
Prot database [47]. Then, the functional annotation of
genes was performed in two different ways. BLAST was
used to conduct the sequence homology search of S. sti-
pitis with two yeasts (S. cerevisiae and P. pastoris) and
one fungus (A. niger). The thresholds of the bidirectional
BLAST (BLASTp) for a functional sequence were set to



Figure 7 Predicted ethanol production rates under different conditions. A) Ethanol production rate and maximum growth rate for the wild
type cell and three in silico mutant strains (deletion of GLY1 and GLY2, ALA2, GDH3 respectively) on minimal medium. B) The maximum growth
rate and ethanol production rate on minimal medium and minimal medium with one of the 20 amino acids. C) The predicted ethanol
production rate of the gene deletion strains on minimal medium with glutamate (GLU) compared to the wild type cell on minimal
medium (MIN).
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have an e-value less than 1 × 10-30, an amino acid se-
quence identity above 40%, and a matching length at
least 70% of the query sequence. To obtain a original
reactions list, also called in-house model, GSMMs of S.
cerevisiae iMM904 [27], P. pastoris iPP668 [48] and A.
niger iMA871[49] were selected as template frameworks
to map the assigned genes. On the other hand, KAAS
[50] was used for the functional annotation of all the
query amino acid sequences. With the specific KO
identifiers or Enzyme Commission (EC) numbers, par-
ticular reactions were selected from the KEGG reaction
database which was then integrated to the BLAST
results. Special attention was paid on the most signifi-
cant components of genome-scale network, the gene-
protein-reaction (GPR) associations which details the
relationships between genes, proteins and reactions
using the Boolean logical representations (AND and
OR operators). The various isoenzyms or enzyme com-
plexes were identified with the help of KEGG Modules
[51] and assignments of homologous genes in S. cerevisiae.
As a result, a draft model was developed and used as a
start point for subsequent network refinements. With the
biochemical information acquired from public databases
such as KEGG [51], MetaCyc [52], BRENDA [53], and
TCDB [54], manual revisions including deletion of error
reactions, addition of organism-specific information,
checking of mass-charge balance and filling of metabolic
gaps were conducted one by one. GapFind and gapFilling
in the Constraint-Based Reconsruction and Analysis
(COBRA) toolbox were performed to identify and bridge
the gaps in the current version of model so as to match
the genotype and phenotype [55]. A detailed model struc-
ture was accomplished when a biomass formation reaction
and certain exchange reactions were added to the network.
Biomass equation is an artificial linear combination of all
the known biomass constituents and their defined propor-
tions. Exchange reactions describe the uptake of nutrients
from the medium and the secretion of specific metabolites
to the extracellular environment, thus defining the systems
boundaries.

Modelling technique
All computational simulations were performed using
COBRA toolbox [56] on Matlab (The MathWorks Inc.,
Natick, MA) with GLPK as the linear optimization
solver. FBA was used as the main algorithm for network
modelling and analysis. The mathematical formulation
and numerous applications of FBA have been reviewed
[57]. Briefly, FBA is an effective tool for the prediction
of the maximal cell growth and metabolite production
when given certain constraints. The output of FBA is an
optimal flux distribution for each reaction in the model
and a maximum value for the objective function. Gener-
ally, the biomass equation is set as the objective function
for the simulation of optimal growth and other model
evaluations such as essentiality study.
All the simulations were performed on a minimal

medium with limited carbon source. The uptake rates of
ammonia, sulphate, phosphate, sodium, kalium, and fer-
rite were unconstrained with the lower and upper flux
bounds of −1000 and 1000 mmol/gDW/h respectively.
Xylose or glucose was set as sole carbon source with a
uptake rate of 3 mmol/gDCW/h [14]. The robustness
analysis of oxygen uptake was performed by fixing the
xylose uptake rate and cell growth rate (0.01 h-1) to pre-
dict the maximum ethanol production rate at each con-
trolled oxygen uptake rate. The aerobic condition was
simulated by uncostraining the oxygen uptake rate, and
the semiaerobic condition by constraining the exchange
reaction of oxygen to −5 mmol/gDW/h. To modelling
the amino acids addition, each of amino acid was con-
strained to have a maximum consumption rate of
0.1 mmol/gDCW/h.

Gene deletion simulations
The computational single gene deletion was conducted
to predict the important genes for the synthesis of build-
ing blocks of cellular biomass [58]. For a given gene, the
in silico knockout was performed by constraining the
flux value of its corresponding reaction to zero when
maximizing the growth rate. This method also works for
the complex GPRs such as isoenzymes and multiplex
enzymes. If the maximum growth rate of the gene
knockout strain is less than 1 x 10-6 of the wild type, the
deleted gene is defined as essential. Otherwise, it’s a
nonessential gene. The OptKnock algorithm in COBRA
toolbox identifies candidate genes that lead to the over-
production of desired metabolite [59,60]. With ethanol
as the target product, OptKonck was applied to discover
target gene(s) knockouts. The scope of OptKonck was
constrained to the nonessential genes in central metab-
olism (glycolysis, TCA, and PPP) and amino acid
metabolism.

Additional files

Additional file 1: Genome reannotation. This Excel workbook contains
the detailed gene annotation results by BLAST and KAAS, as well as the
36 reannotated sugar transporters.

Additional file 2: Model structure. This Excel workbook contains
detailed information of S. stipitis iTL885, including all the reactions,
metabolites, and GPRs.

Additional file 3: Essential genes. This Excel workbook is a list of the
predicted essential genes with glucose as sole carbon source and the
original reactions corresponding to the abbreviations in Figure 6.

Abbreviations
GSMM: Genome-scale Metabolic Model; BLAST: Basic Local Alignment Search
Tool; KO: KEGG ORTHOLOGY; KEGG: Automatic Annotation Server (KAAS);
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