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Genome-resolved metagenomics
of sugarcane vinasse bacteria
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Abstract

Background: The production of 1 L of ethanol from sugarcane generates up to 12 L of vinasse, which is a liquid
waste containing an as-yet uncharacterized microbial assemblage. Most vinasse is destined for use as a fertilizer

on the sugarcane fields because of the high organic and K content; however, increased N,O emissions have been
observed when vinasse is co-applied with inorganic N fertilizers. Here we aimed to characterize the microbial assem-
blage of vinasse to determine the gene potential of vinasse microbes for contributing to negative environmental
effects during fertirrigation and/or to the obstruction of bioethanol fermentation.

Results: We measured chemical characteristics and extracted total DNA from six vinasse batches taken over 1.5 years
from a bioethanol and sugar mill in Sao Paulo State. The vinasse microbial assemblage was characterized by low alpha
diversity with 5-15 species across the six vinasses. The core genus was Lactobacillus. The top six represented bacterial
genera across the samples were Lactobacillus, Megasphaera and Mitsuokella (Phylum Firmicutes, 35-97% of sample
reads); Arcobacter and Alcaligenes (Phylum Proteobacteria, 0-40%); Dysgonomonas (Phylum Bacteroidetes, 0-53%);
and Bifidobacterium (Phylum Actinobacteria, 0-18%). Potential genes for denitrification but not nitrification were
identified in the vinasse metagenomes, with putative nirk and nosZ genes the most represented. Binning resulted in
38 large bins with between 36.0 and 99.3% completeness, and five small mobile element bins. Of the large bins, 53%
could be classified at the phylum level as Firmicutes, 15% as Proteobacteria, 13% as unknown phyla, 13% as Bacte-
roidetes and 6% as Actinobacteria. The large bins spanned a range of potential denitrifiers; moreover, the genetic
repertoires of all the large bins included the presence of genes involved in acetate, CO,, ethanol, H,O,, and lactose
metabolism; for many of the large bins, genes related to the metabolism of mannitol, xylose, butyric acid, cellulose,
sucrose, “3-hydroxy” fatty acids and antibiotic resistance were present based on the annotations. In total, 21 vinasse
bacterial draft genomes were submitted to the genome repository.

Conclusions: Identification of the gene repertoires of vinasse bacteria and assemblages supported the idea that
organic carbon and nitrogen present in vinasse together with microbiological variation of vinasse might lead to
varying patterns of N,O emissions during fertirrigation. Furthermore, we uncovered draft genomes of novel strains of
known bioethanol contaminants, as well as draft genomes unknown at the phylum level. This study will aid efforts to
improve bioethanol production efficiency and sugarcane agriculture sustainability.
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Background

Sao Paulo State contains a total of 5.7 million hectares
of land planted with sugarcane. These fields supply the
input for Brazil’s large bioethanol industry, which is
the second largest producer of bioethanol worldwide
(UNICA). Brazil has more than 300 sugarcane processing
plants, including sugar mills (producing only sugar), mills
with distillery plants (sugar and ethanol production),
and independent distilleries (only ethanol production).
In the 2013/2014 season, the total ethanol production
was 13.9 thousand m® (UNICA, 2013/2014 harvest).
The major by-product of sugarcane ethanol production
is vinasse; up to 12 L of vinasse is generated per liter of
ethanol [1]. Sugarcane vinasse consists of water (about
93%) and organic compounds, and contains K, Ca and
Mg, though the amount of these components depends on
the characteristics of the input sugarcane and subsequent
processing steps [2]. The major organic components of
sugarcane vinasse are low molecular weight organic com-
pounds, mainly glycerol, lactic acid, ethanol, and acetic
acid [3]. In general, vinasse has a low pH of around 4 and
high chemical oxygen demand of 100-500 g/L.

The large volumes of vinasse and its chemical proper-
ties of high organic C and N, and K content have led to its
widespread reuse as a fertilizer supplement for sugarcane
crops. Most often the vinasse is sprayed onto the fields,
which is a process termed fertirrigation. This method is
low cost and contributes to net energy savings in sugar-
cane bioethanol production cycles because the vinasse
is locally transported and applied [4]. Benefits of using
vinasse as fertilizer include improved short-term soil
quality, crop production and crop quality [5-8]. How-
ever, negative effects include decreasing long-term soil
fertility (lead leaching, N immobilization) and increas-
ing greenhouse gas emissions, especially the emission
of N,O when used in conjunction with an N fertilizer
[2, 9-12]. These effects depend on the soil and environ-
mental characteristics as well as vinasse-specific nutrient
contents (reviewed in [12]). The increased N,O emissions
from vinasse fertirrigation may be due to the stimulation
of soil microbes by vinasse-derived organic material (i.e.,
a form of priming) and/or the activity of vinasse-derived
cells containing genes in N,O-producing pathways [8].

Nitrous oxide emissions are produced through two
main microbial-mediated processes in soil: nitrification
(NH," to NH,OH to NO; ") and denitrification (NO;~ to
NO,™ to NO to N,O to N,). Nitrification is carried out
by microbes containing the ammonia monooxygenase
enzyme, which is encoded by the gene amoA, and gen-
erally used as a functional marker of nitrifiers. Denitri-
fier bacteria may contain the nitrite reductase genes nirS
and #irK, the nitric oxide reductase gene norB and/or the
nitrous oxide reductase gene norB, which each encodes
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for the enzymes involved in the respiration of nitrite to
nitric oxide to nitrous oxide to dinitrogen gas, respec-
tively. The abundance of the different microbes contain-
ing denitrification genes, and the abundance of these
genes when measured as functional markers, is known to
correlate with the actual N,O emission rates from soils
[62]. While much is known regarding the chemical char-
acteristics of vinasse, there are only a few indirect studies
of its biotic components despite recent attention to the
environmental effects of its use in fertirrigation.

The microbiota present in vinasse likely encompasses
the microorganisms present in the bioethanol production
process. The most common raw material for ethanol pro-
duction in Brazil is the mixture of diluted molasses and
cane juice used in the distilleries annexed to sugar pro-
ducing mills. The ethanol pipeline starts with crushing
the unwashed sugarcane stalk to separate the sugarcane
juice from the pulpy stalk residue known as bagasse. The
sugarcane juice is heated and clarified with lime; the clar-
ified juice is concentrated in an evaporator at 115 °C fol-
lowed by vacuum boiling pan, at which point sugar and
molasses crystallize. By centrifugation, the sugar crystals
are separated from the mother liquor. This liquor is again
crystallized in vacuum pans and then passed through
continuous sugar centrifuges. The last residual solution
is called molasses, which has high sucrose content suit-
able for ethanol production. The raw material for ethanol
production is a mixture of unsterilized sugarcane juice,
molasses and water [13]. The fermented material is then
distilled at temperatures of at least 78 °C to separate the
ethanol from the remaining waste vinasse. This vinasse is
then transported via open channels or trucks to the sug-
arcane site for fertirrigation. The mixed sugarcane juice
is fermented using proprietary Saccharomyces cerevisiae
strains through two methods: batch (85% of distilleries
as of 2011) or continuous fermentation (15%). In batch
processing, the fermentation occurs in parallel, while
in continuous fermentation the process occurs in series
(reviewed in [14]). In either method, the yeast cells are
treated with sulfuric acid, antibiotics, hop products and/
or chemical biocides to reduce bacterial contamination,
recovered by centrifugation, and reapplied to the fermen-
tation tanks. This recycling step occurs between 400 and
600 times in a harvest season and despite the antibacte-
rial treatment, bacteria remain the major contaminants.

The main bacterial contaminants of the bioethanol
pipeline are lactic acid bacteria, which tend to domi-
nate the samples taken from the ethanol pipeline in the
steps prior to vinasse [15, 16]. These bacteria, in par-
ticular Lactobacillus species, compete with the commer-
cial yeast strains for sugar or form exopolysaccharides
that flocculate yeast cells [17-19]. Contamination by
bacteria—through sucrose competition, flocculation
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of the commercial yeast strain or fermentation inhibi-
tion—can lower the efficiency of the bioethanol process
by up to 30% [16, 20]. Furthermore, because of the anti-
biotic treatment of the yeast cells during the recycling
step, contaminant bacteria may be a source of antibiotic
resistance genes, as has been recently reported in a field
study [21]. Other sources of contamination are wild yeast
strains from the input sugarcane stalks, which are not
sterilized prior to the production pipeline [22]. To date,
no studies have investigated the presence of bioethanol
pipeline contaminants in vinasse.

Here we investigated concurrently the chemical and
microbial properties of vinasse to characterize the
vinasse assemblage. We explored metagenomic data
taken from vinasse samples over 1.5 years of produc-
tion from a bioethanol mill in Piracicaba, SP, Brazil. The
mill processes sugarcane produced in the region within
a rough 40 km radius. Vinasse is distributed by trucks
for fertirrigation during the harvest season (April to
November). To characterize the microbial assemblage of
this vinasse, we sequenced total DNA from six vinasse
samples. We analyzed the resulting 18 shotgun metagen-
omes through metagenomics and differential abundance
binning. To investigate the potential for N,O emissions
from fertirrigation with vinasse, special attention was
given to sequences and reconstructed genomes anno-
tated as genes involved in N,O-related metabolism. Fur-
thermore, we also identified genes relating to bioethanol
production concerns to identify future research direc-
tions. To date, this is the first culture-independent study
of the vinasse microbial assemblage. Our main questions
were (1) what are the overall and sample-wise taxonomic
and functional characteristics of the vinasse microbial
assemblages? and (2) what is the potential of the vinasse
microbes for N,O emissions, obstruction of fermentation
and/or antibiotic resistance?

Methods

Sampling description

The bioethanol mill from which we sampled is in the
region of Piracicaba in SP, Brazil. The mill takes in sug-
arcane from the region and produces sugar and etha-
nol. We obtained six time points of vinasse taken from
transport trucks prior to their departure to the fields for
chemical and molecular analyses. The trucks hold about
10,000 L of vinasse. Prior to sampling, the vinasse was
held in the trucks for 24 h. Of the vinasse, 0.5 L sampled
from the truck was immediately kept at 4 °C. The six sam-
pling dates were 13/11/2013 (A, Nov. 2013), 13/12/2013
(B, Dec. 2013), 15/07/2014 (C, July 2014), 15/08/2014 (D,
Aug. 2014), 14/10/2014 (E, Oct. 2014) and 10/11/2014
(F, Nov. 2014). The dates of the vinasse sampling corre-
sponded to summer (October, November and December)
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or winter (July and August) sugarcane harvests. Because
each vinasse was a random assemblage of contaminants
from the bioethanol process, we considered each time
point an independent measure for statistical analysis.

Chemical analyses, DNA extraction, and qPCR
quantification and sequencing

For each vinasse sample, 500 ml was used for chemi-
cal analyses. The remaining three subsamples of 100 ml
per time point were used for DNA extraction. First, the
samples were centrifuged at 10,621xg (Sigma 2-16P)
for 10 min to separate cells from the liquid. Total DNA
was extracted from the pellets with the MoBio Power-
Soil kit according to the manufacturer’s instructions.
Between 553 and 5310 ng was sent for sequencing (Addi-
tional file 1). The DNA was prepared as a MiSeq [llumina
paired-end library and sequenced (3 replicates x 6 sam-
ples = 18 metagenomes) or used for quantitative PCR
of genes that encode for the enzymes involved in the
sequential biochemical steps leading to N,O production
(amoA, nirK, nirS, norB) or removal (nosZ). The qPCRs
were performed in a 96-well plate (Bio-Rad) using CFX96
Touch™ Real-Time PCR Detection System (Bio-Rad). The
qPCR reaction, primers combinations and thermal cycler
conditions of each gene amplification are listed in Addi-
tional file 2. The qPCR data were acquired at 72 °C and
melting curve analysis was performed to confirm speci-
ficity. Amplicon sizes were checked by agarose gel elec-
trophoresis. Samples were analyzed with two technical
replicates. Reaction efficiency varied from 80 to 105%
and R? values ranged from 0.94 to 0.99.

Metagenome processing and read-based sample
comparisons

Bioinformatics processing was performed on a Linux
server (Linux-3.13.0-76-generic- x 86_64-with-Ubuntu-
14.04-trusty) with 64 nodes and 250 GB RAM. Process-
ing was performed in a Snakemake v3.7.1 workflow or
with bash or Perl scripts (available upon request). The 18
shotgun metagenomes were checked for tag sequences
and evaluated for statistics using FastQC v0.10.1 (Avail-
able online at: http://www.bioinformatics.babraham.
ac.uk/projects/fastqc) and PRINSEQ-lite version 0.20.4
[23]. Raw reads were filtered out using PRINSEQ if they
had more than 1% of ambiguous (N) characters, had a
mean quality score of less than 25 or were exact dupli-
cates. Reads were trimmed at the 3’ end if the mean qual-
ity score was less than 20 within a sliding window size of
10 (clean reads). The clean paired-end reads were used in
further analyses unless otherwise noted. The raw paired-
end reads were merged using PEAR v0.9.5; these merged
read ends were trimmed by quality and filtered out if the
merged read had more than 1% ambiguous characters
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(parameters g 20, n 0.01) with PEAR (merged reads) [24].
For downstream normalization of annotation counts, cal-
culations of average genome size per sample were carried
out using MicrobeCensus [25]. To compare the metage-
nomes directly, sample distances were determined from
the partial de Bruijn assembly of the clean forward reads
using MetaFAST 0.1.0 (revision 57253al) [26].

Taxonomy, phylogeny and alpha diversity

To characterize the taxonomic composition, functional
potential and diversity of the microbial assemblages
in the vinasse samples, we profiled the metagenomes
using different databases. First, the merged reads were
uploaded to the metagenome analysis platform MG-
RAST version 3.6 [27]. The metagenomes were compared
using the default presets to the RefSeq or subsystem
databases to obtain taxonomic or functional profiles,
respectively. Refseq annotations, including eukaryota,
bacteria, archaea and viruses, were determined using the
last common ancestor approach. The MG-RAST taxo-
nomic (phylum-level) and functional (Subsystems Level
1) profiles were analyzed with the statistical analysis of
metagenome profiles (STAMP) software [28]. Taxonomic
or functional level abundances significantly different
among vinasse samples were evaluated using ANOVA.
The Tukey—Kramer post hoc test with a 95% confidence
interval and the Benjamini-Hochberg correction was
used to identify differing phyla or Subsystems Level 1
category abundances between the vinasse metagenomes
with significance determined at corrected p < 0.001 or
0.05, respectively. The taxonomic profiles at genus level
were kept to visualize the relative abundance of genera
across samples.

Because the metagenomes were well represented in
the MG-RAST databases, we further characterized the
taxonomy and functional potential of the metagenomes
using metaphlan2 version 2.6.0 and humann2 version
0.9.9 pipelines [29, 30]. For metaphlan2 analysis, we used
the “relab” analysis with the “~ignore_eukaryotes” flags to
obtain taxonomic profiles. To gain an overall view of the
taxonomy present in the vinasse samples and the phylo-
genetic relationships between the species in the samples,
the average taxonomic distributions of the vinasse sam-
ples from metaphlan2 were visualized as a cladogram
using Graphlan [31]. To examine the taxonomic profiles
of vinasse across samples, these were visualized through
heatmaps with average linkage clustering on Euclidean
distances using hclust2. For the humann2 analysis, we
annotated the forward clean reads against the UniRef90
database [32]. Pathway abundances were visualized
excluding the “UNMAPPED” and “UNKNOWN?” catego-
ries using hclust2 heat maps with average linkage cluster-
ing on Euclidean distances. To obtain a measure of alpha
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diversity, we ran metaphlan2 with previously mentioned
flags on samples rarified to the smallest library size
(280,161 reads).

To infer the phylogenetic relationships between the
organisms present in the vinasse samples, full-length 16S
rRNA genes were recruited from the vinasse metagen-
ome reads using REAGO version 1.1 on forward clean
reads truncated to 201 bp [33]. The resulting full-length
16S rRNA vinasse sequences were aligned and taxonomi-
cally classified against the SSU 128 SILVA reference data-
base using SINA [34, 35]. The five nearest neighbors for
each full-length 16S rRNA sequence were downloaded
in addition to two Verrucomicrobia outgroup sequences.
The 16S rRNA sequences were aligned without gaps
using ClustalW in MEGA7 (121 sequences in total) [36].
A neighbor-joining tree was created with evolution-
ary distances computed using the Maximum Composite
Likelihood method [37, 38]. Phylogenetic distances were
evaluated with bootstrap tests (1000 replicates) [39]. To
obtain a measure of alpha diversity we recruited full-
length 16S rRNA genes using REAGO as above on the
rarified metagenomes. Further, we evaluated a meas-
ure of genus-level relative abundance across samples by
mapping the metagenome reads to the extracted 16S
sequences grouped by taxonomic affiliation using bow-
tie2. These abundances were calculated as percentages
of the number of aligned pairs from the total number of
metagenome reads per sample.

Putative denitrification and nitrification gene abundances
To investigate the potential for N,O emissions from the
vinasse samples, we used two approaches: 1) metagen-
ome read matching to profile HMMs of denitrification
and nitrification genes and 2) recruitment of denitrifying
and nitrifying genes from the reads. Profile HMMs for the
amoA_AOA, amoA_AOB, nirK, nirS, norB, nosZ, nosZ _
atypical_1 and nosZ_atypical_2 genes were downloaded
from the Functional Gene Repository (FUNgene version
8.3; available at http://fungene.cme.msu.edu/). Reads
were translated to protein sequences with the “meta”
setting using Prodigal version 2.6.2. The ORFs were que-
ried for HMM matches using HMMsearch (command:
hmmsearch —noali —o < filename.fasta > < gene.hmm
> < filename.fasta > ; available at https://www.ebi.ac.uk/
Tools/hmmer/search/hmmsearch). The HMM matches
were normalized to reads per kilobase per genome
equivalent (RPKG = (# mapped reads/HMM gene length
(KB))/genome equivalents). The RPKG normalization
accounts for genome size, library size and gene length
biases, allowing for gene and sample comparisons.

In parallel, the gene-targeted assembler pipeline meg-
agta version 0.1_alpha was used to recruit full-length
genes from the metagenomes [40]. Gene-targeted
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assemblies (i.e., recruitments) were carried out on
amoA_AOA, amoA_AOB, nirS, nirK, norB_cNor,
norB_qgNor, nosZ and nosZ_a2 genes using megagta. Fur-
ther, to infer alpha diversity, the ribosomal rp/B gene was
recruited from the rarified metagenomes.

Cross-assembly and binning

We evaluated the performance of three assemblers
(Ray-meta [41], Megahit [42] and metaSpades [43]) in
cross-assembling the 18 vinasse metagenomes; the best
cross-assembly was that from the metaSPADES assembler
version 3.8.2 based on assembly characteristics evaluated
using MetaQUAST (QUAST Version 3.0, build 07.07.2015
05:57 [44]). The 18 metagenomes were cross-assembled
with metaSpades using kmer sizes 77, 99 and 127. The
sample reads were mapped to the cross-contigs using
bowtie2 to obtain cross-contig abundances [45]. The final
metaSPADES cross-assembly was binned using three tools
for comparison: CONCOCT (with anvio version 2.3.2),
Metabat [46] and MaxBin2 version 2.1.1 [47]. The contig
annotation tool (CAT version 2) was used to determine
the taxonomic affiliation of all ORFs identified in each bin
using prodigal to find ORFs and diamond blastp against
the NCBI-nr database [48]. CAT taxonomy results were
formatted using custom Perl scripts and visualized with
TreeMap to aid with the taxonomic characterization of
the bins. Because more genomes with > 90% complete-
ness and coherent taxonomies were found from the Max-
Bin2 binning, these were selected for downstream analysis.
CheckM was used to check the original MaxBin2 bins [49].
These bins were manually refined using anvio version 2.3.2
based on cross-contig taxonomy (from CAT), hierarchical
clustering of the cross-contigs and sample coverage infor-
mation [50]. The relative sample abundances of the bins
were noted as the percent of sample reads recruited to the
bin out of the total sample reads recruited to all the bins
(i.e., percent recruitment anvio results).

The “good bins” were identified as having > 90% com-
pleteness and < 10% redundancy. Further “interesting
bins” were further identified as those with > 20% com-
pleteness and < 10% redundancy and/or coherent con-
tig taxonomies. Functional annotation of the “good and
interesting bins” were carried out using prokka with the

Table 1 Chemical characteristics of the six vinasse samples
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“kingdom” flag set to bacteria or viruses depending on
the taxonomic classification [51]. To characterize the
bins by their potential functional type, prokka annota-
tion results were mined for lines matching EC numbers
of KEGG enzymes of compounds related to bioethanol
production interests and N,O emissions. These KEGG
compounds were acetate (C00033), cellulose (C00760),
xylose (C00181), lactose (C00242), caproic acid (C01585,
carbon dioxide (C00011), diacetyl (C00741), hydrogen
peroxide (CC00027), lactaldehyde (C05999) and phenyl
lactate (C05607). The lists of EC numbers were obtained
by querying the KEGG REST API on each compound
ID. Keyword searches of “3-hydroxy” fatty acids, “cyclic
dipeptide’, antibiotic “resistance’, and nitrification and
denitrification genes were additionally used to identify
the potential presence of these functions in the bins.

In parallel, to confirm potential denitrification and
nitrification gene presence, bin sequences were com-
pared to HMMs of nitrification and denitrification genes
from FunGene as described previously but with the prod-
igal setting “single” The HMM matches were normalized
by bin size (number of ORFs and total number of bp in
ORFs) and HMM length in bp.

Results

Vinasse chemical characteristics and metagenome
overview

The chemical characteristics of the vinasse samples are
listed in Table 1. Average pH was low at 4.4 + 0.4, rang-
ing between 3.9 (D) and 4.8 (C). Total organic carbon
averaged 29 £ 1.8 g/L and ranged between 25.7 (B) and
31.4 g/L (D). Total N averaged 0.64 + 0.15 g/L, while that
of P and K was 0.16 + 0.07 and 3.43 % 1.02, respectively.
The C/N ratio averaged 42 + 13 and ranged between 19
(F) and 57 (C). After processing, the 18 vinasse metage-
nomes contained a total of 2,126 Mbp distributed into
7.82 million reads. The number of reads ranged between
280,161 and 542,208 sequences per sample with between
77 and 150 Mbp (Additional file 1). When the metage-
nome distances were compared using partial de Bruijn
assembly, A and C were most similar, followed by F, fol-
lowed by E; least similar were B and last D (Additional
file 3).

Group name Sampling date pH Corg(g/L) N tot (g/L) N-NH,* (mg/L) N-NO;~ (mg/L) P (9/kg) K (g/kg) CN
A Nov. 2013 4.7 282 0.53 65.8 17.6 0.08 29 53
B Dec. 2013 4.1 257 053 634 10.8 0.17 26 49
C July 2014 48 288 051 457 8.8 0.1 35 57
D Aug. 2014 39 314 0.89 41.6 4.1 0.23 4.7 35
E Oct. 2014 4.2 29.6 0.74 37.7 6.8 0.10 2.1 40
F Nov. 2014 4.7 303 157 759 6.6 0.25 48 19
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Taxonomic characterization

When compared to the M5NR database containing
eukaryota, bacteria, archaea and viruses on MG-RAST
(Additional file 4), 21-55% of the merged reads could
be classified. Of the classified reads, 96-100% were
annotated as bacteria. The top phyla present in the
vinasse samples with relative abundances greater than
1% and/or that significantly co-varied among the sam-
ples (ANOVA at p < 0.001 and Kruskal-Wallis post hoc
test) were Firmicutes (35-97% of merged reads), Bac-
teroidetes (0.8—53%), Actinobacteria (0.4-17.5%) and
Proteobacteria (0.3—39.4%; Additional file 5). The “core”
phylum observed in all vinasse samples was Firmicutes.
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Similarly, when compared to the metaphlan2 marker
gene database containing bacteria, archaea and viruses
(excluding eukaryotes), between 68 and 100% of classified
reads were identified as bacteria and 0-32% as viruses
(Fig. 1). The previous four main bacterial phyla again
dominated the vinasse samples: Firmicutes (48—100% of
classified reads), Actinobacteria (0-19%) and Proteobac-
teria (0—18%), as well as viruses (0—-32%; Fig. 2). The most
abundant bacterial genera were Lactobacillus (Phylum
Firmicutes), Megasphaera (Firmicutes), Mitsuokella (Fir-
micutes) and Bifidobacterium (Actinobacteria). Further
supporting these taxonomic results, the full-length 16S
rRNA genes recruited from the vinasse metagenomes

Firmicutes

Fig. 1 Average abundance of taxa in the vinasse samples. The metagenomes were analyzed using metaphlan2 and visualized with GraPhlan. Node
sizes correspond to average relative abundance across the vinasse metagenomes while colors correspond to phylum. Species are noted with letters:
A = Lactobacillus phage Lc Nu, B = D. mossii, C = A. intestini, D = S. bovis, E = M. elsdenii, F = Megasphera unclassified, G = Mitsuokella unclassified,
H = L. salivarius, | = L. equicursoris, J = L. delbrueckii, K = L. amylovorus, L = L. mucosae, M = L. fermentum, N = L. vini, O = B. thermophilum,
P = Olsenella unclassified, Q = Pseudomonas unclassified, R = Acetobacter unclassified, S = Gluconacetobacter unclassified, T = Ochrobactrum

L unclassified, U = A. faecalis, V = A. butzleri and W = Arcobacter unclassified
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were classified as Bifidobacterium (Phylum Actinobacte-
ria), Olsenella (Phylum Actinobacteria), Prevotella (Phy-
lum Bacteroidetes), Lactobacillus (Phylum Firmicutes),
Megasphaera (Phylum Firmicutes), Mitsuokella (Phylum
Firmicutes) and Comamonas (Phylum Proteobacteria)
genera (Additional files 6, 7).

When the samples were clustered based on the MG-
RAST taxonomic profiles at phylum level, E and C
formed a cluster while A, F, and D were separated based
on the first principal component and B was separated
based on the second (Additional file 8). When the met-
aphlan2 profiles were clustered at the level of class, order,
family and genus, samples A, C and F formed a cluster
while B, D and E formed a separate cluster (Fig. 2).

Functional potential characterization

When compared to the M5NR databases through MG-
RAST, the percentage of sequences with ORFs that could
be classified into functional categories ranged between
16 and 42% (Additional file 9). At Subsystems Level 1,
the top significantly different categories were carbohy-
drate metabolism, clustering-based subsystems, amino
acids and derivatives, miscellaneous, protein metabolism,
DNA metabolism, RNA metabolism, cofactors/vitamins,
cell wall/capsule, phages/prophages and nucleosides and

Page 8 of 16

nucleotides. When sample distances were determined
using the functional profiles at Subsystems Level 1, C, A,
B and F formed a cluster while E was separated based on
the first principal component and D was separated based
on the second (Additional file 10). When the vinasse
metagenomes were analyzed using the humann2 frame-
work, abundant pathways were found in sample D, which
was dominated by one Lactobacillus—the top abundant
pathways included PWY-5100: pyruvate fermentation to
acetate and lactate II and PWY-7219: adenosine ribonu-
cleotides de novo biosynthesis (Additional file 11). Com-
bining the real-time PCR, gene recruitment and gene
mapping results, the vinasse metagenomes had few to no
genes matching nitrification genes; in contrast, a range
of denitrification genes was found (Fig. 3). Sample B pre-
sented the most diversity of denitrification genes, with
nirK, nirS, norB and nosZ present based on the recruit-
ment and mapped results. The presence of putative nosZ
was supported in all samples except D. In addition, puta-
tive nirK was found in all samples except F.

Alpha diversity of the vinasse samples

Several methods were employed to obtain estimates of
the alpha diversity of the vinasse samples (Table 2). The
normalized effective number of species from MG-RAST
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Fig. 3 Putative gene abundances in the vinasse metagenomes. Partial gene fragments were recruited from the vinasse metagenomes using
megagta on (a) all reads and (b) rarified reads. In parallel, vinasse metagenomes were compared to profile HMMs and the number of matches was
normalized to (c) reads per kilobase per genome equivalent (RPKG). In (d) the gene copy numbers from real-time PCR of the nosZ, nirS and nirkK
genes are depicted. Note that no gPCR of the norB gene was made
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averaged 29 £ 14 and ranged between 3 (D) and 53 (B)
species. When metaphlan2 was applied to the rarified
vinasse samples, the number of classified species aver-
aged 11 + 3 and ranged between 5 (D) and 14 (B) species.
Partial 16S rRNA fragments recruited from the rari-
fied samples using REAGO averaged 10 + 4 and ranged
between 4 (D) and 17 (E). Further, when the rp/B gene
was recruited from the rarified samples with megaGTA
analysis, and average of 17 & 3 fragments could be found
across the vinasse samples with between 13 (E) and
22 (C) rpiB fragments identified. When the 16S rRNA
gene was amplified using real-time PCR of the vinasse
samples, the number of genes per kg of dry matter aver-
aged 12el12 =+ 9el2 and ranged between 0.8 (E) and 25.7
(A); the gene abundance of 18S rRNA gene averaged
100e3 + 71e3 and ranged between 17e3 (D) and 208e3

(B).

Bin characteristics, taxonomy and functional types

The cross-assembly resulted in 221,975 cross-contigs
totaling 216 Mbp. Of the cross-contigs, 40,815 were
longer than 1Kbp, and 40,186 of these could be binned.
After refining the bins, 20,825 cross-contigs remained
distributed within the 36 good or interesting large bins
(0.6-3.9 Mbp; hereafter referred to as the large bins).
The large bins represented 39-68% of the sample reads.
Fifty-eight percent of the large bins were classified at the
phylum level as Firmicutes, 8% as Bacteroidetes, 17% as
Proteobacteria, 11% as Unknown and 6% as Actinobac-
teria (Table 3). Overall, the GC percent of these bins
ranged between 28 and 66%. Of the large bins, 24 were
potential denitrifiers and three potential nitrifiers. The
presence of genes related to acetate, CO,, ethanol, H,0,
and lactose metabolism was found in all large bins while
the potential presence of genes related to lactaldehyde,
mannitol, xylose, butyric acid, cellulose, diacetyl, phenyl

Table 2 Alpha diversity estimates of the vinasse samples
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lactate, sucrose and “3-hydroxy” was variable across
the large bins (Table 4). Last, when multidrug resist-
ance was identified in the bin annotations, all large bins
but Unknown-19 and Lactobacillus-30 contained these
genes. In addition to the large bins, eight small bins
(0.03-0.20 Mbp) lacking bacterial marker gene presence
were found (Table 5 and Additional files 12 and 13). The
largest of the small bins, 4.2 and 8.1, were most abundant
in samples E and D, respectively.

Discussion
Here, we explored concurrently the chemical and micro-
biological characteristics of vinasse produced over
1.5 years from one bioethanol mill in Sao Paulo State.
The aims were to characterize, for the first time, the tax-
onomy and potential functions of the microbial assem-
blage in vinasse; we further recovered draft genomes
from vinasse bacteria. We combined metagenomic analy-
ses with binning techniques to characterize the vinasse
assemblages and bacteria, respectively. We discuss below
both potential ethanol pipeline contamination traits of
vinasse bacteria and the potential ecology of vinasse
fertirrigation. The vinasse chemical characteristics fell
within the range of other sugarcane vinasses [52, 53]. Dif-
ferent vinasse inputs are known to contribute different
nutrition; this is taken into account in that vinasse fertir-
rigation is applied depending on the amount of K present
in the input vinasse [54]; however, that different vinasse
inputs contribute different bacteria was not known until
now. The different nutrient contents of vinasse originate
from the differences in the input of sugarcane stalks to
the bioethanol production process; this might also be the
source of the vinasse bacteria.

The vinasse draft genomes most likely represented
the bacteria that survived the selective bottleneck of
the bioethanol production pipeline. The potential for

Sample name REAGO megaGTA metaphlan2 MG-RAST qPCR
Number Number of Recruited rpIB Number Number of Effective species Number of 16S
of Recruited 16S genes of Species rRNA copies
rRNA genes (/1,000,000) kg
dry/matter
A 1342 2142 1041 374£1 25,750 % 13,900
B 10£3 16+3 14+£1 47 £ 4 16,839 £+ 11,664
C 12+1 2242 13£0 3841 16,281 £ 1104
D 440 15£2 5+0 3+£0 10,749 4+ 3336
E 17+£2 13+£1 10+£0 20+1 839 £ 840
F 6+2 17£1 1241 29+£3 1135+ 1142

Diversity was quantified by the number of partial genes recruited (REAGO and megaGTA), or the estimated number of species (metaphlan2 and MG-RAST) from the
vinasse metagenomes; results from real-time PCR of the 16S gene were also included. Rarified forward reads were used as input for metaphlan2, reago and megagta
analysis; merged reads were used in the MGRAST analysis and these results were normalized by library size
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Table 3 Taxonomy of the ‘good and interesting” vinasse bins based on CAT classification
Binld K Phylum  Class Order Family Genus Species
1 B F Nega Selenomonadales Veillonellaceae Mitsuokella ]
2 B B Bact Bacteroidales Prevotellaceae Prevotella P. mutisaccharivorax/Unclassified
3 B F Nega Selenomonadales Veillonellaceae Megasphaera U/M. elsdenii
41 V Caudovirales Siphovirales Lactobacillus phage LdI1
42 B u/B u/B u/B U U S)
5 B A Acti Bifidobacteriales Bifidobacteriaceae Bifidobacterium u
6 B B Bact Bacteroidales Prevotellaceae/U Prevotella/U U
81 B/N U U U U/Caudovirales U/Siphoviridae U/Lactobacillus phage LdL1
82 B F B Lactobacillales Lactobacillaceae Lactobacillus [9)
83 B B Bact Bacteroidales Prevotellaceae Prevotella P. histicola/U
84 B F Bac Lactobacillales Lactobacillaceae Lactobacillus U
85 B B U/Bact
86 B F Bac Lactobacillales Lactobacillaceae Lactobacillus u
9 B U/A
10 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. equicursoris/Unclassified
12 B A/U
13 B U/A
14 B F Nega Selenomonadales Veillonellaceae Megasphaera U/sp. DJF_B143
15 B F Nega Selenomonadales Veillonellaceae Dialister U/D. succinatiphilus
16 B B Bact Bacteroidales Prevotellaceae Prevotella u
18 U/B
19 B U/A
20 B F Clos Clostridiales Eubacteriaceae/U Pseudoramibacter/U U/P. alactolyticus
21 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. delbrueckii/U
23 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. mucosae/U
24 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. fermentum/U
25 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U/L. vini
26 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U/L. agilis
27 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus U
28 B F Bacilli Lactobacillales Lactobacillaceae Lactobacillus L. vini
29 B F Clos Clostridiales Clostridiaceae Clostridium sp. CAG:568/U
30 B/A FJE Bacilli/Metha  Bacteroidales/Methanobacteriaceae Lactobacillaceae/Methanobactericeae Lactobactillus/Methanobrevibacter U
31 B F Nega Selenomonadales Veillonellaceae Megasphaera/U U
32 B F Nega Lactobacillales L L U
33 B F B Lactobacillales L L L. secaliphilus/U
34 B F B Lactobacillales L L U/L. manihotivorans
35 B F B Lactobacillales L L L. bifermentans/U
36 B P Beta Burkholderiales Alcaligenaceae U U
371 B P B Burkholderiales Alcaligenaceae Alcaligenes A. faecalis/U
372 B P B B A Alcaligenes U/A. faecalis
38 B P B B Comamonadaceae U/Comamonas U/C. kerstersii
39 B F B Lactobacillales L L U/L. panis
401 B P E Campylobacterales Campylobacteraceae Arcobacter A. skirrowii/U
40.2 B/A  P/E E/Metha Campylobacterales/Methanobacteriales  Campylobacteraceae/Methanobacteriaceae  Arcobacter/Methanobrevibacter U

K, Kingdom; F, Firmicutes; B, Bacteroidetes; A, Actinobacteria; P, Proteobacteria; E, Euryarchaeota; U, Unknown; Bact, Bacteroidia; Nega, Negativicutes; Clos, Clostridia;

Mega, Megasphaera; Lact, Lactobacillales; Metha, Methanobacteria

bacteria found in vinasse originating from later steps in
the bioethanol pipeline, such as the truck from which
we sampled the vinasse, was considered a minor source
of bacteria due to the large capacity (10,000 L), making
this a negligible source of bacteria. The core genus found
in the vinasse samples was Lactobacillus (Phylum Fir-
micutes), which is a previously known ubiquitous etha-
nol pipeline contaminant due to its tolerance of low pH
[15]. Other known contaminants found prior to the dis-
tillation stage that we observed in our vinasse samples
included representatives of the Acetobacter, Bacillus,
Bifidobacterium, Clostridium, Gluconacetobacter, Lac-
tobacillus and Pseudomonas genera [16, 55, 56]. Strik-
ingly, we identified members of the genera Megasphaera
and Mitsuokella that have not previously been reported
as bioethanol pipeline contaminants. Members of the
genus Megasphaera and Mitsuokella are Gram-negative
ruminant fermenters that have been found in pig hind-
guts, cow rumen and human dental plaque and feces;

Gram-positive Bifidobacterium have also been used as
probiotics in humans and are found in the gut, vagina
and mouth of mammals and bovine rumens. Whether
these bacteria interact with each other within each
vinasse sample—e.g., Megasphaera and Mitsuokella uti-
lizing lactose provided by Lactobacillus—is unknown, as
is the direction of the interactions.

Uncovering the physiological mechanisms by which
these particular bacteria survive the selection bottle-
necks of the bioethanol process was outside the scope of
the current research since our goals were to characterize
fully the metagenomic data. However, we speculated that
plausible protective mechanisms are biofilm formation
[16, 57], strain-dependent temperature tolerance, and
unknown pipeline management considerations. For the
latter, the distillation material might not homogenized,
thus creating pockets of lower temperatures where the
bacteria can remain. Other management considerations
that might affect the viability of bacterial cells are length
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Table 4 Putative gene repertoires of the large vinasse bins
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amoA AOA gene was identified in Bin 23 and 40.1 and the amoA AOB gene was identified in Bin 33 by HMM matches

ABR antibiotic resistance

of time exposed to the distillation temperature and the
highest temperature reached. Evaluating the physiol-
ogy of cultured isolates from vinasse, which can be done
building upon the work described here, is an interesting
topic for further research.

Here, using differential abundance binning, we suc-
cessfully obtained 21 draft genomes from vinasse bac-
teria likely representing bioethanol contaminants. We
confirmed that roughly half of the vinasse bins were of
the genus Lactobacillus (Phylum Firmicutes), which is
the most ubiquitous bacterial bioethanol pipeline con-
taminant [16]. We also uncovered contaminants with up
to 70% of sample coverage from the Prevotella (Phylum
Bacteroidetes), Megasphaera (Phylum Firmicutes), and
Mitsuokella (Phylum Firmicutes) genera, which have not
been well studied. Five of the draft genomes were from

bacteria unknown at the phylum level. Furthermore,
most of the bins recovered here were partly uncharac-
terized at the species level, supporting the idea that we
obtained genomes from novel strains of bioethanol con-
taminants. Studies of bioethanol contaminants to date
have used culture-based methods, which do not capture
the entire microbial diversity, or profiling of 16S rRNA
genes, which does not capture the functional potential
of the contaminants [15, 56]. Bacterial contaminants in
general are known to compete with commercial yeast
strains, lowering ethanol yield; contaminants may also
flocculate with the yeast or produce compounds such as
acetate, butyric acid or lactose which might inhibit yeast
fermentation [16]. Many bins contained sucrose metabo-
lism-related genes, suggesting that these might compete
with the commercial yeast strain for sugarcane sucrose.
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Table 5 The “‘good and interesting”vinasse bin characteristics and relative sample abundances (indicated by heatmap per sample
Bin Length # GC Completeness Redundancy
Ids B C D F (Mbp) Contigs N50 (%) (%) (%)

1 6 1 2 0 0 1 2.37 209 23,171 53 92 2

2 - 2 1 0 4 3 3.45 547 10,519 49 94 4

3 8 1 - 0 2 2.19 352 10,534 53 97 2
4.1 0 0 0 1 0 0.05 19 3352 37 0 0
4.2 0 0 0 0 5 0 0.14 14 32,202 29 0 0
5 3 0 4 0 2 1 1.91 298 11,078 60 94 3

6 4 1 2 0 1 - 2.42 539 6347 44 91 2
8.1 0 0 0 1 5 0 0.20 39 52,952 36 0 0
8.2 0 1 0 9 1 0 0.03 17 1553 40 0 0
8.3 0 0 1 0 3 0 0.07 27 2920 47 0 0
8.4 0 1 0 0 0 0 0.02 10 2442 41 0 0
8.5 0 0 0 0 1 0 0.03 13 3198 39 0 0
8.6 0 0 0 1 1 0 0.03 16 3273 45 1 0
9 2 0 2 0 1 0 1.96 407 6384 60 90 6

10 1 1 1 1 3 0 2.07 183 27,583 47 96 1
12 3 0 2 0 5 1 2.34 485 7489 66 91 5
13 2 0 2 0 0 0 1.48 605 2710 63 71 12
14 2 0 1 0 0 1 1.88 947 2190 52 74 15
15 2 0 2 0 1 1 2.16 1017 2297 53 76 9
16 1 1 1 0 0 - 3.02 307 22,370 42 99 1
18 2 0 1 0 2 0 1.48 893 1665 63 69 22
19 1 0 1 0 3 0 2.01 917 2351 62 60 12
20 0 0 1 0 1 1 1.16 387 3766 54 64 2
21 0 0 1 1 2 1 1.78 298 9992 50 88 1
23 0 1 1 3 2 1 1.90 373 7041 47 95 4
24 0 2 1 0 1 0 1.78 220 13,204 53 98 4
25 1 1 1 1 0 2 1.75 729 2822 40 91 9
26 1 1 2 0 1 1 2.12 1236 1733 41 66 15
27 0 1 1 - 3 1 1.94 262 11,858 38 99 1
28 0 3 0 0 0 0 2.11 340 8670 38 96 5
29 0 1 0 2 0 0 1.02 439 2658 50 88 9
30 0 3 1 3 2 3 3.94 2021 1897 31 47 16
31 0 0 8 0 0 0 3.29 1595 2241 54 79 37
32 0 0 0 6 0 0 2.00 104  2,08,993 36 99 1
33 0 0 0 1 3 0 1.71 447 4850 48 96 9
34 0 3 0 0 0 0 2.68 343 12,289 60 92 1
35 0 4 0 0 0 0 2.72 259 13,750 43 96 6
36 0 5 0 0 0 0 1.70 647 2989 49 67 5
37.1 0 - 0 0 0 0 3.08 1326 2603 57 77 24
37.2 0 4 0 0 0 0 1.22 784 1533 58 34 6
38 0 - 0 0 0 0 2.99 488 9382 60 89 3
39 0 0 0 4 0 0 1.90 205 15,510 47 99 4
40.1 0 4 0 0 0 0 1.61 190 11,919 28 97 2
40.2 0 2 0 0 0 0 0.57 271 2044 27 15 1
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Annotation of the bins revealed the potential presence
of bioethanol contaminant genes related to the metabo-
lism of acetate, ethanol, mannitol, cellulose, hydrogen
peroxide, lactose, sucrose and 3-hydroxy fatty acids.
These results support the idea that vinasse bacteria are an
additional source in identifying likely bioethanol process
contaminants.

Interesting bins included Lactobacillus/Methanobre-
vibacter-bin30 and  Arcobacter/Methanobrevibacter-
bin40.2, which contained cross-contigs annotated as both
bacterial and archaeal. Methanobrevibacter is an archaeal
genus whose methanogenic members are often found in
vertebrate guts consuming the end products of bacte-
rial fermentation. Finding them here suggests that this
interaction might also be present in vinasse. In addition,
we binned potential phage genomes, which suggest that
phages are present in the fermentation tanks along with
the host contaminants. The large phage genome bin 8.2
was most abundant in vinasse sample D, corresponding
to a low-diversity assemblage with a dominant bin, sug-
gesting that the host of this phage was L. amylovorus-
bin27. The phage bins 4.1, 4.2 and 8.1 were all most
abundant in vinasse sample D, corresponding to a more
diverse assemblage of bacterial hosts across the phyla
Firmicutes and Bacteroidetes. These associations sug-
gest that phage lysis may be a factor controlling bacterial
population sizes in the fermentation tanks. Attention has
recently been paid to using phage therapy to control bac-
terial contamination in bioethanol pipelines [58, 59].

In addition to investigating the potential for vinasse
bacteria to be contaminants in the production of bioeth-
anol, we evaluated the potential for vinasse bacteria
to contribute to N,O emissions during fertirrigation.
Vinasse fertirrigation can be considered a disturbance on
the soil microbial community; the success of the vinasse
assemblage in the soil likely depends on the connectiv-
ity (e.g., strength and direction of the vinasse species
interactions). Pitombo et al. [11] identified significantly
abundant bacterial genera under treatments of vinasse
compared to control plots without vinasse using 16S
rRNA gene marker abundance, and the significantly dif-
ferentially abundant genera in the plots amended with
vinasse included the vinasse bacteria (as identified here)
Lactobacillus, Bacillus, Prevotella, Gluconacetobacter,
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Megasphaera, Mitsuokella and Acetobacter [11]. Fur-
ther, unpublished research suggests that vinasse bacte-
ria on a field experiment may persist at low abundances.
These results together suggest that vinasse bacteria may
successfully invade the soil microbial community [60].
Furthermore, the vinasse bacteria may transfer to the
sugarcane stalks during plant growth and at harvest time
become the contaminants that are inputted with the sug-
arcane to the ethanol processing pipeline. In support,
a survey of the bacteria associated with the sugarcane
plant found the vinasse taxa Bacillus, Acetobacter and
Gluconacetobacter as part of the “core” sugarcane micro-
biome [22]. While this is an interesting speculation, we
note that caution should be taken because the referenced
studies were few and based on gene marker surveys at
higher taxonomic levels, which hinders robust and pre-
cise interpretation. We recommend further research into
the ecological interactions of vinasse bacteria with the
soil bacterial community at the species or strain level
during fertirrigation with vinasse.

Actual N,O emissions from a soil are the result of
the sequential biochemical processes, nitrification and
denitrification, carried out collectively by the microbial
communities in a soil. The total rate of N,O emissions
through nitrification or denitrification is controlled by
carbon availability, moisture, oxygen availability, pH,
temperature, and nitrate concentrations. These fac-
tors limit enzyme activity, gene transcription levels and
microbial cell growth [61]. Furthermore, the abundance
of the genes involved in the production (amoA, nirK,
nirS, norB) or removal (nosZ) of N,O is correlated with
the actual N,O emissions [62]. In the case of vinasse
fertirrigation, vinasse contributes with microorganisms
associated with N,O emissions but they are not the sole
source and probably not the most important related to
N,O emissions. Do Carmo et al. [10] and Pitombo et al.
[11] have shown that at early stages, soon after vinasse
application together with inorganic N fertilizer there is
an increase of N,O emissions [10, 11], we hypothesize
that this is because of a combination of factors present in
vinasse (organic C, organic N and microbes with genetic
repertoires for denitrification) that will interact with soil
microbiome and soil environmental conditions. Disen-
tangling the interaction of each biotic and abiotic factor
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present in vinasse with soil existent microbes related to
N,O emission and soil environmental factors is an inter-
esting topic for future research.

Four phyla (Firmicutes, Actinobacteria, Proteobac-
teria and Bacteroidetes) were represented across the
vinasse samples, although at the genus level the diver-
sity of each assemblage fluctuated. The samples could
generally be classified as dominated by Megasphaera
(A, C, F) or Lactobacillus (B, D, E) at the genus level.
The second assemblage (B) was the most diverse; it was
dominated by Lactobacillus and containing, uniquely
compared to the other time points, Proteobacteria such
as Alcaligenes, as well as phage (Lactobacillus phage
Lc Nu). The least diverse assemblage was D, contain-
ing mostly Lactobacillus and phage. Of the 22 potential
vinasse denitrifiers, two were potential complete deni-
trifiers (containing nirK or uirS, norB and nosZ) and
eight were potential incomplete denitrifiers (containing
nirK or nirS and norB). The abundances of these poten-
tial denitrifiers varied across time points, suggesting
varied effects on N,O during vinasse fertirrigation with
different vinasses. For example, the Lactobacillus-bin
27 dominated to 97% of the sample D abundance, and
this contained a putative #irK gene; when this vinasse is
sprayed onto the fields, one would expect nitrate degra-
dation and an increase in N,O or N, depending on the
gene content of the endogenous microbial community.
Another abundant potential denitrifier present in sam-
ple A (Prevotella-Bin 2) contained only potential nosZ,
suggesting that if the vinasse A was to be used in fer-
tirrigation, the actual emission of N,O may be reduced
due to the further reduction of N,O into N,. Further-
more, vinasse denitrifiers might directly contribute to
the N,O emissions observed when vinasse is added in
conjunction with a nitrate fertilizer. This suggests that
vinasse application in conjunction with a reduced nitro-
gen source such as ammonium sulfate may be a feasi-
ble management practice to reduce N,O production.
Further research investigating the microbes involved in
N,O emissions during fertirrigation with vinasse would
greatly aid in steering future vinasse management
strategies.

Vinasse fertirrigation has raised human health con-
cerns that vinasse bacteria may carry antibiotic resist-
ance genes (ARGs) [21]. These genes can enter the soil
resistome and can be transferred using horizontal gene
transfer to other soil bacteria, with potential spread-
ing of antibiotic resistance genes to soil-derived human
pathogens. Here a search of the annotation results of the
recovered vinasse bins found multidrug resistance genes
in 34 of the 36 large bins. Surprisingly, no drug resistance
genes were found in the phage bins; this may indicate that
the phages from which these genomes were not prophage
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that confer auxiliary metabolic genes in the form of anti-
biotic resistance to the vinasse bacteria. These results
warrant further study of the fate of ARGs from vinasse
during fertirrigation.

While significant progress has been made in metage-
nome assembly and binning, some caveats should be
noted to the bins we recovered here. Misassembly and
misbinning can occur and bias the final results, in our
case identifying relevant genes present in the bins. We
addressed these issues by comparing three assemblers
and three binning tools and choosing the best of each.
Further, we used large kmer sizes for the final cross-
assembly, and this successfully allowed MaxBin2 to bin
to the level of species. We additionally used the man-
ual refinement feature of anvi'o to improve the bins.
Because bins with low completeness as determined by
the presence of universal marker genes can still con-
tain useful information regarding potential gene con-
tent, we used all useful bins to characterize the vinasse
assemblage. Eight bins could not be refined and these
represent unbinned vinasse bacterial genome content;
however, the information from this genomic material
was characterized in the metagenomic analyses. We
included several different methods for each analysis to
supplement each other as database coverage and read
length can bias results based on sequence alignment.
Moreover, we used the metagenomic analysis to com-
plement the bin results. Interestingly, comparing the
qPCR, putative gene abundances and gene recruitment
results suggested that the qPCR primers we used do not
cover the entire diversity of vinasse bacteria or alter-
nately that the HMM results may be biased toward false
positives.

Here we used metagenomic analysis and genome
binning to characterize in depth the assemblage of six
vinasse samples from one bioethanol mill. We iden-
tified previously unknown vinasse taxa compared to
taxa identified through culture-or 16S rRNA survey-
based studies of the ethanol processing pipeline steps
prior to vinasse. Furthermore, we obtained 21 draft
bacterial genomes and 8 draft phage or mobile ele-
ment genomes from vinasse, which to our knowledge
is the first study to do so. Vinasse bacteria included
mainly putative denitrifiers, which may directly affect
soil N,O or N, emissions when applied during fertir-
rigation, although more research is needed into the
ecological interactions during this event. In the vinasse
bins we found the putative presence of antibiotic resist-
ance genes and genes affecting yeast fermentation,
which potentially implicate vinasse bacteria in negative
impacts on human health and bioethanol production,
respectively. We suggest that monitoring the vinasse
assemblage is a promising option to screen both for



Cassman et al. Biotechnol Biofuels (2018) 11:48

bioethanol production contaminants and to identify
vinasse batches which, when added to the fields dur-
ing fertirrigation, may lead to higher N,O emissions.
Because of the decreasing costs of high-throughput
sequencing, we suggest that monitoring of vinasse
assemblages can be widely implemented to improve
sugarcane bioethanol production sustainability.
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