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Abstract

Background: Microalgae are ideal raw materials for biodiesel and bioactive compounds. Glycerol-3-phosphate is
formed from dihydroxyacetone phosphate (DHAP) through the glycolytic pathway catalyzed by glycerol-3-phosphate
dehydrogenase (GPDH).

Results: GPDH was characterized in the marine diatom Phaeodactylum tricornutum. In the GPDH-overexpressing
P. tricornutum cells, the glycerol concentration per cell in the transformed diatom increased by 6.8-fold compared

microalgae for biofuel production.

with the wild type, indicating that the overexpression of GPDH promoted the conversion of DHAP to
glycerol-3-phosphate. There was a 60% increase in neutral lipid content, reaching 39.7% of dry cell weight in
transgenic cells in the stationary phase, despite a 20% decrease in cell concentration. Fatty acid profiling showed that
the levels of 16- and 18-carbon monounsaturated fatty acids significantly increased.

Conclusion: GPDH had a significant impact on numerous metabolic processes in diatom cells, including the
biosynthesis of glycerol and neutral lipids. These findings are instructive for the metabolic engineering of
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Background

It has become increasingly clear that conventional fossil
fuels, such as coal, petroleum, and natural gas, are not
sustainable in respect to operational efficiency and envir-
onmental impact due to the requirement for enormous
consumption of these fuels and the greenhouse gas emis-
sions caused by them [1]. To solve the problem of energy
supply and environmental concerns caused by the con-
sumption of fossil fuels, alternative renewable biofuels
must be developed [2,3]. Vegetable oils and animal fats
were the first generation of biofuels [4], but these still can-
not meet the growing demand from the rapidly developing
world. The energy and acreage required for oil-producing
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plants have been the limiting factors for biofuel develop-
ment [5]. Thus, the attention of scientists has been shifted
from the land to the ocean, where microalgae are widely
distributed and are initially responsible for ocean primary
productivity.

In many marine microalgae species, lipids are the major
storage metabolite and are generally seen in the form of
triacylglycerols (TAGs) stored in oil bodies. Microalgae
use light more efficiently and have a higher growth rate
than terrestrial plants; moreover, they do not compete
with agricultural crops for arable land. Therefore, microal-
gae are considered a promising candidate for renewable
biofuel production [6,7].

TAGs consist of a glycerol backbone and fatty acids
(FAs); thus, glycerol is an important raw material for TAG
synthesis. Glycerol-3-phosphate dehydrogenase (GPDH)
is part of an important pathway in which the reduction of
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dihydroxyacetone phosphate (DHAP) from the glycolytic
pathway is catalyzed into sn-glycerol-3-phosphate (sn,
stereospecific numbering) in a reversible manner [8]. In
the yeast Saccharomyces cerevisiae, the isoenzymes of
NAD-dependent GPDH are encoded by two homologous
genes, GPDI1 and GPD2 [9,10]. GPDI was found to play a
role in osmoadaptation, as its expression was induced by
osmotic stress and in osmosensitive gpdl delta mutants.
In cells exposed to increased external osmolarity, expres-
sion of GPD1 is elevated and leads to increased produc-
tion and accumulation of intracellular glycerol [10-12].
A yeast GPD1 gene was expressed in transgenic oil-seed
rape seed driven by a seed-specific napin promoter, result-
ing in a 40% increase in lipid content, accompanied by a
doubling of GPDH activity and a three fold to four-fold in-
crease in glycerol-3-phosphate [13].

GPDH is also referred to as DHAP reductase in algae
and higher plants. Klock et al. purified a GPDH enzyme
from the green microalga Chlamydomonas reinhardltii,
and found that it reacted specifically with NADH and
DHARP as substrates [14]. Gee et al. separated three iso-
forms of DHAP reductase from Dunaliella tertiolecta,
and concluded that two isoforms from Dunaliella chlo-
roplasts played roles in glycerol production and glyceride
synthesis, respectively [15]. In Dunaliella salina, NAD"
-dependent GPDH can directly catalyze the conversion
from DHAP to glycerol, and it has an extra 300-amino
acid fragment that harbors the phosphoserine phosphat-
ase domain [16]. Relative to the study of GPD isozyme
genes in S. cerevisiae and higher plants, microalgal GPD
studies have focused only on the separation and purifica-
tion of the natural protein. However, in microalgae, the
characteristics of GPD isozyme genes, or of their expres-
sion and function, have rarely been reported.

Diatoms are major primary producers in the marine
ecosystem. Phaeodactylum tricornutum, a diatom species,
is rich in proteins and lipids, and has a fast growth rate
and an available genome sequence (http://genome.jgi-psf.
org/Phatr2/Phatr2.home.html). Thus, these attributes have
made P. tricornutum a promising candidate for genetic
modification of its traits for the mass commercial produc-
tion of bioproducts. Owing to the important role of
GPDH in lipid metabolism and glycerol production, its
role in the molecular mechanisms of diatoms must be
characterized. So far, no investigation into the GPDH of
diatoms has been reported, and its function remains un-
clear. Thus, in this study, GPDH of P. tricornutum was
characterized in transgenic P. tricornutum to determine
its function.

Results

Sequence prediction of GPDH

The putative GPDH gene of P. tricornutum (GenBank acces-
sion: XP_002177310.1) was obtained by BLAST searching on
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NCBI, based on the GPDH gene of S. cerevisiae (GenBank
accession number Z24454). The amino acid sequence of
the putative GPDH protein of P. tricornutum showed high
similarity with the GPDH protein from a range of spe-
cies retrieved from GenBank. The phylogenetic tree of
GPDH drawn with the software MEGA5 using the neighbor-
joining method [17] presented the similar type of phylo-
genetic tree as that using maximum likelihood and
minimum-evolution methods (see Additional file 1:
Figure S1) which adopted the same bootstrap method
and Poisson correction model. As shown in Figure 1, the
phylogenetic tree demonstrated that the GPDH cloned in
this study shared higher homology with its counterparts
from the marine diatom Thalassiosira spp. and the mar-
ine brown alga Ectocarpus siliculosus, which represented
closer relationships.

Molecular analysis of transgenic microalgae by genomic
PCR, quantitative PCR, and western blotting

Genomic PCR analysis was conducted to verify the trans-
gene incorporation. A band of the expected size of 1.0 kb
amplified with primers specific to the both ends of the
GPDH coding region using the transgenic line (Figure 2A,
lane 3). Another pair of primers flanking both ends of
GPDH on the transformation vector was used to check
the incorporation of the transgene. A slightly larger band
was present from the transgenic cells (Figure 2A, lane 2),
whereas no similar band was present from the wild-
type cells (Figure 2A, lane 1). This result suggested that
the GPDH transgene was already incorporated into the
transgenic diatom cells. The mRNA expression of the
GPDH gene was demonstrated by quantitative PCR (qPCR)
(Figure 2B). Using S-actin as a housekeeping marker, the
relative expression level of GPDH in transgenic diatom
cells was elevated threefold compared with that of the wild
type. This result demonstrated that the introduced
GPDH was transcriptionally expressed, and consequently
increased the GPDH transcript abundance in the trans-
genic diatom cells. The GPDH cloned in the transform-
ation vector was fused with a C-terminal Myc tag (amino
acids: EQKLISEEDL) to allow subsequent determination
of heterologous protein expression. Thus, the heterol-
ogous GPDH protein in the transgenic microalgae was
detected as a 37 kDa band that cross-reacted with anti-
Myc antibodies in western blotting analyses (Figure 2C,
lane 1), whereas no such band was present in the wild type
(Figure 2C, lane 2).

Measurement of the glycerol content

A standard curve was first drawn using standard glycerol
samples (Figure 3A). This standard curve, representing
optical density (OD) on the y axis against concentration
of glycerol on the x axis, was based on the absorbance of
standard glycerol samples of different concentrations at
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Figure 1 Phylogenetic tree based on the multiple alignment of glycerol-3-phosphate dehydrogenase (GPDH) protein sequences from
Phaeodactylum tricornutum with related species. The tree was constructed using the neighbor-joining method. The bootstrap percentage
shown at the nodes, as the estimator of accuracy, is based on a 1,000-replicate bootstrap analysis.

wavelength of 550 nm. The curve could be converted to
the equation y = 0.0075x + 0.0497, and the R-squared value
was 0.9993, indicating the curve had a high degree of ac-
curacy. The absorbance of the samples was put into the
equation to obtain the concentration of the samples.

The glycerol content of transgenic diatom cells was
2.06 x 107'° umol/cell and that of the wild type was 3.05 x
107" pmol/cell (Figure 3B). Thus, the glycerol content in
GPDH-overexpressing cells was increased by 6.8-fold com-
pared with the wild type. This result demonstrated that
GPDH overexpression led to the increased conversion of
dihydroxyacetone phosphate to glycerol-3-phosphate.

To detect whether overproduced glycerol was secreted
from the diatom cells, the glycerol content in the culture
medium was also measured, and showed similar glycerol
concentrations in the extracellular medium of the trans-
genic diatom cells and the wild type (Figure 3B). Thus,

the overproduced glycerol in transgenic diatom cells was
not secreted out of the cells but rather was stored inside
the cell or partially participated in downstream meta-
bolic pathways.

Analysis of the growth, lipid content, and fatty acid profile

The growth rate of the transgenic diatom cells was slightly
slower than that of the wild-type control (Figure 4A). The
neutral lipid content was measured by Nile red staining,
which showed that the neutral lipid content in the trans-
genic P. tricornutum cells had increased significantly up to
1.9-fold compared with wild-type cells (Figure 4B). These
findings indicate that the transgenic diatom cells accumu-
lated neutral lipid with a resulting detrimental effect on
cell biomass. The lipid content was also assessed by gravi-
metric analysis, which showed that the lipid content in the
transformed P. tricornutum significantly increased by 1.6-
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Figure 2 Molecular analysis of GPDH transgenic diatom cells. (A) Transgenic diatom cells selected in medium containing chloramphenicol
were first tested by genomic PCR. Lane M: 1 kb plus DNA ladder; lane 1: PCR of wild type with primers on the transformation vector; lane 2: PCR
of transgenic line with primers on the transformation vector flanking GPDH; lane 3: PCR of transgenic line with primers on both ends of GPDH.
(B) GPDH mRNA expression in the diatom cells determined by quantitative PCR. (C) Protein expression of introduced GPDH detected by western
blotting with anti-Myc antibody (Invitrogen, USA). M: Protein molecular weight marker; lane 1: transgenic P. tricornutum overexpressing GPDH
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Figure 3 Glycerol content measurement in diatom cells. (A)

Standard curve for the glycerol concentration and its opacity density.
(B) Intracellular glycerol content and glycerol concentration in the

culture medium.

fold compared with wild-type cells (Figure 4C). The
dry weight ratio between the lipid content in the trans-
genic cells and lyophilized algae powder was up to 39.7%,
whereas in wild-type cells, this ratio was only 24.8%.

As shown in Table 1, there were significant changes in
FA profile in GPDH-overexpressing transgenic diatom
cells. The overall level of monounsaturated fatty acids
(MUFAs) significantly increased. In particular, the con-
tent of C16:1 was almost doubled, and the content of
C18:1 was threefold higher than that in the wild type.
However, the polyunsaturated fatty acids (PUFAs) in
transgenic cells, such as C16:3, C18:2 and C20:5, de-
creased by 56%, 30%, and 24%, respectively, compared
with the wild type. The overall PUFA content decreased
by 33%. As for the saturated fatty acids (SFAs) in trans-
genic cells, only C16:0 showed a significant change, with
an increase of 21%, whereas the other FAs were not
altered significantly.

Diatom cells were further examined under a confocal
laser-scanning microscope to detect morphological changes.
Transgenic cells exhibited larger and had denser oil bodies
compared with the wild type, and also had slightly higher
fluorescence of oil bodies with Nile red staining (Figure 5).
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Figure 4 Growth and neutral lipid content of diatom cells.
(A) Cell concentration measured in a culture cycle; (B) neutral lipid
content detected by Nile red staining in the stationary phase; (C) lipid
content measured gravimetrically in the stationary phase.

Discussion

With the rapid progress of genome sequencing and tran-
scriptome information, algal biofuel research has been
gaining momentum. The configuration of core metabolic
pathways in microalgae is highly variable between distinct
algal classes. A major challenge in developing ‘ideal’ micro-
algal strains for biofuel production is the optimization of
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Table 1 Fatty acid composition in diatom cells

Fatty acid GPDH Wild type
12:.0 0.22 0.21
14:.0 569 540
15:0 0.56 —
16:.0 21.49 17.75
17:.0 0.10 0.12
180 6.36 7.04
20:0 0.10 0.17
22:0 0.03 —
24:0 0.07 033
Total SFA 34.62 31.02
16:1 3311 17.81
18:1 443 147
Total MUFA 37.54 19.28
16:3 241 546
182 146 2.09
20:5 8.97 11.78
20:2 0.08 0.07
226 057 0.51
Total PUFA 13.49 1991

MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA,
saturated fatty acid. Values are in percentage of total fatty acids.

the accumulation of both biomass and fuel-relevant mole-
cules, such as TAG. Selecting targets for genetic manipula-
tion requires a fundamental understanding of microalgae
and regulation of their carbon metabolic pathways. A goal
of many studies is to identify gene targets for genetic
manipulation to improve microalgal growth and char-
acteristics leading to lipid, or more specifically, TAG
accumulation, thus driving down the cost of biofuel
production [18,19].

In this work, we characterized a glycerol-3-phosphate
dehydrogenase, which was demonstrated to play a role
in regulating glycerol production and lipid accumulation
in P. tricornutum. The nitrate reductase promoter and
fcp (fucoxanthin chlorophyll a/c-binding proteins) pro-
moter used in the expression vector achieved successful
transcription of heterologous genes, thereby allowing the
selection of transformed diatom cells and the expression
of functional GPDH.

A previous study of the GPDH of S. cerevisiae specifically
expressed in rapeseed (Brassica napus L.) seeds using seed-
specific promoters showed that the content of FAs and
lipids in seeds increased with no change in the FA compos-
ition [13]. Although rapeseed, which is a higher plant, is
markedly different from the single-celled phytoplankton P.
tricornutum, the current work showed that overexpression
of GPDH in P. tricornutum also increased the content of
neutral lipids. The overproduced glycerol was not fully used
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in TAG biosynthesis, as that the content of glycerol in-
creased 6.8-fold, whereas the content of neutral lipids in-
creased 1.9-fold. In higher plants such as oil-seed rape,
precursors can be acquired from other tissues to serve
as the source materials for neutral lipid biosynthesis
and as substances to regulate the activity of ACCase
(acetyl-CoA carboxylase) [13,20]. In this study, P. tricornu-
tum, as a single-celled phytoplankton, was not able to
mobilize precursor materials from other cells; however,
the synthesis of glycerol-3-phosphate that was promoted
in the GPDH-overexpressing diatom cells led to an in-
crease in the lipid content, as in the case of rapeseed.
Thus, it suggests that the overexpression of GPDH in
P. tricornutum enhanced the synthesis of glycerol and
neutral lipids, and that GPDH plays an important role
in lipid accumulation in diatoms.

Based on the measurement of glycerol, most of the pro-
duced intracellular glycerol was not secreted from the cells.
In the case of the overproduced glycerol in the cell, it was
usually secreted to maintain the osmolality equilibrium,
which is regulated by Fpslp, a type of channel protein on
the cell membrane [21]. An explanation of our findings is
that glycerol mainly exists in the form of glycerol-3-
phosphate, and the increased neutral lipid content indicates
that the GPDH of P. tricornutum plays a similar role to that
of S. cerevisiae, andpromoted the biosynthesis of neutral
lipids. In S. cerevisiae, there are two isoenzymes of GPDH,
called GPD1 and GPD2, whose cofactors are NAD. GPD1 is
found in the cytoplasm, and GPD2 in the plastid. The
former facilitates FA accumulation, whereas the latter is re-
sponsible for the synthesis of membrane lipids and signal
transduction lipids [9].

In high salt-stress environments, halophilic algae ap-
pear to be efficient converters which can convert stored
starch rapidly into a large amount of glycerol within the
cells to adapt to external changes under osmotic pres-
sure [22]. GPDH, a key enzyme in the synthetic route
of glycerol, acts as a precursor for both glycerol and
lipids in halophilic microalgae. Putative GPDH genes
from Chlamydomonas reinhardtii, including CrGPDHI,
CrGPDH2, and CrGPDH3, show a high sequence simi-
larity with GPDH from D. salina and Dunaliella viridis,
and exhibited increased expression of CrGPDH2 and
CrGPDH3 in response to osmotic stress, which was cor-
related with the accumulation of glycerol and TAG in
this microalga [23,24]. Correspondingly, elevated ex-
pression of the GPDH genes of D. salina and D. viridis
was detected under osmotic stress by NaCl [16,25]. Our
results were consistent with that in the above micro-
algae, thus presenting a base for further functional
characterization of GPDH in microalgae at the bio-
chemical and molecular levels.

Moreover, in our study, the profile of FAs in transgenic
diatom cells exhibited some obvious changes in addition
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Figure 5 Nile red-stained diatom cells. Diatom cells in the stationary phase were stained with Nile red and photographed under a confocal
microscope. (A) Transgenic cells; (B) Wild-type cells. Left: red fluorescence of oil bodies; middle: differential interference contrast (DIC); right:
overlay image. Bars=5 pm.

to the increase in the neutral lipid content. However, the
reason for the increase in C16:1 and C18:1 MUFAs
needs further study for clarification.

Conclusion

The identified novel diatom GPDH plays a role in vari-
ous metabolic pathways. GPDH-overexpressing P. tricor-
nutum cells showed an increase in the synthesis of
glycerol and neutral lipids. The detailed biological func-
tions of the diatom GPDH need to be further studied.
The findings are also instructive for the genetic manipu-
lation of microalgae for biofuel production.

Materials and methods

Diatom strain and culture conditions

P. tricornutum Bohlin was purchased from the Freshwater
Algal culture Collection of the Institute of Hydrobiology,
CAS, China (catalogue number FACHB-863), and was
used for GPDH cloning and expression. The diatom cells
were grown in batch cultures in f/2-Si medium in Erlen-
meyer flasks, and were filter sterilized by 0.22 pm filter
membranes (Millipore, Billerica, MA, USA). P. tricornu-
tum was cultivated periodically (8 days of a life cycle), and

the preceding cultures were used as inocula. Cultures in li-
quid or solid media were grown at 21 + 1°C in an artificial
climate incubator (Jiangnan, Ningbo, China) that was set
with a 12 h/12 h light/dark photoperiod. Cool-white fluor-
escent tubes provided a constant irradiance of 200 pmol
photons per m” per second.

GPDH cloning, vector construction, and diatom
transformation
GPDH of P. tricornutum was predicted by BLAST search-
ing against GPDH of S. cerevisiae on the NCBI website.
P. tricornutum cells were harvested by centrifuging at
3,000 x g for 10 minutes, and the total RNA was ex-
tracted with an RNAiso kit (TaKaRa, Dalian, China). GPDH
¢DNA was obtained by RT-PCR with the PrimeScript II
1st Strand cDNA Synthesis Kit (TaKaRa). The primers for
GPDH amplification were Pt507 and Pt508 (Table 2).
GPDH was cloned into a P. tricornutum transformation
vector derived from the plasmid pHY11 [26]. Expression
of GPDH was driven by an fcpC promoter/fcpA termin-
ator cloned from P. tricornutum. Chloramphenicol was
used as the selection marker under the P. tricornutum ni-
trate reductase promoter. P. tricornutum was transformed
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Table 2 List of primers used in this study

Primer name Sequence

Pt507 ACCATGAAAGCATCTTCTCCACCTC
Pt508 GTTCGTTCGTCAAAGTTCTCCATT
GPDHQq GCGACGATTGGGCTTGACCT
GPDHq2 TCCGTGGATGATGCTTTGATTTCT
ACTf AGGCAAAGCGTGGTGTTCTTA
ACTr TCTGGGGAGCCTCAGTCAATA

with the GPDH expression vector by electroporation using
a GenePulser Xcell apparatus (Bio-Rad, Hercules, CA, USA)
following the protocol of Niu et al. [26]. After electropor-
ation, P. tricornutum cells were transferred into liquid
medium (f/2-Si) and incubated for 24 hours in the dark.
The transgenic cells were selected onf/2-Si solid selection
medium supplemented with chloramphenicol. The surviving
colonies were picked and transferred to liquid medium (f/2-
Si) with 250 mg/l chloramphenicol for further selection
and successive culture every 8 days of a life cycle.

Molecular analysis of the transgenic microalgae by
genomic PCR, quantitative PCR, and western blotting
After continuous subculturing for five more cycles in
solid selection medium, the transgenic cells were ana-
lyzed by a range of molecular approaches.

Genomic PCR was first used to screen the transformed
cells to indicate the presence of heterologous GPDH gene.
The primers used were Pt89a and Pt91r, which flanked
the two ends of the GPDH gene on the vector. The gen-
omic DNA of the diatom-transformed cells was extracted
with the Universal Genomic DNA Extraction Kit (v.3.0;
TaKaRa). PCR-confirmed cultures were then subjected to
successive culture for further analysis.

To detect the mRNA expression level, qPCR was per-
formed using SYBR Premix Ex Taq II kit (Takara) with
primers GPDHql and GPDHq2. The reactions were
conducted on a Bio-Rad CEFX96 Real-Time PCR System.
The putative B-actin (ACT1, Phatrdraft 51157) from P.
tricornutum was used as a housekeeping marker, with for-
ward primer ACTf and reverse primer ACTr. The threshold
cycle for each well was determined, and the relative mRNA
expression levels of GPDH were quantified after
normalization to B-actin.

The expression of GPDH protein in transgenic diatom
cells was determined by western blotting analysis. Ap-
proximately 200 ml microalgae cells (7 x 10° cells/ml),
which were cultivated until the stationary phase, were
collected by centrifugation at 3,000 x g for 10 minutes at
4°C. The total protein was extracted using a Protein
Extraction Kit (KeyGEN, Nanjing, China), and the protein
concentration was determined by a Protein Assay Kit
(Bio-Rad). The total protein (40 pg per well) was separated
by SDS-PAGE on a 10% gel and electrotransferred onto a
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PVDF membrane (Millipore, Billerica, MA, USA). The
membrane was blocked in PBS containing 5% non-fat
milk for 2 hour at 4°C and then incubated with anti-Myc
antibody (Invitrogen, Grand Island, NY, USA) at 1:5,000
dilution at 4°C overnight. The membrane was washed for
10 minutes with PBS-T (137 mM NaCl, 2.7 mM KCl,
10 mM, Na,HPO41.8 mM KH,PO, 0.5% Tween 20,
pH 7.6) three times, and incubated with HRP-conjugated
goat anti-rabbit secondary antibody at 1:5,000 dilution
(ComWin Biotech Ltd., Beijing, China) for 1 hour at room
temperature. After washing three times with PBS-T, the
membrane was visualized with the BeyoECL Plus Kit
(Beyotime, Jiangsu, China) following the manufacturer’s
instructions.

Analysis of the glycerol and neutral lipid contents in
transgenic diatoms

The lipid content in P. tricornutum was measured by Nile
red (Sigma-Aldrich, St. Louis, MO, USA) staining [27].
Approximately 300 pl diatom culture at the stationary
phase and 3 pl Nile red solution (0.1 mg/ml in acetone so-
lution) were mixed and stained for 20 minutes at room
temperature. The fluorescence intensity of the stained cul-
tures was measured by a microplate reader with a 530 nm
excitation wavelength and a 580 nm emission wavelength.
Unstained diatom culture and stained medium acted as
the controls. The final fluorescence value was calculated
by subtracting the fluorescence intensity value of the
unstained diatom culture and the fluorescence value of
the stained medium. The cell concentration of the algal
culture was determined using a hemocytometer to obtain
the cell concentration.

The glycerol content was quantitatively measured
using a Glycerol Content GPO-POD Enzymatic Assay
Kit (Applygen Technologies Inc., Beijing, China) follow-
ing the manufacturer’s manual. The OD detected by
spectrophotometry had a positive linear association with
the glycerol concentration. Therefore, the standard curve
was drawn by spectrophotometry at 550 nm wavelength
through the corresponding relationship between the OD
value and the glycerol concentration.

Observation of the morphological changes in the
transgenic diatom

The morphology of the transgenic microalgal cells was
observed and photographed under a laser-scanning con-
focal microscope LSM 510 META (Zeiss, Oberkochen,
Germany). Cell cultures were stained with Nile red (0.1 mg/
ml in acetone) directly in a volume ratio of 1:100 (Nile red:
cell culture) for approximately 20 minutes in the dark.
The wavelengths for the fluorescence detection were
488 nm for excitation and 505 to 550 nm for emission.
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Analysis of the fatty acid composition in the transgenic
diatom

Fatty acid composition was analyzed according to the
protocol of Yang et al. [27]. In particular, diatom cells at
the stationary phase were harvested by centrifugation at
3,000 x g for 10 minutes at 4°C. FAs were extracted from
the diatom cells, and the FA composition was analyzed
by gas chromatography—mass spectrometry (GC-MS)
(Finnigan TRACE DSQ; ThermoFisher, Waltham, MA,
USA) at the Guangdong Institute of Microbiology. The
integrated peak areas were determined and calculated
after normalization to obtain the relative percentage of
the FA profile.

Gravimetric determination of the lipid content in P.
tricornutum cells

Approximately 250 ml of diatom cells were cultivated
for 8 days to the stationary phase, then collected by cen-
trifugation at 3,000 x g for 10 minutes at 4°C and lyoph-
ilized for 48 hours (MODULYOD-230, ThermoFisher).
Approximately 20 mg lyophilized algae powder was
mixed with 2 ml of methanol, 2 ml of chloroform, and
1 ml of 5% NaCl [28]. According to the method of
Huang et al. [29], the mixture was vortexed for 2 min
and centrifuged at 8,000g¢ for 4 min. The chloroform
layer was collected, the procedure was repeated three
times, and the combined extracts were dried by N, air-
flow. The lipid remainder was then dried in an oven at
60°C and weighed on an electronic balance (with incre-
ments of 0.1 mg) (FA1004, Changzhou, China) to yield
the dry weight.

Additional file

Additional file 1: Figure S1. Phylogenetic trees based on different
methods of GPDH protein sequences from P. tricornutum with related
species. (A) Maximum Likelihood method; (B) Minimum-Evolution
method.
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