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Abstract 

Background: The production of 1 L of ethanol from sugarcane generates up to 12 L of vinasse, which is a liquid 
waste containing an as-yet uncharacterized microbial assemblage. Most vinasse is destined for use as a fertilizer 
on the sugarcane fields because of the high organic and K content; however, increased  N2O emissions have been 
observed when vinasse is co-applied with inorganic N fertilizers. Here we aimed to characterize the microbial assem-
blage of vinasse to determine the gene potential of vinasse microbes for contributing to negative environmental 
effects during fertirrigation and/or to the obstruction of bioethanol fermentation.

Results: We measured chemical characteristics and extracted total DNA from six vinasse batches taken over 1.5 years 
from a bioethanol and sugar mill in Sao Paulo State. The vinasse microbial assemblage was characterized by low alpha 
diversity with 5–15 species across the six vinasses. The core genus was Lactobacillus. The top six represented bacterial 
genera across the samples were Lactobacillus, Megasphaera and Mitsuokella (Phylum Firmicutes, 35–97% of sample 
reads); Arcobacter and Alcaligenes (Phylum Proteobacteria, 0–40%); Dysgonomonas (Phylum Bacteroidetes, 0–53%); 
and Bifidobacterium (Phylum Actinobacteria, 0–18%). Potential genes for denitrification but not nitrification were 
identified in the vinasse metagenomes, with putative nirK and nosZ genes the most represented. Binning resulted in 
38 large bins with between 36.0 and 99.3% completeness, and five small mobile element bins. Of the large bins, 53% 
could be classified at the phylum level as Firmicutes, 15% as Proteobacteria, 13% as unknown phyla, 13% as Bacte-
roidetes and 6% as Actinobacteria. The large bins spanned a range of potential denitrifiers; moreover, the genetic 
repertoires of all the large bins included the presence of genes involved in acetate,  CO2, ethanol,  H2O2, and lactose 
metabolism; for many of the large bins, genes related to the metabolism of mannitol, xylose, butyric acid, cellulose, 
sucrose, “3-hydroxy” fatty acids and antibiotic resistance were present based on the annotations. In total, 21 vinasse 
bacterial draft genomes were submitted to the genome repository.

Conclusions: Identification of the gene repertoires of vinasse bacteria and assemblages supported the idea that 
organic carbon and nitrogen present in vinasse together with microbiological variation of vinasse might lead to 
varying patterns of  N2O emissions during fertirrigation. Furthermore, we uncovered draft genomes of novel strains of 
known bioethanol contaminants, as well as draft genomes unknown at the phylum level. This study will aid efforts to 
improve bioethanol production efficiency and sugarcane agriculture sustainability.
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Background
Sao Paulo State contains a total of 5.7 million hectares 
of land planted with sugarcane. These fields supply the 
input for Brazil’s large bioethanol industry, which is 
the second largest producer of bioethanol worldwide 
(UNICA). Brazil has more than 300 sugarcane processing 
plants, including sugar mills (producing only sugar), mills 
with distillery plants (sugar and ethanol production), 
and independent distilleries (only ethanol production). 
In the 2013/2014 season, the total ethanol production 
was 13.9 thousand  m3 (UNICA, 2013/2014 harvest). 
The major by-product of sugarcane ethanol production 
is vinasse; up to 12 L of vinasse is generated per liter of 
ethanol [1]. Sugarcane vinasse consists of water (about 
93%) and organic compounds, and contains K, Ca and 
Mg, though the amount of these components depends on 
the characteristics of the input sugarcane and subsequent 
processing steps [2]. The major organic components of 
sugarcane vinasse are low molecular weight organic com-
pounds, mainly glycerol, lactic acid, ethanol, and acetic 
acid [3]. In general, vinasse has a low pH of around 4 and 
high chemical oxygen demand of 100–500 g/L.

The large volumes of vinasse and its chemical proper-
ties of high organic C and N, and K content have led to its 
widespread reuse as a fertilizer supplement for sugarcane 
crops. Most often the vinasse is sprayed onto the fields, 
which is a process termed fertirrigation. This method is 
low cost and contributes to net energy savings in sugar-
cane bioethanol production cycles because the vinasse 
is locally transported and applied [4]. Benefits of using 
vinasse as fertilizer include improved short-term soil 
quality, crop production and crop quality [5–8]. How-
ever, negative effects include decreasing long-term soil 
fertility (lead leaching, N immobilization) and increas-
ing greenhouse gas emissions, especially the emission 
of  N2O when used in conjunction with an N fertilizer 
[2, 9–12]. These effects depend on the soil and environ-
mental characteristics as well as vinasse-specific nutrient 
contents (reviewed in [12]). The increased  N2O emissions 
from vinasse fertirrigation may be due to the stimulation 
of soil microbes by vinasse-derived organic material (i.e., 
a form of priming) and/or the activity of vinasse-derived 
cells containing genes in  N2O-producing pathways [8].

Nitrous oxide emissions are produced through two 
main microbial-mediated processes in soil: nitrification 
 (NH4

+ to  NH2OH to  NO3
−) and denitrification  (NO3

− to 
 NO2

− to NO to  N2O to  N2). Nitrification is carried out 
by microbes containing the ammonia monooxygenase 
enzyme, which is encoded by the gene amoA, and gen-
erally used as a functional marker of nitrifiers. Denitri-
fier bacteria may contain the nitrite reductase genes nirS 
and nirK, the nitric oxide reductase gene norB and/or the 
nitrous oxide reductase gene norB, which each encodes 

for the enzymes involved in the respiration of nitrite to 
nitric oxide to nitrous oxide to dinitrogen gas, respec-
tively. The abundance of the different microbes contain-
ing denitrification genes, and the abundance of these 
genes when measured as functional markers, is known to 
correlate with the actual  N2O emission rates from soils 
[62]. While much is known regarding the chemical char-
acteristics of vinasse, there are only a few indirect studies 
of its biotic components despite recent attention to the 
environmental effects of its use in fertirrigation.

The microbiota present in vinasse likely encompasses 
the microorganisms present in the bioethanol production 
process. The most common raw material for ethanol pro-
duction in Brazil is the mixture of diluted molasses and 
cane juice used in the distilleries annexed to sugar pro-
ducing mills. The ethanol pipeline starts with crushing 
the unwashed sugarcane stalk to separate the sugarcane 
juice from the pulpy stalk residue known as bagasse. The 
sugarcane juice is heated and clarified with lime; the clar-
ified juice is concentrated in an evaporator at 115 °C fol-
lowed by vacuum boiling pan, at which point sugar and 
molasses crystallize. By centrifugation, the sugar crystals 
are separated from the mother liquor. This liquor is again 
crystallized in vacuum pans and then passed through 
continuous sugar centrifuges. The last residual solution 
is called molasses, which has high sucrose content suit-
able for ethanol production. The raw material for ethanol 
production is a mixture of unsterilized sugarcane juice, 
molasses and water [13]. The fermented material is then 
distilled at temperatures of at least 78 °C to separate the 
ethanol from the remaining waste vinasse. This vinasse is 
then transported via open channels or trucks to the sug-
arcane site for fertirrigation. The mixed sugarcane juice 
is fermented using proprietary Saccharomyces cerevisiae 
strains through two methods: batch (85% of distilleries 
as of 2011) or continuous fermentation (15%). In batch 
processing, the fermentation occurs in parallel, while 
in continuous fermentation the process occurs in series 
(reviewed in [14]). In either method, the yeast cells are 
treated with sulfuric acid, antibiotics, hop products and/
or chemical biocides to reduce bacterial contamination, 
recovered by centrifugation, and reapplied to the fermen-
tation tanks. This recycling step occurs between 400 and 
600 times in a harvest season and despite the antibacte-
rial treatment, bacteria remain the major contaminants.

The main bacterial contaminants of the bioethanol 
pipeline are lactic acid bacteria, which tend to domi-
nate the samples taken from the ethanol pipeline in the 
steps prior to vinasse [15, 16]. These bacteria, in par-
ticular Lactobacillus species, compete with the commer-
cial yeast strains for sugar or form exopolysaccharides 
that flocculate yeast cells [17–19]. Contamination by 
bacteria—through sucrose competition, flocculation 
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of the commercial yeast strain or fermentation inhibi-
tion—can lower the efficiency of the bioethanol process 
by up to 30% [16, 20]. Furthermore, because of the anti-
biotic treatment of the yeast cells during the recycling 
step, contaminant bacteria may be a source of antibiotic 
resistance genes, as has been recently reported in a field 
study [21]. Other sources of contamination are wild yeast 
strains from the input sugarcane stalks, which are not 
sterilized prior to the production pipeline [22]. To date, 
no studies have investigated the presence of bioethanol 
pipeline contaminants in vinasse.

Here we investigated concurrently the chemical and 
microbial properties of vinasse to characterize the 
vinasse assemblage. We explored metagenomic data 
taken from vinasse samples over 1.5  years of produc-
tion from a bioethanol mill in Piracicaba, SP, Brazil. The 
mill processes sugarcane produced in the region within 
a rough 40  km radius. Vinasse is distributed by trucks 
for fertirrigation during the harvest season (April to 
November). To characterize the microbial assemblage of 
this vinasse, we sequenced total DNA from six vinasse 
samples. We analyzed the resulting 18 shotgun metagen-
omes through metagenomics and differential abundance 
binning. To investigate the potential for  N2O emissions 
from fertirrigation with vinasse, special attention was 
given to sequences and reconstructed genomes anno-
tated as genes involved in  N2O-related metabolism. Fur-
thermore, we also identified genes relating to bioethanol 
production concerns to identify future research direc-
tions. To date, this is the first culture-independent study 
of the vinasse microbial assemblage. Our main questions 
were (1) what are the overall and sample-wise taxonomic 
and functional characteristics of the vinasse microbial 
assemblages? and (2) what is the potential of the vinasse 
microbes for  N2O emissions, obstruction of fermentation 
and/or antibiotic resistance?

Methods
Sampling description
The bioethanol mill from which we sampled is in the 
region of Piracicaba in SP, Brazil. The mill takes in sug-
arcane from the region and produces sugar and etha-
nol. We obtained six time points of vinasse taken from 
transport trucks prior to their departure to the fields for 
chemical and molecular analyses. The trucks hold about 
10,000 L of vinasse. Prior to sampling, the vinasse was 
held in the trucks for 24 h. Of the vinasse, 0.5 L sampled 
from the truck was immediately kept at 4 °C. The six sam-
pling dates were 13/11/2013 (A, Nov. 2013), 13/12/2013 
(B, Dec. 2013), 15/07/2014 (C, July 2014), 15/08/2014 (D, 
Aug. 2014), 14/10/2014 (E, Oct. 2014) and 10/11/2014 
(F, Nov. 2014). The dates of the vinasse sampling corre-
sponded to summer (October, November and December) 

or winter (July and August) sugarcane harvests. Because 
each vinasse was a random assemblage of contaminants 
from the bioethanol process, we considered each time 
point an independent measure for statistical analysis.

Chemical analyses, DNA extraction, and qPCR 
quantification and sequencing
For each vinasse sample, 500  ml was used for chemi-
cal analyses. The remaining three subsamples of 100 ml 
per time point were used for DNA extraction. First, the 
samples were centrifuged at 10,621×g (Sigma 2-16P) 
for 10 min to separate cells from the liquid. Total DNA 
was extracted from the pellets with the MoBio Power-
Soil kit according to the manufacturer’s instructions. 
Between 553 and 5310 ng was sent for sequencing (Addi-
tional file 1). The DNA was prepared as a MiSeq Illumina 
paired-end library and sequenced (3 replicates × 6 sam-
ples  =  18 metagenomes) or used for quantitative PCR 
of genes that encode for the enzymes involved in the 
sequential biochemical steps leading to  N2O production 
(amoA, nirK, nirS, norB) or removal (nosZ). The qPCRs 
were performed in a 96-well plate (Bio-Rad) using CFX96 
Touch™ Real-Time PCR Detection System (Bio-Rad). The 
qPCR reaction, primers combinations and thermal cycler 
conditions of each gene amplification are listed in Addi-
tional file 2. The qPCR data were acquired at 72  °C and 
melting curve analysis was performed to confirm speci-
ficity. Amplicon sizes were checked by agarose gel elec-
trophoresis. Samples were analyzed with two technical 
replicates. Reaction efficiency varied from 80 to 105% 
and R2 values ranged from 0.94 to 0.99.

Metagenome processing and read‑based sample 
comparisons
Bioinformatics processing was performed on a Linux 
server (Linux-3.13.0-76-generic-×86_64-with-Ubuntu-
14.04-trusty) with 64 nodes and 250 GB RAM. Process-
ing was performed in a Snakemake v3.7.1 workflow or 
with bash or Perl scripts (available upon request). The 18 
shotgun metagenomes were checked for tag sequences 
and evaluated for statistics using FastQC v0.10.1 (Avail-
able online at: http://www.bioin forma tics.babra ham.
ac.uk/proje cts/fastq c) and PRINSEQ-lite version 0.20.4 
[23]. Raw reads were filtered out using PRINSEQ if they 
had more than 1% of ambiguous (N) characters, had a 
mean quality score of less than 25 or were exact dupli-
cates. Reads were trimmed at the 3′ end if the mean qual-
ity score was less than 20 within a sliding window size of 
10 (clean reads). The clean paired-end reads were used in 
further analyses unless otherwise noted. The raw paired-
end reads were merged using PEAR v0.9.5; these merged 
read ends were trimmed by quality and filtered out if the 
merged read had more than 1% ambiguous characters 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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(parameters q 20, n 0.01) with PEAR (merged reads) [24]. 
For downstream normalization of annotation counts, cal-
culations of average genome size per sample were carried 
out using MicrobeCensus [25]. To compare the metage-
nomes directly, sample distances were determined from 
the partial de Bruijn assembly of the clean forward reads 
using MetaFAST 0.1.0 (revision 57253a1) [26].

Taxonomy, phylogeny and alpha diversity
To characterize the taxonomic composition, functional 
potential and diversity of the microbial assemblages 
in the vinasse samples, we profiled the metagenomes 
using different databases. First, the merged reads were 
uploaded to the metagenome analysis platform MG-
RAST version 3.6 [27]. The metagenomes were compared 
using the default presets to the RefSeq or subsystem 
databases to obtain taxonomic or functional profiles, 
respectively. Refseq annotations, including eukaryota, 
bacteria, archaea and viruses, were determined using the 
last common ancestor approach. The MG-RAST taxo-
nomic (phylum-level) and functional (Subsystems Level 
1) profiles were analyzed with the statistical analysis of 
metagenome profiles (STAMP) software [28]. Taxonomic 
or functional level abundances significantly different 
among vinasse samples were evaluated using ANOVA. 
The Tukey–Kramer post hoc test with a 95% confidence 
interval and the Benjamini–Hochberg correction was 
used to identify differing phyla or Subsystems Level 1 
category abundances between the vinasse metagenomes 
with significance determined at corrected p  <  0.001 or 
0.05, respectively. The taxonomic profiles at genus level 
were kept to visualize the relative abundance of genera 
across samples.

Because the metagenomes were well represented in 
the MG-RAST databases, we further characterized the 
taxonomy and functional potential of the metagenomes 
using metaphlan2 version 2.6.0 and humann2 version 
0.9.9 pipelines [29, 30]. For metaphlan2 analysis, we used 
the “relab” analysis with the “–ignore_eukaryotes” flags to 
obtain taxonomic profiles. To gain an overall view of the 
taxonomy present in the vinasse samples and the phylo-
genetic relationships between the species in the samples, 
the average taxonomic distributions of the vinasse sam-
ples from metaphlan2 were visualized as a cladogram 
using Graphlan [31]. To examine the taxonomic profiles 
of vinasse across samples, these were visualized through 
heatmaps with average linkage clustering on Euclidean 
distances using hclust2. For the humann2 analysis, we 
annotated the forward clean reads against the UniRef90 
database [32]. Pathway abundances were visualized 
excluding the “UNMAPPED” and “UNKNOWN” catego-
ries using hclust2 heat maps with average linkage cluster-
ing on Euclidean distances. To obtain a measure of alpha 

diversity, we ran metaphlan2 with previously mentioned 
flags on samples rarified to the smallest library size 
(280,161 reads).

To infer the phylogenetic relationships between the 
organisms present in the vinasse samples, full-length 16S 
rRNA genes were recruited from the vinasse metagen-
ome reads using REAGO version 1.1 on forward clean 
reads truncated to 201 bp [33]. The resulting full-length 
16S rRNA vinasse sequences were aligned and taxonomi-
cally classified against the SSU 128 SILVA reference data-
base using SINA [34, 35]. The five nearest neighbors for 
each full-length 16S rRNA sequence were downloaded 
in addition to two Verrucomicrobia outgroup sequences. 
The 16S rRNA sequences were aligned without gaps 
using ClustalW in MEGA7 (121 sequences in total) [36]. 
A neighbor-joining tree was created with evolution-
ary distances computed using the Maximum Composite 
Likelihood method [37, 38]. Phylogenetic distances were 
evaluated with bootstrap tests (1000 replicates) [39]. To 
obtain a measure of alpha diversity we recruited full-
length 16S rRNA genes using REAGO as above on the 
rarified metagenomes. Further, we evaluated a meas-
ure of genus-level relative abundance across samples by 
mapping the metagenome reads to the extracted 16S 
sequences grouped by taxonomic affiliation using bow-
tie2. These abundances were calculated as percentages 
of the number of aligned pairs from the total number of 
metagenome reads per sample.

Putative denitrification and nitrification gene abundances
To investigate the potential for  N2O emissions from the 
vinasse samples, we used two approaches: 1) metagen-
ome read matching to profile HMMs of denitrification 
and nitrification genes and 2) recruitment of denitrifying 
and nitrifying genes from the reads. Profile HMMs for the 
amoA_AOA, amoA_AOB, nirK, nirS, norB, nosZ, nosZ_
atypical_1 and nosZ_atypical_2 genes were downloaded 
from the Functional Gene Repository (FUNgene version 
8.3; available at http://funge ne.cme.msu.edu/). Reads 
were translated to protein sequences with the “meta” 
setting using Prodigal version 2.6.2. The ORFs were que-
ried for HMM matches using HMMsearch (command: 
hmmsearch –noali –o <  filename.fasta >  <  gene.hmm 
> < filename.fasta >  ; available at https ://www.ebi.ac.uk/
Tools /hmmer /searc h/hmmse arch). The HMM matches 
were normalized to reads per kilobase per genome 
equivalent (RPKG = (# mapped reads/HMM gene length 
(KB))/genome equivalents). The RPKG normalization 
accounts for genome size, library size and gene length 
biases, allowing for gene and sample comparisons.

In parallel, the gene-targeted assembler pipeline meg-
agta version 0.1_alpha was used to recruit full-length 
genes from the metagenomes [40]. Gene-targeted 

http://fungene.cme.msu.edu/
https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch
https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch
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assemblies (i.e., recruitments) were carried out on 
amoA_AOA, amoA_AOB, nirS, nirK, norB_cNor, 
norB_qNor, nosZ and nosZ_a2 genes using megagta. Fur-
ther, to infer alpha diversity, the ribosomal rplB gene was 
recruited from the rarified metagenomes.

Cross‑assembly and binning
We evaluated the performance of three assemblers 
(Ray-meta [41], Megahit [42] and metaSpades [43]) in 
cross-assembling the 18 vinasse metagenomes; the best 
cross-assembly was that from the metaSPADES assembler 
version 3.8.2 based on assembly characteristics evaluated 
using MetaQUAST (QUAST Version 3.0, build 07.07.2015 
05:57 [44]). The 18 metagenomes were cross-assembled 
with metaSpades using kmer sizes 77, 99 and 127. The 
sample reads were mapped to the cross-contigs using 
bowtie2 to obtain cross-contig abundances [45]. The final 
metaSPADES cross-assembly was binned using three tools 
for comparison: CONCOCT (with anvio version 2.3.2), 
Metabat [46] and MaxBin2 version 2.1.1 [47]. The contig 
annotation tool (CAT version 2) was used to determine 
the taxonomic affiliation of all ORFs identified in each bin 
using prodigal to find ORFs and diamond blastp against 
the NCBI-nr database [48]. CAT taxonomy results were 
formatted using custom Perl scripts and visualized with 
TreeMap to aid with the taxonomic characterization of 
the bins. Because more genomes with >  90% complete-
ness and coherent taxonomies were found from the Max-
Bin2 binning, these were selected for downstream analysis. 
CheckM was used to check the original MaxBin2 bins [49]. 
These bins were manually refined using anvi’o version 2.3.2 
based on cross-contig taxonomy (from CAT), hierarchical 
clustering of the cross-contigs and sample coverage infor-
mation [50]. The relative sample abundances of the bins 
were noted as the percent of sample reads recruited to the 
bin out of the total sample reads recruited to all the bins 
(i.e., percent recruitment anvi’o results).

The “good bins” were identified as having > 90% com-
pleteness and  <  10% redundancy. Further “interesting 
bins” were further identified as those with  >  20% com-
pleteness and  <  10% redundancy and/or coherent con-
tig taxonomies. Functional annotation of the “good and 
interesting bins” were carried out using prokka with the 

“kingdom” flag set to bacteria or viruses depending on 
the taxonomic classification [51]. To characterize the 
bins by their potential functional type, prokka annota-
tion results were mined for lines matching EC numbers 
of KEGG enzymes of compounds related to bioethanol 
production interests and  N2O emissions. These KEGG 
compounds were acetate (C00033), cellulose (C00760), 
xylose (C00181), lactose (C00242), caproic acid (C01585, 
carbon dioxide (C00011), diacetyl (C00741), hydrogen 
peroxide (CC00027), lactaldehyde (C05999) and phenyl 
lactate (C05607). The lists of EC numbers were obtained 
by querying the KEGG REST API on each compound 
ID. Keyword searches of “3-hydroxy” fatty acids, “cyclic 
dipeptide”, antibiotic “resistance”, and nitrification and 
denitrification genes were additionally used to identify 
the potential presence of these functions in the bins.

In parallel, to confirm potential denitrification and 
nitrification gene presence, bin sequences were com-
pared to HMMs of nitrification and denitrification genes 
from FunGene as described previously but with the prod-
igal setting “single.” The HMM matches were normalized 
by bin size (number of ORFs and total number of bp in 
ORFs) and HMM length in bp.

Results
Vinasse chemical characteristics and metagenome 
overview
The chemical characteristics of the vinasse samples are 
listed in Table 1. Average pH was low at 4.4 ± 0.4, rang-
ing between 3.9 (D) and 4.8 (C). Total organic carbon 
averaged 29 ± 1.8 g/L and ranged between 25.7 (B) and 
31.4 g/L (D). Total N averaged 0.64 ± 0.15 g/L, while that 
of P and K was 0.16 ± 0.07 and 3.43 ± 1.02, respectively. 
The C/N ratio averaged 42 ± 13 and ranged between 19 
(F) and 57 (C). After processing, the 18 vinasse metage-
nomes contained a total of 2,126 Mbp distributed into 
7.82 million reads. The number of reads ranged between 
280,161 and 542,208 sequences per sample with between 
77 and 150 Mbp (Additional file  1). When the metage-
nome distances were compared using partial de Bruijn 
assembly, A and C were most similar, followed by F, fol-
lowed by E; least similar were B and last D (Additional 
file 3).

Table 1 Chemical characteristics of the six vinasse samples

Group name Sampling date pH C org (g/L) N tot (g/L) N‑NH4
+ (mg/L) N‑NO3

− (mg/L) P (g/kg) K (g/kg) C:N

A Nov. 2013 4.7 28.2 0.53 65.8 17.6 0.08 2.9 53

B Dec. 2013 4.1 25.7 0.53 63.4 10.8 0.17 2.6 49

C July 2014 4.8 28.8 0.51 45.7 8.8 0.11 3.5 57

D Aug. 2014 3.9 31.4 0.89 41.6 4.1 0.23 4.7 35

E Oct. 2014 4.2 29.6 0.74 37.7 6.8 0.10 2.1 40

F Nov. 2014 4.7 30.3 1.57 75.9 6.6 0.25 4.8 19
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Taxonomic characterization
When compared to the M5NR database containing 
eukaryota, bacteria, archaea and viruses on MG-RAST 
(Additional file  4), 21–55% of the merged reads could 
be classified. Of the classified reads, 96–100% were 
annotated as bacteria. The top phyla present in the 
vinasse samples with relative abundances greater than 
1% and/or that significantly co-varied among the sam-
ples (ANOVA at p < 0.001 and Kruskal–Wallis post hoc 
test) were Firmicutes (35–97% of merged reads), Bac-
teroidetes (0.8–53%), Actinobacteria (0.4–17.5%) and 
Proteobacteria (0.3–39.4%; Additional file 5). The “core” 
phylum observed in all vinasse samples was Firmicutes. 

Similarly, when compared to the metaphlan2 marker 
gene database containing bacteria, archaea and viruses 
(excluding eukaryotes), between 68 and 100% of classified 
reads were identified as bacteria and 0–32% as viruses 
(Fig.  1). The previous four main bacterial phyla again 
dominated the vinasse samples: Firmicutes (48–100% of 
classified reads), Actinobacteria (0–19%) and Proteobac-
teria (0–18%), as well as viruses (0–32%; Fig. 2). The most 
abundant bacterial genera were Lactobacillus (Phylum 
Firmicutes), Megasphaera (Firmicutes), Mitsuokella (Fir-
micutes) and Bifidobacterium (Actinobacteria). Further 
supporting these taxonomic results, the full-length 16S 
rRNA genes recruited from the vinasse metagenomes 

Fig. 1 Average abundance of taxa in the vinasse samples. The metagenomes were analyzed using metaphlan2 and visualized with GraPhlan. Node 
sizes correspond to average relative abundance across the vinasse metagenomes while colors correspond to phylum. Species are noted with letters: 
A = Lactobacillus phage Lc Nu, B = D. mossii, C = A. intestini, D = S. bovis, E = M. elsdenii, F = Megasphera unclassified, G = Mitsuokella unclassified, 
H = L. salivarius, I = L. equicursoris, J = L. delbrueckii, K = L. amylovorus, L = L. mucosae, M = L. fermentum, N = L. vini, O = B. thermophilum, 
P = Olsenella unclassified, Q = Pseudomonas unclassified, R = Acetobacter unclassified, S = Gluconacetobacter unclassified, T = Ochrobactrum 
unclassified, U = A. faecalis, V = A. butzleri and W = Arcobacter unclassified
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Fig. 2 Taxonomic distributions across the vinasse samples at the level of a Phylum, b Class, c Order, d Family, e Genus and f Species. The taxonomic 
group and sample profiles were clustered using hclust2 from metaphlan2 results



Page 8 of 16Cassman et al. Biotechnol Biofuels  (2018) 11:48 

were classified as Bifidobacterium (Phylum Actinobacte-
ria), Olsenella (Phylum Actinobacteria), Prevotella (Phy-
lum Bacteroidetes), Lactobacillus (Phylum Firmicutes), 
Megasphaera (Phylum Firmicutes), Mitsuokella (Phylum 
Firmicutes) and Comamonas (Phylum Proteobacteria) 
genera (Additional files 6, 7).

When the samples were clustered based on the MG-
RAST taxonomic profiles at phylum level, E and C 
formed a cluster while A, F, and D were separated based 
on the first principal component and B was separated 
based on the second (Additional file 8). When the met-
aphlan2 profiles were clustered at the level of class, order, 
family and genus, samples A, C and F formed a cluster 
while B, D and E formed a separate cluster (Fig. 2).

Functional potential characterization
When compared to the M5NR databases through MG-
RAST, the percentage of sequences with ORFs that could 
be classified into functional categories ranged between 
16 and 42% (Additional file  9). At Subsystems Level 1, 
the top significantly different categories were carbohy-
drate metabolism, clustering-based subsystems, amino 
acids and derivatives, miscellaneous, protein metabolism, 
DNA metabolism, RNA metabolism, cofactors/vitamins, 
cell wall/capsule, phages/prophages and nucleosides and 

nucleotides. When sample distances were determined 
using the functional profiles at Subsystems Level 1, C, A, 
B and F formed a cluster while E was separated based on 
the first principal component and D was separated based 
on the second (Additional file  10). When the vinasse 
metagenomes were analyzed using the humann2 frame-
work, abundant pathways were found in sample D, which 
was dominated by one Lactobacillus—the top abundant 
pathways included PWY-5100: pyruvate fermentation to 
acetate and lactate II and PWY-7219: adenosine ribonu-
cleotides de novo biosynthesis (Additional file 11). Com-
bining the real-time PCR, gene recruitment and gene 
mapping results, the vinasse metagenomes had few to no 
genes matching nitrification genes; in contrast, a range 
of denitrification genes was found (Fig. 3). Sample B pre-
sented the most diversity of denitrification genes, with 
nirK, nirS, norB and nosZ present based on the recruit-
ment and mapped results. The presence of putative nosZ 
was supported in all samples except D. In addition, puta-
tive nirK was found in all samples except F.

Alpha diversity of the vinasse samples
Several methods were employed to obtain estimates of 
the alpha diversity of the vinasse samples (Table 2). The 
normalized effective number of species from MG-RAST 
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averaged 29 ± 14 and ranged between 3 (D) and 53 (B) 
species. When metaphlan2 was applied to the rarified 
vinasse samples, the number of classified species aver-
aged 11 ± 3 and ranged between 5 (D) and 14 (B) species. 
Partial 16S rRNA fragments recruited from the rari-
fied samples using REAGO averaged 10 ± 4 and ranged 
between 4 (D) and 17 (E). Further, when the rplB gene 
was recruited from the rarified samples with megaGTA 
analysis, and average of 17 ± 3 fragments could be found 
across the vinasse samples with between 13 (E) and 
22 (C) rplB fragments identified. When the 16S rRNA 
gene was amplified using real-time PCR of the vinasse 
samples, the number of genes per kg of dry matter aver-
aged 12e12 ± 9e12 and ranged between 0.8 (E) and 25.7 
(A); the gene abundance of 18S rRNA gene averaged 
100e3 ±  71e3 and ranged between 17e3 (D) and 208e3 
(B).

Bin characteristics, taxonomy and functional types
The cross-assembly resulted in 221,975 cross-contigs 
totaling 216 Mbp. Of the cross-contigs, 40,815 were 
longer than 1Kbp, and 40,186 of these could be binned. 
After refining the bins, 20,825 cross-contigs remained 
distributed within the 36 good or interesting large bins 
(0.6–3.9 Mbp; hereafter referred to as the large bins). 
The large bins represented 39–68% of the sample reads. 
Fifty-eight percent of the large bins were classified at the 
phylum level as Firmicutes, 8% as Bacteroidetes, 17% as 
Proteobacteria, 11% as Unknown and 6% as Actinobac-
teria (Table  3). Overall, the GC percent of these bins 
ranged between 28 and 66%. Of the large bins, 24 were 
potential denitrifiers and three potential nitrifiers. The 
presence of genes related to acetate,  CO2, ethanol,  H2O2 
and lactose metabolism was found in all large bins while 
the potential presence of genes related to lactaldehyde, 
mannitol, xylose, butyric acid, cellulose, diacetyl, phenyl 

lactate, sucrose and “3-hydroxy” was variable across 
the large bins (Table  4). Last, when multidrug resist-
ance was identified in the bin annotations, all large bins 
but Unknown-19 and Lactobacillus-30 contained these 
genes. In addition to the large bins, eight small bins 
(0.03–0.20 Mbp) lacking bacterial marker gene presence 
were found (Table 5 and Additional files 12 and 13). The 
largest of the small bins, 4.2 and 8.1, were most abundant 
in samples E and D, respectively.

Discussion
Here, we explored concurrently the chemical and micro-
biological characteristics of vinasse produced over 
1.5  years from one bioethanol mill in Sao Paulo State. 
The aims were to characterize, for the first time, the tax-
onomy and potential functions of the microbial assem-
blage in vinasse; we further recovered draft genomes 
from vinasse bacteria. We combined metagenomic analy-
ses with binning techniques to characterize the vinasse 
assemblages and bacteria, respectively. We discuss below 
both potential ethanol pipeline contamination traits of 
vinasse bacteria and the potential ecology of vinasse 
fertirrigation. The vinasse chemical characteristics fell 
within the range of other sugarcane vinasses [52, 53]. Dif-
ferent vinasse inputs are known to contribute different 
nutrition; this is taken into account in that vinasse fertir-
rigation is applied depending on the amount of K present 
in the input vinasse [54]; however, that different vinasse 
inputs contribute different bacteria was not known until 
now. The different nutrient contents of vinasse originate 
from the differences in the input of sugarcane stalks to 
the bioethanol production process; this might also be the 
source of the vinasse bacteria.

The vinasse draft genomes most likely represented 
the bacteria that survived the selective bottleneck of 
the bioethanol production pipeline. The potential for 

Table 2 Alpha diversity estimates of the vinasse samples

Diversity was quantified by the number of partial genes recruited (REAGO and megaGTA), or the estimated number of species (metaphlan2 and MG-RAST) from the 
vinasse metagenomes; results from real-time PCR of the 16S gene were also included. Rarified forward reads were used as input for metaphlan2, reago and megagta 
analysis; merged reads were used in the MGRAST analysis and these results were normalized by library size

Sample name REAGO megaGTA metaphlan2 MG‑RAST qPCR

Number 
of Recruited 16S 
rRNA genes

Number of Recruited rplB 
genes

Number 
of Species

Number of Effective species Number of 16S 
rRNA copies 
(/1,000,000) kg 
dry/matter

A 13 ± 2 21 ± 2 10 ± 1 37 ± 1 25,750 ± 13,900

B 10 ± 3 16 ± 3 14 ± 1 47 ± 4 16,839 ± 11,664

C 12 ± 1 22 ± 2 13 ± 0 38 ± 1 16,281 ± 1104

D 4 ± 0 15 ± 2 5 ± 0 3 ± 0 10,749 ± 3336

E 17 ± 2 13 ± 1 10 ± 0 20 ± 1 839 ± 840

F 6 ± 2 17 ± 1 12 ± 1 29 ± 3 1135 ± 1142
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bacteria found in vinasse originating from later steps in 
the bioethanol pipeline, such as the truck from which 
we sampled the vinasse, was considered a minor source 
of bacteria due to the large capacity (10,000 L), making 
this a negligible source of bacteria. The core genus found 
in the vinasse samples was Lactobacillus (Phylum Fir-
micutes), which is a previously known ubiquitous etha-
nol pipeline contaminant due to its tolerance of low pH 
[15]. Other known contaminants found prior to the dis-
tillation stage that we observed in our vinasse samples 
included representatives of the Acetobacter, Bacillus, 
Bifidobacterium, Clostridium, Gluconacetobacter, Lac-
tobacillus and Pseudomonas genera [16, 55, 56]. Strik-
ingly, we identified members of the genera Megasphaera 
and Mitsuokella that have not previously been reported 
as bioethanol pipeline contaminants. Members of the 
genus Megasphaera and Mitsuokella are Gram-negative 
ruminant fermenters that have been found in pig hind-
guts, cow rumen and human dental plaque and feces; 

Gram-positive Bifidobacterium have also been used as 
probiotics in humans and are found in the gut, vagina 
and mouth of mammals and bovine rumens. Whether 
these bacteria interact with each other within each 
vinasse sample—e.g., Megasphaera and Mitsuokella uti-
lizing lactose provided by Lactobacillus—is unknown, as 
is the direction of the interactions.

Uncovering the physiological mechanisms by which 
these particular bacteria survive the selection bottle-
necks of the bioethanol process was outside the scope of 
the current research since our goals were to characterize 
fully the metagenomic data. However, we speculated that 
plausible protective mechanisms are biofilm formation 
[16, 57], strain-dependent temperature tolerance, and 
unknown pipeline management considerations. For the 
latter, the distillation material might not homogenized, 
thus creating pockets of lower temperatures where the 
bacteria can remain. Other management considerations 
that might affect the viability of bacterial cells are length 

Table 3 Taxonomy of the “good and interesting” vinasse bins based on CAT classification

Bin Id K Phylum Class Order Family Genus Species
1 B F Nega Selenomonadales Veillonellaceae Mitsuokella U
2 B B Bact Bacteroidales Prevotellaceae Prevotella P. mu�saccharivorax/Unclassified
3 B F Nega Selenomonadales Veillonellaceae Megasphaera U/M. elsdenii

4.1 V Caudovirales Siphovirales Lactobacillus phage Ldl1
4.2 B U/B U/B U/B U U U

5 B A Ac� Bifidobacteriales Bifidobacteriaceae Bifidobacterium U
6 B B Bact Bacteroidales Prevotellaceae/U Prevotella/U U

8.1 B/V U U U U/Caudovirales U/Siphoviridae U/Lactobacillus phage LdL1
8.2 B F B Lactobacillales Lactobacillaceae Lactobacillus U
8.3 B B Bact Bacteroidales Prevotellaceae Prevotella P. his�cola/U
8.4 B F Bac Lactobacillales Lactobacillaceae Lactobacillus U
8.5 B B U/Bact
8.6 B F Bac Lactobacillales Lactobacillaceae Lactobacillus U

9 B U/A
10 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. equicursoris/Unclassified
12 B A/U
13 B U/A
14 B F Nega Selenomonadales Veillonellaceae Megasphaera U/sp. DJF_B143
15 B F Nega Selenomonadales Veillonellaceae Dialister U/D. succina�philus
16 B B Bact Bacteroidales Prevotellaceae Prevotella U
18 U/B
19 B U/A
20 B F Clos Clostridiales Eubacteriaceae/U Pseudoramibacter/U U/P. alactoly�cus
21 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. delbrueckii/U
23 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. mucosae/U
24 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. fermentum/U
25 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U/L. vini
26 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U/L. agilis
27 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U
28 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. vini
29 B F Clos Clostridiales Clostridiaceae Clostridium sp. CAG:568/U
30 B/A F/E Bacilli/Metha Bacteroidales/Methanobacteriaceae Lactobacillaceae/Methanobactericeae Lactobac�llus/Methanobrevibacter U
31 B F Nega Selenomonadales Veillonellaceae Megasphaera/U U
32 B F Nega Lactobacillales L L U
33 B F B Lactobacillales L L L. secaliphilus/U
34 B F B Lactobacillales L L U/L. maniho�vorans
35 B F B Lactobacillales L L L. bifermentans/U
36 B P Beta Burkholderiales Alcaligenaceae U U

37.1 B P B Burkholderiales Alcaligenaceae Alcaligenes A. faecalis/U
37.2 B P B B A Alcaligenes U/A. faecalis

38 B P B B Comamonadaceae U/Comamonas U/C. kerstersii
39 B F B Lactobacillales L L U/L. panis

40.1 B P E Campylobacterales Campylobacteraceae Arcobacter A. skirrowii/U
40.2 B/A P/E E/Metha Campylobacterales/Methanobacteriales Campylobacteraceae/Methanobacteriaceae Arcobacter/Methanobrevibacter U

K, Kingdom; F, Firmicutes; B, Bacteroidetes; A, Actinobacteria; P, Proteobacteria; E, Euryarchaeota; U, Unknown; Bact, Bacteroidia; Nega, Negativicutes; Clos, Clostridia; 
Mega, Megasphaera; Lact, Lactobacillales; Metha, Methanobacteria
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of time exposed to the distillation temperature and the 
highest temperature reached. Evaluating the physiol-
ogy of cultured isolates from vinasse, which can be done 
building upon the work described here, is an interesting 
topic for further research.

Here, using differential abundance binning, we suc-
cessfully obtained 21 draft genomes from vinasse bac-
teria likely representing bioethanol contaminants. We 
confirmed that roughly half of the vinasse bins were of 
the genus Lactobacillus (Phylum Firmicutes), which is 
the most ubiquitous bacterial bioethanol pipeline con-
taminant [16]. We also uncovered contaminants with up 
to 70% of sample coverage from the Prevotella (Phylum 
Bacteroidetes), Megasphaera (Phylum Firmicutes), and 
Mitsuokella (Phylum Firmicutes) genera, which have not 
been well studied. Five of the draft genomes were from 

bacteria unknown at the phylum level. Furthermore, 
most of the bins recovered here were partly uncharac-
terized at the species level, supporting the idea that we 
obtained genomes from novel strains of bioethanol con-
taminants. Studies of bioethanol contaminants to date 
have used culture-based methods, which do not capture 
the entire microbial diversity, or profiling of 16S rRNA 
genes, which does not capture the functional potential 
of the contaminants   [15, 56]. Bacterial contaminants in 
general are known to compete with commercial yeast 
strains, lowering ethanol yield; contaminants may also 
flocculate with the yeast or produce compounds such as 
acetate, butyric acid or lactose which might inhibit yeast 
fermentation [16]. Many bins contained sucrose metabo-
lism-related genes, suggesting that these might compete 
with the commercial yeast strain for sugarcane sucrose. 

Table 4 Putative gene repertoires of the large vinasse bins

Keyword searches of prokka annotation results (gray, “Y”) were supplemented in the case of the  N2O metabolism-related genes with hmm profile search results 
(colors). Substrates for the genes related to  N2O metabolism are included (colors above genes)

No genes related to the metabolism of caproic acid were found in the bin annotations. No amoABC, hao, nxr nor, nirS genes were found in the bin annotations, but the 
amoA AOA gene was identified in Bin 23 and 40.1 and the amoA AOB gene was identified in Bin 33 by HMM matches

ABR antibiotic resistance
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Table 5 The “good and interesting” vinasse bin characteristics and relative sample abundances (indicated by heatmap per sample
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Annotation of the bins revealed the potential presence 
of bioethanol contaminant genes related to the metabo-
lism of acetate, ethanol, mannitol, cellulose, hydrogen 
peroxide, lactose, sucrose and 3-hydroxy fatty acids. 
These results support the idea that vinasse bacteria are an 
additional source in identifying likely bioethanol process 
contaminants.

Interesting bins included Lactobacillus/Methanobre-
vibacter-bin30 and Arcobacter/Methanobrevibacter-
bin40.2, which contained cross-contigs annotated as both 
bacterial and archaeal. Methanobrevibacter is an archaeal 
genus whose methanogenic members are often found in 
vertebrate guts consuming the end products of bacte-
rial fermentation. Finding them here suggests that this 
interaction might also be present in vinasse. In addition, 
we binned potential phage genomes, which suggest that 
phages are present in the fermentation tanks along with 
the host contaminants. The large phage genome bin 8.2 
was most abundant in vinasse sample D, corresponding 
to a low-diversity assemblage with a dominant bin, sug-
gesting that the host of this phage was L. amylovorus-
bin27. The phage bins 4.1, 4.2 and 8.1 were all most 
abundant in vinasse sample D, corresponding to a more 
diverse assemblage of bacterial hosts across the phyla 
Firmicutes and Bacteroidetes. These associations sug-
gest that phage lysis may be a factor controlling bacterial 
population sizes in the fermentation tanks. Attention has 
recently been paid to using phage therapy to control bac-
terial contamination in bioethanol pipelines [58, 59].

In addition to investigating the potential for vinasse 
bacteria to be contaminants in the production of bioeth-
anol, we evaluated the potential for vinasse bacteria 
to contribute to  N2O emissions during fertirrigation. 
Vinasse fertirrigation can be considered a disturbance on 
the soil microbial community; the success of the vinasse 
assemblage in the soil likely depends on the connectiv-
ity (e.g., strength and direction of the vinasse species 
interactions). Pitombo et al.   [11] identified significantly 
abundant bacterial genera under treatments of vinasse 
compared to control plots without vinasse using 16S 
rRNA gene marker abundance, and the significantly dif-
ferentially abundant genera in the plots amended with 
vinasse included the vinasse bacteria (as identified here) 
Lactobacillus, Bacillus, Prevotella, Gluconacetobacter, 

Megasphaera, Mitsuokella and Acetobacter [11]. Fur-
ther, unpublished research suggests that vinasse bacte-
ria on a field experiment may persist at low abundances. 
These results together suggest that vinasse bacteria may 
successfully invade the soil microbial community  [60]. 
Furthermore, the vinasse bacteria may transfer to the 
sugarcane stalks during plant growth and at harvest time 
become the contaminants that are inputted with the sug-
arcane to the ethanol processing pipeline. In support, 
a survey of the bacteria associated with the sugarcane 
plant found the vinasse taxa Bacillus, Acetobacter and 
Gluconacetobacter as part of the “core” sugarcane micro-
biome  [22]. While this is an interesting speculation, we 
note that caution should be taken because the referenced 
studies were few and based on gene marker surveys at 
higher taxonomic levels, which hinders robust and pre-
cise interpretation. We recommend further research into 
the ecological interactions of vinasse bacteria with the 
soil bacterial community at the species or strain level 
during fertirrigation with vinasse.

Actual  N2O emissions from a soil are the result of 
the sequential biochemical processes, nitrification and 
denitrification, carried out collectively by the microbial 
communities in a soil. The total rate of  N2O emissions 
through nitrification or denitrification is controlled by 
carbon availability, moisture, oxygen availability, pH, 
temperature, and nitrate concentrations. These fac-
tors limit enzyme activity, gene transcription levels and 
microbial cell growth [61]. Furthermore, the abundance 
of the genes involved in the production (amoA, nirK, 
nirS, norB) or removal (nosZ) of  N2O is correlated with 
the actual  N2O emissions [62]. In the case of vinasse 
fertirrigation, vinasse contributes with microorganisms 
associated with  N2O emissions but they are not the sole 
source and probably not the most important related to 
 N2O emissions. Do Carmo et al. [10] and Pitombo et al. 
[11] have shown that at early stages, soon after vinasse 
application together with inorganic N fertilizer there is 
an increase of  N2O emissions  [10, 11], we hypothesize 
that this is because of a combination of factors present in 
vinasse (organic C, organic N and microbes with genetic 
repertoires for denitrification) that will interact with soil 
microbiome and soil environmental conditions. Disen-
tangling the interaction of each biotic and abiotic factor 
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present in vinasse with soil existent microbes related to 
 N2O emission and soil environmental factors is an inter-
esting topic for future research.

Four phyla (Firmicutes, Actinobacteria, Proteobac-
teria and Bacteroidetes) were represented across the 
vinasse samples, although at the genus level the diver-
sity of each assemblage fluctuated. The samples could 
generally be classified as dominated by Megasphaera 
(A, C, F) or Lactobacillus (B, D, E) at the genus level. 
The second assemblage (B) was the most diverse; it was 
dominated by Lactobacillus and containing, uniquely 
compared to the other time points, Proteobacteria such 
as Alcaligenes, as well as phage (Lactobacillus phage 
Lc Nu). The least diverse assemblage was D, contain-
ing mostly Lactobacillus and phage. Of the 22 potential 
vinasse denitrifiers, two were potential complete deni-
trifiers (containing nirK or nirS, norB and nosZ) and 
eight were potential incomplete denitrifiers (containing 
nirK or nirS and norB). The abundances of these poten-
tial denitrifiers varied across time points, suggesting 
varied effects on  N2O during vinasse fertirrigation with 
different vinasses. For example, the Lactobacillus-bin 
27 dominated to 97% of the sample D abundance, and 
this contained a putative nirK gene; when this vinasse is 
sprayed onto the fields, one would expect nitrate degra-
dation and an increase in  N2O or  N2 depending on the 
gene content of the endogenous microbial community. 
Another abundant potential denitrifier present in sam-
ple A (Prevotella-Bin 2) contained only potential nosZ, 
suggesting that if the vinasse A was to be used in fer-
tirrigation, the actual emission of  N2O may be reduced 
due to the further reduction of  N2O into  N2. Further-
more, vinasse denitrifiers might directly contribute to 
the  N2O emissions observed when vinasse is added in 
conjunction with a nitrate fertilizer. This suggests that 
vinasse application in conjunction with a reduced nitro-
gen source such as ammonium sulfate may be a feasi-
ble management practice to reduce  N2O production. 
Further research investigating the microbes involved in 
 N2O emissions during fertirrigation with vinasse would 
greatly aid in steering future vinasse management 
strategies.

Vinasse fertirrigation has raised human health con-
cerns that vinasse bacteria may carry antibiotic resist-
ance genes (ARGs) [21]. These genes can enter the soil 
resistome and can be transferred using horizontal gene 
transfer to other soil bacteria, with potential spread-
ing of antibiotic resistance genes to soil-derived human 
pathogens. Here a search of the annotation results of the 
recovered vinasse bins found multidrug resistance genes 
in 34 of the 36 large bins. Surprisingly, no drug resistance 
genes were found in the phage bins; this may indicate that 
the phages from which these genomes were not prophage 

that confer auxiliary metabolic genes in the form of anti-
biotic resistance to the vinasse bacteria. These results 
warrant further study of the fate of ARGs from vinasse 
during fertirrigation.

While significant progress has been made in metage-
nome assembly and binning, some caveats should be 
noted to the bins we recovered here. Misassembly and 
misbinning can occur and bias the final results, in our 
case identifying relevant genes present in the bins. We 
addressed these issues by comparing three assemblers 
and three binning tools and choosing the best of each. 
Further, we used large kmer sizes for the final cross-
assembly, and this successfully allowed MaxBin2 to bin 
to the level of species. We additionally used the man-
ual refinement feature of anvi’o to improve the bins. 
Because bins with low completeness as determined by 
the presence of universal marker genes can still con-
tain useful information regarding potential gene con-
tent, we used all useful bins to characterize the vinasse 
assemblage. Eight bins could not be refined and these 
represent unbinned vinasse bacterial genome content; 
however, the information from this genomic material 
was characterized in the metagenomic analyses. We 
included several different methods for each analysis to 
supplement each other as database coverage and read 
length can bias results based on sequence alignment. 
Moreover, we used the metagenomic analysis to com-
plement the bin results. Interestingly, comparing the 
qPCR, putative gene abundances and gene recruitment 
results suggested that the qPCR primers we used do not 
cover the entire diversity of vinasse bacteria or alter-
nately that the HMM results may be biased toward false 
positives.

Here we used metagenomic analysis and genome 
binning to characterize in depth the assemblage of six 
vinasse samples from one bioethanol mill. We iden-
tified previously unknown vinasse taxa compared to 
taxa identified through culture-or 16S rRNA survey-
based studies of the ethanol processing pipeline steps 
prior to vinasse. Furthermore, we obtained 21 draft 
bacterial  genomes and 8 draft  phage or mobile ele-
ment genomes from vinasse, which to our knowledge 
is the first study to do so. Vinasse bacteria included 
mainly putative denitrifiers, which may directly affect 
soil  N2O or  N2 emissions when applied during fertir-
rigation, although more research is needed into the 
ecological interactions during this event. In the vinasse 
bins we found the putative presence of antibiotic resist-
ance genes and genes affecting yeast fermentation, 
which potentially implicate vinasse bacteria in negative 
impacts on human health and bioethanol production, 
respectively. We suggest that monitoring the vinasse 
assemblage is a promising option to screen both for 
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bioethanol production contaminants and to identify 
vinasse batches which, when added to the fields dur-
ing fertirrigation, may lead to higher  N2O emissions. 
Because of the decreasing costs of high-throughput 
sequencing, we suggest that monitoring of vinasse 
assemblages can be widely implemented to improve 
sugarcane bioethanol production sustainability.

Additional files

Additional file 1. Data description of the 18 vinasse metagenomes.

Additional file 2. Primers and thermocycler conditions used in gene 
abundance analysis by real time qPCR of the vinasse samples.

Additional file 3. Hierarchical clustering of the vinasse metagenomes 
based on partial de Bruijn graph overlap from Metafast analysis. Replicates 
were most similar to each other.

Additional file 4. Data description of the merged vinasse metagenomes 
uploaded to MG-RAST.

Additional file 5. Taxonomic distribution of the merged vinasse metage-
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