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Abstract 

Background:  During the biomass-to-bio-oil conversion process, many studies focus on studying the association 
between biomass and bio-products using near-infrared spectra (NIR) and chemical analysis methods. However, the 
characterization of biomass pyrolysis behaviors using thermogravimetric analysis (TGA) with support vector machine 
(SVM) algorithm has not been reported. In this study, tobacco was chosen as the object for biomass, because the 
cigarette smoke (including water, tar, and gases) released by tobacco pyrolysis reactions decides the sensory quality, 
which is similar to biomass as a renewable resource through the pyrolysis process.

Results:  SVM algorithm has been employed to automatically classify the planting area and growing position of 
tobacco leaves using thermogravimetric analysis data as the information source for the first time. Eighty-eight single-
grade tobacco samples belonging to four grades and eight categories were split into the training, validation, and 
blind testing sets. Our model showed excellent performances in both the training and validation set as well as in the 
blind test, with accuracy over 91.67%. Throughout the whole dataset of 88 samples, our model not only provides 
precise results on the planting area of tobacco leave, but also accurately distinguishes the major grades among the 
upper, lower, and middle positions. The error only occurs in the classification of subgrades of the middle position.

Conclusions:  From the case study of tobacco, our results validated the feasibility of using TGA with SVM algorithm 
as an objective and fast method for auto-classification of tobacco planting area and growing position. In view of the 
high similarity between tobacco and other biomasses in the compositions and pyrolysis behaviors, this new protocol, 
which couples the TGA data with SVM algorithm, can potentially be extrapolated to the auto-classification of other 
biomass types.
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Background
Pyrolysis of biomass is a potential method to produce 
various gases, liquids (bio-oil), or solid materials (bio-
char) that can then be used for fuel production. The 
product compositions depend mainly on the variability 
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of different proportions of protein, triglycerides, hemi-
cellulose, cellulose, lignin, etc., in the original biomass [1, 
2]. Therefore, many studies focus on studying the asso-
ciation between biomass and bio-products [3–9]. In this 
study, tobacco was chosen as the object for biomass. As 
a commercial product, the cigarette smoke (including 
water, tar and gases) released by tobacco pyrolysis reac-
tions can satisfy the consumer’s demand, not the tobacco 
itself, which is similar to biomass as a renewable resource 
through the pyrolysis process.

Tobacco leaves cultivated in different areas have dif-
ferent styles, and their grades are based on the positions 
they grow on the stalk. The classification of tobacco style 
and grade is important in the processes of tobacco blend 
design and cigarette product maintenance [10]. Current 
evaluation of tobacco style and grade mainly relies on 
artificial sensory analysis, which is subjective and rela-
tively unstable [11]. Therefore, it is necessary and urgent 
in the tobacco industry to develop a new rapid and con-
venient method to evaluate the tobacco style and grade 
automatically.

Artificial intelligence has opened a new page in the field 
of data analysis. Many efforts have been devoted to devel-
oping automatic evaluation methods using the advanced 
machine learning (ML) algorithms with the data from the 
tobacco leaves and smoke. Early works mainly focused on 
the classification of tobacco cultivation area and grow-
ing position using near-infrared spectra (NIR) due to its 
high efficiency and non-destructive characteristic. Hana 
et  al. [12] employed artificial neural networks (ANNs) 
to classify whether the burley tobacco grows in USA or 
outside USA, and obtained high prediction accuracy. For 
the classification of tobacco style and grade, Ni et al. [13] 
developed an improved and simplified K-nearest neigh-
bor algorithm (IS-KNN) to discriminate more than 1000 
Chinese flue-cured tobacco leaf samples with moderate 
accuracy. Their results suggest that it is better to estab-
lish a classification model of tobacco grade from the same 
cultivation fields to get better classification results. By 
applying a combined random-forest (CRF) based on gas 
chromatography (GC) fingerprinting, Lin et al. [14] man-
aged to classify three different grades of “Furong” series 
cigarettes with accuracy up to 93.74%. Based on image 
processing on tobacco color, texture, and shape, Zhang 
and Zhang [15] implemented a two-level fuzzy compre-
hensive evaluation (FCE) and classified the tobacco leaves 
into three grades, but accuracy is achieved just 72% for 
the non-trained tobacco leaves. Recently, Gu et  al. [16] 
successfully built a relationship between chemical com-
pounds and the aromatic quality of flue-cured tobacco 
leaves, using support vector machine (SVM) algo-
rithm with 22 chemical compounds selected by Relief-
F-particle swarm optimization (R-PSO), and obtained 

high accuracy of 90.95%. Very recently, Wang et al. [17] 
employed genetic algorithm (GA) to optimize the per-
formance of SVM for data analysis of NIR spectroscopy 
sensors. They demonstrated that the GA could indeed 
improve the performance of SVM for tobacco classifica-
tion based on NIR spectra, although the accuracy is just 
83%. All previous works have focused on the relation-
ship of tobacco style and grade with either the reactant 
(tobacco) component or the product (smoke). In this 
study, we choose to pay attention to the tobacco pyroly-
sis reaction process, which can be visually expressed by 
the thermogravimetric analysis (TGA). To the best of our 
knowledge, the auto-classification of tobacco planting 
area and growing position based on thermogravimetric 
analysis have not yet been reported.

TGA has been proven to be a useful tool to study the 
pyrolysis behavior and kinetics of the pyrolysis process, 
since it provides precise measurement depending on 
temperature and other experimental conditions that are 
well known and well controlled [18–20]. Investigations 
on biomass have shown that the differences in pyrolytic 
characteristics are mainly caused by the differences in 
the constituent and physical structure [21–27]. Stud-
ies on the pyrolysis of tobacco have also demonstrated 
that the differential thermal gravity (DTG) curve of 
tobacco pyrolysis can be divided into different Gaussian 
peaks representing the thermal decomposition of indi-
vidual components [28, 29]. For instance, the mass loss 
below 373 K represents the evaporation of water [30]; the 
peaks between 373 and 473  K correspond to the ther-
mal decomposition of sugars, nicotine, pectin, and some 
other volatile species [31, 32]; and in the temperature 
of 474-873  K, the mass loss would be attributed to the 
pyrolysis of hemicellulose, cellulose, and lignin, respec-
tively [33–35]. Moreover, Baker and Bishop [36] have 
demonstrated that the thermogravimetric analysis spec-
tra of tobacco pyrolysis are highly reproducible under 
well-defined conditions. The thermogravimetric analysis 
data not only represent the tobacco pyrolysis characteris-
tics, but also supply the information of the tobacco com-
position. Hence, it can be taken as an important index to 
evaluate tobacco planting area and growing position.

Recently, we [37] demonstrated that thermogravi-
metric analysis data in conjunction with the normal-
ized root-mean-square error (NRMSE) can be used to 
quantitatively evaluate the pyrolysis difference among 
tobacco of different stalk positions, planting areas and 
crop years. On this basis, we [38] proposed a tobacco 
leaves substitute scheme in tobacco blend maintenance, 
and the results showed that this substitute scheme could 
achieve artificial substitute level. In this work, we fur-
ther extended previous investigations and introduced the 
SVM algorithm to the thermogravimetric analysis for the 
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first time. Using TGA data as the information source, we 
demonstrated that auto-classification of tobacco planting 
area and growing position could be achieved with high 
accuracy as well as high efficiency by applying the SVM 
algorithm. In view of the high similarity between tobacco 
and other biomasses in the compositions and pyrolysis 
behaviors, this new protocol, which couples the TGA 
data with the SVM algorithm, can potentially be extrapo-
lated to the auto-classification of other biomass types.

Results and discussion
Classification of tobacco leaves
Eighty-eight tobacco leaves were collected from different 
growing positions in Fujian (FJ) and Yunnan (YN) prov-
inces, which are shown in Table  1. Eighty-eight single-
grade tobacco leaves were classified into eight categories 
according to their planting areas and growing positions. 
Three positions are identified, namely B, X, and C, cor-
responding to the upper, lower, and middle positions of 
tobacco stalk, respectively. The middle group is further 
divided into two subgrades, as shown in Table  1. The 
notation FJ-C1 implies that the sample is at the first grade 
of the middle group from the Fujian province.

Although all these samples, planted in either Fujian or 
Yunnan provinces, have similar tobacco style (all belong-
ing to the same light-flavor style), they can still be dis-
tinguished in artificial sensory analysis. This leads to the 
most stringent test for the auto-classification of tobacco 
style to verify the effectiveness and practicability of the 
SVM model in the analysis of thermogravimetric analysis 
data.

Analysis of thermogravimetric analysis data
For a better comparison, the thermogravimetric analy-
sis data (DTG curves) of tobacco leaves belonging to the 
same category were averaged to obtain an averaged-DTG 
curve, which can represent the pyrolysis characteristics 

of the corresponding type of tobacco leaves, as shown in 
Fig. 1a, b.

Close analysis of Fig.  1a, b reveals that the main dif-
ferences in the DTG curves of tobacco leaves from the 
same planting area lie in the temperature range of 373–
473  K, which correspond to the thermal decomposi-
tions of sugar, nicotine, pectin, and some other volatile 
species. While in the temperature range of 473–873  K 
(corresponding to the pyrolysis of hemicellulose, cellu-
lose and lignin), the DTG curves are basically coincident. 
Figure 1c–f presents the comparisons of DTG curves of 
tobacco leaves from the same growing position but from 
different planting areas. It is found that the main differ-
ences fall in the temperature range of 473–873 K. Hence, 
we may infer, from the thermogravimetric analysis spec-
tra point of view, that the physical structure characteris-
tics of tobacco leave (hemicellulose, cellulose, and lignin 
reflect the tobacco physical structure) is determined 
by the planting area. Namely, the tobacco leaves from 
the same planting area have similar physical structure 
characteristics, while the tobacco leaves from different 
planting areas have different physical structure charac-
teristics. We may also draw the conclusion that the grade 
of tobacco leaves qualitatively depends on the proportion 
of sugar, nicotine, pectin, and some other volatile species, 
in which X < B < C2 < C1.

To further validate the above statement, we per-
formed a principal component analysis (PCA) to study 
what spectral features characterize the different groups 
of samples (see Additional file  1 for other details). It is 
encouraging to see from Fig. 2c that the major contribu-
tions to the second principal component (PC2), which is 
mainly responsible for the classification of tobacco style 
(Fig. 2b), lie in the temperature range of 473–873 K. This 
result further strengthens the argument that the planting 
area characteristics of tobacco determined by the tobacco 
physical structure are mainly reflected in the temperature 
range of 473–873 K.

In summary, our preliminary analysis reveals that the 
growing position characteristics of tobacco, which is 
closely related to the content of sugar, nicotine, pectin, 
and some other volatile species, are mainly reflected in 
the temperature range of 373–473  K. The planting area 
characteristics of tobacco determined by the tobacco 
physical structure are mainly reflected in the tempera-
ture range of 473–873  K. These results are in line with 
how the traditional classification of tobacco leaves is per-
formed in tobacco industry, namely the grade and style 
are discriminated separately.

Algorithm
The above preliminary analysis has demonstrated that the 
thermogravimetric analysis data can reflect the planting 

Table 1  Categories of 88 single-grade tobacco leaves

a  FJ represents Fujian province and YN represents Yunnan province
b  B, X, and C correspond to the upper, lower, and middle portions of tobacco 
stalk, respectively

Categories Typea,b Sample code

1 FJ-B 1–7

2 FJ-X 8–10

3 FJ-C1 11–20

4 FJ-C2 21–35

5 YN-B 36–44

6 YN-X 45–50

7 YN-C1 51–64

8 YN-C2 65–88
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Fig. 1  Comparison of the thermogravimetric analysis curves of tobacco leaves between eight categories. a The DTG curves of averaged four grades 
of Fujian province. b The DTG curves of averaged four grades of Yunnan province. c The DTG curves of averaged grade B from Fujian and Yunnan 
province. d The DTG curves of averaged grade X from Fujian and Yunnan province. e The DTG curves of averaged grade C1 from Fujian and Yunnan 
province. f The DTG curves of averaged grade C2 from Fujian and Yunnan province
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area and growing position characteristics of tobacco 
leaves. To achieve auto-classification of tobacco leaves, 
machine learning is introduced to analyze the thermo-
gravimetric analysis data.

Among numerical algorithms for machine learning, 
the traditional neural network algorithm requires a large 
amount of training data. However, due to sampling limi-
tation, the number of samples (88) in this work cannot 
meet the requirements of neural networks for data train-
ing. Meanwhile, too many feature points (5890) in com-
parison to the number of samples (88) may also lead to 
dimensional disaster in neural network [39, 40]. For clas-
sification problems, the SVM algorithm [41] has been 
proven to be one of the best supervised learning algo-
rithms, with faster speed and smaller sample size than 
other machine learning algorithms [42]. Therefore, we 
choose the SVM algorithm to perform auto-classification 
of tobacco quality and style. We would like to note that 
the traditional SVM algorithm only supports two cat-
egories, but our case involves eight different categories. 
Hence, the one-against-one method is adopted [43].

Dataset sampling
Investigations on the generalization performance of SVM 
indicated that the sizes of the training set, validation set, 
and testing set are crucial for the estimated model per-
formance [44]. Too many or too few samples in the train-
ing set may have a negative effect. Hence, it is necessary 
to have a good balance between the sizes of the train-
ing set and validation set to have a reliable estimation 
of model performance. Typically, one can take around 
70–80% of the data to use as a training set and split the 
remaining data as the validation and testing set. In this 
work, 88 samples were split into three sets: training set, 
validation set, and testing set with ratio of 64/12/12, as 
shown in Table 2. Kennard-Stone-like algorithm [45] for 
data splitting was employed to maintain the generaliza-
tion of the model. Namely, given n samples available in a 
category, the first m (with 0.6 < m/n and m <  = n) samples 
with largest Euclidian distance in this category are used 
as the training set and the unselected samples are ran-
domly split into the validation and testing set with a ratio 
of 1/1.

Fig. 2  PCA analysis of the thermogravimetric analysis curves of 88 tobacco leaves. a Scores of 88 tobacco leaves in eight categories on the second 
principal component (PC2). b Scores of 88 tobacco leaves categorized by the planting areas on the second principal component (PC2). c Loadings 
of PC2 in the feature space

Table 2  The sample codes for tobacco leaves of eight categories

a  FJ represents Fujian province and YN represents Yunnan province
b  B, X, and C correspond to the upper, lower, and middle portions of tobacco stalk, respectively

Categories Typea,b Sample code

Training set Validation set Testing set

1 FJ-B 1–3, 6, 7 4 5

2 FJ-X 8–10

3 FJ-C1 11, 13–18, 20 19 12

4 FJ-C2 21, 22, 24–27, 29, 30, 32, 33, 35 23, 28, 31, 34

5 YN-B 36–39, 42–44 41 40

6 YN-X 46, 48–50 47 45

7 YN-C1 53–56, 58–61, 63, 64 51, 52 57, 62

8 YN-C2 65–68, 70, 72, 74, 76, 77, 81–87 78, 79, 80, 88 69, 71, 73, 75
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Model selection
Kernel function often plays an important role while clas-
sifying with SVM. Different kernel functions may have 
different application scopes. In the case where the num-
ber of feature points is much larger than the number of 
samples, the linear kernel has been proven to perform 
very well [46]. Hence, the linear kernel function was 
selected for training in this work. On the other hand, the 
penalty parameter C in the linear classification with SVM 
also plays a significant role in the training and prediction. 
Too small or too large C may have a negative effect on the 
prediction power of the model. To find an optimal C, the 
training set was used to build the model for each C and 

each trained model was tested with the validation set. 
As the samples in the validation set are not known to the 
model, therefore, the performance on the validation set 
can reflect the prediction power of the model. Based on 
the performance on the validation set, the optimal pen-
alty parameter C was determined using the one with the 
highest accuracy. As shown in Fig.  3, the model has an 
excellent performance in both the training and the vali-
dation set when the penalty parameter C equals to 1.66 
(Log(C) = 0.22), with accuracy being 98.44% and 91.67%, 
respectively. Therefore, the penalty parameter C was cho-
sen to be 1.66 in this work.

Classification accuracy
In the field of machine learning and the problem of clas-
sification with multiple categories, classification accuracy 
alone might be misleading. The confusion matrix can 
give a better idea of what the model is getting right and 
what types of errors it is making.

Detailed analysis of the performance of our optimal 
model on the training and validation set demonstrated 
that our optimal model performed remarkably well in the 
style classification, giving all correct results for the plant-
ing area, as shown in Fig.  4a, b. In the case of growing 
position classification, our model also correctly identified 
the upper, lower, and middle positions. Errors only occur 
in the classification of the subgrades of middle, namely 
C1 and C2. For the training set, only one sample (sample 
code: 18) belonging to FJ-C1 was mis-assigned to FJ-C2. 
A similar incorrect prediction was also found in the vali-
dation set, in which the sample (sample code: 79) belong-
ing to YN-C2 was predicted to be YN-C1 instead. As 
elucidated in Sect. 3, both C1 and C2 grades correspond 

Fig. 3  The influence of penalty parameter C on the accuracy of the 
training and validation set

Fig. 4  The confusion matrix for the training and validation set. The horizontal axis is the predicted label and the vertical axis is the real label
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to the middle position of tobacco stalk and the grade dif-
ference is relatively small in comparison to the grade dif-
ference between X/B and C. This might be the reason for 
the mis-assignment of samples in C1 and C2. We would 
like to note that none of the previous investigations have 
ever tried to discriminate subgrades of the middle. None-
theless, our optimal model showed excellent perfor-
mance in both the training and validation set with overall 
accuracies being 98.44% and 91.67%, respectively.

Westerhuis et  al. [47] showed that the performance 
by cross-validation might be an over-optimistic one and 
it is of importance in having an additional blind test. To 
verify the practicality and generalization capability of our 
model, we further applied the optimal model to the test-
ing set, which is not used during the model training and 
selection. It is found that this model works very well in 
the testing set, with an overall accuracy of 91.67%. One 
out of 12 samples was misclassified. Detailed analysis 
of the confusion matrix for the testing set, as shown in 
Fig.  5, indicated that our model performed extremely 
well in the prediction of planting areas as well as in the 
prediction of major grades of the upper, lower, and mid-
dle positions. None of the 12 samples was misclassified. 
Like in the training and validation set, the error only 
occurs in the classification of subgrades of the middle 
while applying our model to the testing set. The sample 
(sample code: 34) belonging to FJ-C2 was misclassified 
to FJ-C1). Such a high accurate blind test indicates that 
our model has an excellent generalization capability. We 
also applied the PLS-DA [48] to the same datasets. The 
optimal accuracy was found for the validation set with 25 
latent variables (see Additional file 1 for details), and the 
corresponding accuracies for the training, validation, and 

testing set were 99.97%, 84.25%, and 82.78%, respectively. 
Compared to the PLS-DA algorithm, the SVM algorithm 
has a considerably higher classification accuracy.

It is worthwhile to note that both Fujian and Yunnan 
provinces locate in the south of China, and the tobacco 
styles of the two provinces are relatively close among the 
traditionally defined three major scent types, belonging 
to the light-flavor type. Previous investigations have dem-
onstrated that the differences in the DTG curves between 
tobaccos planted in Fujian and Yunnan provinces are 
much smaller than those of the others [37]. It is encour-
aging to see that our SVM model, based on the thermo-
gravimetric analysis spectra, still can achieve as high 
accuracy as 91.67% under such a stringent test, verifying 
the feasibility and practicability of the auto-classification 
of tobacco planting area and growing position. Unfortu-
nately, we are unable to collect sufficient samples of other 
styles of tobacco at the current stage. We will leave them 
for the further investigation in future study.

It is well accepted that the biofuel compositions are 
near related to the biomass compositions and their pyrol-
ysis behaviors [3–9]. Previous investigations on biomass 
have disclosed that the differences in pyrolytic character-
istic are mainly caused by the difference in the constitu-
ent and physical structure [21–27]. Of particular note is 
that Enrico and Leonardo [23] have set up a simple and 
generalized procedure, which can be used for obtain-
ing the chemical composition of lignocellulosic biomass 
based on their DTG curves. This procedure has been val-
idated on 37 biomass types, such as woods, energy crops, 
and agricultural and food residues. Therefore, biomass 
types can be easily reflected on the DTG curves due to 
different chemical compositions and contents in it. Tak-
ing tobacco as a case study, we have shown in this work 
that a simple protocol, by coupling the TGA data with 
SVM algorithm, can be efficiently used for auto-classifi-
cation of tobacco style and grades with high confidence. 
As a kind of lignocellulosic biomass, tobacco is different 
from other biomass types only in that its value is reflected 
in cigarettes via its pyrolysis reaction, and the content of 
each chemical composition is different. Hence, the proto-
col presented in this work can potentially be extrapolated 
to other biomass types.

Conclusions
In this study, we conducted a thermogravimetric analy-
sis over 88 single-grade tobacco leaves belonging to 
four grades and eight categories. Preliminary analysis of 
the thermogravimetric analysis spectra reveals that the 
tobacco leaves from the same planting area have simi-
lar physical structure characteristics, while the tobacco 
leaves from different planting areas have different physi-
cal structure characteristics, which are reflected in the 

Fig. 5  The confusion matrix for the testing set. The horizontal axis is 
the predicted label and the vertical axis is the real label
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DTG curves in temperature range of 473–873  K. Fur-
ther analysis of the DTG curves also demonstrate that 
the growing position characteristic of tobacco leaves is 
mainly reflected in the temperature range of 373–473 K. 
On this basis, we introduced the SVM algorithm to auto-
matically classify the planting area and growing position 
of tobacco leave using the thermogravimetric analysis 
spectra as the information source. This protocol, by cou-
pling the DTG data with SVM algorithm, shows excel-
lent performances in both the training and validation 
set as well as in the blind test, with overall accuracy over 
91.67%. Throughout the whole dataset of 88 samples, our 
model not only provides precise results on the planting 
areas of tobacco leaves, but also accurately distinguishes 
major grades of the upper, middle, and lower parts of 
the tobacco stalk. The error only occurs in the classifi-
cation of the subgrades of the middle. In the blind test, 
the sample (sample code: 34) belonging to FJ-C2 was 
misclassified to FJ-C1. Such a high accuracy in the blind 
test indicates that this protocol has an outstanding gener-
alization capability. As a kind of lignocellulosic biomass, 
tobacco is different from other biomass types only in that 
its value is reflected in cigarette via its pyrolysis reac-
tion, and the content of each chemical composition is 
different. Hence, the protocol presented in this work can 
potentially be extrapolated to other biomass types.

Methods
Materials
The tobacco samples were supplied by Fujian China 
Tobacco Industry Co., Ltd. For 48  h prior to analysis, 
all tobacco samples were conditioned in a chamber at 
22 ± 1 °C and with a relative humidity of 60 ± 2%.

Thermogravimetric analysis experiment
To guarantee the reproducibility, tobacco samples were 
pulverized into powder using a coffee mill and then sifted 
through a 100-mesh sieve to remove big tobacco particles 
before the TGA test.

Pyrolysis of tobacco powder was performed in a TGA 
(STA 449 F3 TG–DTA/DSC Instruments, NETZSCH, 
Germany). 10 mg of tobacco powder was loaded evenly 
in an open ceramic pan and warmed up to 873  K from 
room temperature at a heating rate of 10  K/min. Dry 
nitrogen at a flow rate of 100 mL/min was used as purge 
gas throughout the test. To reduce the influence of water, 
the thermogravimetric analysis data (DTG curve) of 
373–873 K were selected for calculation and analysis. The 
number of feature points of each sample is 5890 which 
were obtained by recording 120 feature points per min-
ute. The DTG curves of all 88 samples are given in Addi-
tional file 1.

SVM
SVM algorithm is a linear classifier defined on the feature 
space to maximize the interval. It is essentially a convex 
optimization problem. Given the training data set in the 
feature space:

where xi = (a
(i)
1
, a

(i)
2
, a

(i)
3
, · · · , a

(i)
m ) and yi ∈ {−1, 1}.

The training procedure in SVM is to find a hyper-plane, 
denoted as decision boundary, in the feature space, which 
can maximize the separation, namely margin, of samples 
in different classes. This hyper-plane is described as:

where w is the slope and b is the intercept.
Assuming that the training data set is linearly separa-

ble, there are infinitely separated hyper-planes. Linearly 
separable support vector machine (LS-SVM) solves the 
hyper-plane by maximizing the margin, and the solution 
is unique.

The distance between the points in the feature space 
and the decision boundary can represent the confidence 
level of the classification results, as shown in Fig. 6. Point 
A is far from the decision boundary, so the confidence of 
classification result is high. Point B is close to the deci-
sion boundary, so the confidence of classification result 
is low. Point C is between A and B, and the confidence of 
classification results is between that of two points.

The distance from the Point xi to the decision boundary 
w · x + b = 0 is the magnitude of ŷi = w · xi + b . Then, 
the function interval is described as follows:

If w and b were changed in an equal proportion, though 
the position of the decision boundary will not change, 

(1){(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn)},

(2)w · x + b = 0,

(3)γ̂i = yi(w · xi + b).

Fig. 6  The points in the feature space, the supporting vectors, and 
the decision boundary (bold)
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the function interval would be changed correspond-
ingly. Therefore, the geometric interval is introduced as 
follows:

To solve SVM is to find the decision boundary which 
maximize the geometric interval of points in feature 
space:

This nonlinear optimization with inequality con-
straints can be further reduced to:

Then, the geometric interval of points in space from 
the decision boundary is used as the decision value, 
whose sign determines the result of classification.

However, in the case where the training data set is 
linearly non-separable, some sample points cannot sat-
isfy the constraint condition (Eq. 8). A relaxation vari-
able ξi can be introduced to make the function interval 
with the relaxation variable greater than or equal to 1. 
Then, the previous optimization problem transforms 
into:

where C (> 0) is the penalty parameter, which controls the 
trade-off between minimizing the training error 

∑N
i=1 ξi 

and maximizing the classification margin. Large values 
of C minimize the margin’s width of SVM and increase 
the weight of the non-separable samples. And, with a 
small value of C, the margin width was maximized, and 
the misclassified samples were increased. Optimal C can 
be obtained by applying grid search to find the value that 
achieves the maximum classification accuracy on the val-
idation set.

The SVM model was trained with Scikit-learn (ver-
sion 0.23) [49] in python 3.7 and original data from the 
thermogravimetric analysis experiment were adopted.

(4)γi = yi

(

w

�w�
· xi +

b

�w�

)

.

(5)max
w,b

min
i

γi

(6)s.t. yi(w · xi + b) ≥ 1, i = 1, 2, ...N .

(7)max
w,b

2

�w�2
⇔ min

w,b

1

2
�w�2

(8)s.t. yi(w · xi + b) ≥ 1, i = 1, 2, . . . ,N .

(9)min
w,b,ξ

1

2
�w�2 + C

N
∑

i=1

ξi

(10)
s.t. yi(w · xi + b) ≥ 1− ξi, i = 1, 2, · · · ,N

ξi ≥ 0, i = 1, 2, · · · ,N ,
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