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Alkaline post‑incubation improves 
the saccharification of poplar after hydrogen 
peroxide–acetic acid pretreatment
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Abstract 

Background:  Hydrogen peroxide–acetic acid (HPAA) is widely used in pretreatment of lignocellulose because it has 
a good capability in selective delignification. However, high concentration (more than 60%) of HPAA increases the 
cost of pretreatment and the risk of explosion. In this work, alkaline post-incubation was employed to decrease the 
HPAA loading and improve the saccharification of poplar.

Results:  Pretreatment with 100% HPAA removed 91.0% lignin and retained 89.9% glucan in poplar. After poplar was 
pretreated by 100% HPAA at 60 °C for 2 h, the glucan conversion in enzymatic hydrolysis by cellulase increased to 
90.1%. Alkaline incubation reduced the total lignin, surface lignin, and acetyl group of HPAA-pretreated poplar. More 
than 92% acetyl groups of HPAA-pretreated poplar were removed by alkaline incubation with 1.0% NaOH at 50 °C 
for 1 h. After incubation of 60% HPAA-pretreated poplar with 1.0% NaOH, the glucan conversion enhanced to 95.0%. 
About 40% HPAA loading in pretreatment was reduced by alkaline incubation without the decrease of glucose yield.

Conclusions:  Alkaline post-incubation had strong ability on the deacetylation and delignification of HPAA-pretreated 
poplar, exhibiting a strong promotion on the enzymatic hydrolysis yield. This report represented alkaline incubation 
reduced the HPAA loading, improved pretreatment safety, exhibiting excellent potential application in saccharifica-
tion of poplar.

Keywords:  Poplar, Hydrogen peroxide–acetic acid pretreatment, Alkaline incubation, Deacetylation, Enzymatic 
hydrolysis
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Background
Poplar as a lignocellulosic material is widely used in bio-
mass conversion [1]. Pretreatment technology is a key 
step for biomass conversion to produce biofuel [2–4]. The 
suitable pretreatment method of biomass can break the 
rigid structure of poplar, which is beneficial to the sub-
sequent enzymatic hydrolysis [2–5]. However, poplar has 
higher lignin content and stronger physical resistance, 

which limit the enzymatic hydrolysis of poplar [6]. There-
fore, it is necessary to remove the lignin of poplar by pre-
treatment to overcome the recalcitrance in enzymatic 
hydrolysis.

Recently, hydrogen peroxide–acetic acid (HPAA) is 
used in pretreatment because it has a good capability in 
selective delignification [7–10]. More than 98.1% lignin 
was removed from pine wood by 100% HPAA at 80  °C 
[10]. 100% HPAA pretreatment can remove 90.3% lignin 
of Jerusalem artichoke and improve enzymatic hydroly-
sis yield to 86.0% [9]. However, after the acetic acid-pre-
treated poplar was pretreated with 100% HPAA at 60 °C, 
the acetyl group increased from 5.9% to 8.0% [11]. The 
acetyl groups in glucan and xylan impacts its hydrolysis 
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by cellulase or xylanase due to the steric hindrance of the 
acetyl groups [12–14]. Pretreatment with 0.1% sodium 
hydroxide can increase the glucose yield of HPAA-pre-
treated poplar from 67.2% to 74.4% [11]. However, the 
effect of sodium hydroxide incubation on the removal of 
acetyl in poplar has not been investigated. And the effect 
of sodium hydroxide concentration on surface charac-
terization and digestibility of HPAA-pretreated poplar 
needs further clarification.

Normally, the high HPAA concentration (more than 
60%) results in the relatively high costs of HPAA pre-
treatment [9–11]. Moreover, higher HPAA concentration 
in HPAA pretreatment faces explosion danger. In HPAA 
system, the formation of peracetic acid is the main reac-
tion and the degradation of hydrogen peroxide is the side 
reaction [15, 16]. Pretreatment with higher HPAA con-
centration can form more peracetic acid, which result in 
the pretreatment facing explosion danger [15]. Hydrogen 
peroxide with high concentration with can release lots of 
oxygen and largely increase the pressure of pretreatment 
system, which put the HPAA pretreatment at the risk of 
explosion. Both the formation of peracetic acid and the 
degradation of hydrogen peroxide require the reduction 
of HPAA concentration. Hence, the second step pretreat-
ment after HPAA pretreatment is proposed to increase 
digestibility and reduce the HPAA concentration. Alka-
line incubation has been widely used in the second step 
pretreatment of lignocellulose [17–19]. Both the lignin 
and acetyl groups retained in HPAA-A pretreated lig-
nocellulose could affect enzymatic hydrolysis. However, 
combined HPAA pretreatment with alkali pretreatment 
has not been reported and the effect of alkaline incuba-
tion on reducing HPAA loading. The effects of residual 
lignin and acetyl group in HPAA-A pretreated lignocel-
lulose on enzymatic hydrolysis were not clear.

Herein, the effects of HPAA concentration on lignin 
removal and enzymatic hydrolysis of poplar were 
explored. Then, 0.1% and 1.0% sodium hydroxide were 
used to investigate the effects of alkaline post-incuba-
tion on the removal of acetyl group in HPAA-pretreated 

poplar. Effects of acetyl and lignin contents on the enzy-
matic hydrolysis of poplar after HPAA pretreatment and 
alkaline incubation were evaluated. The potential of alka-
line post-incubation to decrease the cost and improve the 
safety of HPAA pretreatment was discussed.

Results and discussion
HPAA pretreatment
Component analysis
After poplar was pretreated by 40%, 60%, 80% and 
100% HPAA, the lignin contents of poplar decreased 
from 27.9% to 26.5%, 19.8%, 7.7% and 4.5%, respectively 
(Table 1). Most glucan (89.9%–98.7%) were retained after 
HPAA pretreatment. More than 82.0% lignin in poplar 
was removed and 92.1% glucan of poplar was retained 
after 80% HPAA pretreatment. This data showed that 
HPAA pretreatment has strong glucan retention capacity 
and selectively delignification capability [11].

HPAA pretreatment increased the acetyl group of 
poplar sample from 3.7% to 5.1%–5.9% (Table  1). The 
increase of acetyl content was consistent with the results 
in other report [11]. The formation of acetyl group was 
attributed to the reason that hydroxyl group of cellulose 
and xylan was esterified by acetic acid under the catalysis 
of sulfuric acid [12–14].

HPAA pretreatment increased the acetyl content of 
poplar (Table 1). The grafting of extensive acetyl groups 
on the cellulose or hemicellulose in poplar hindered the 
adsorption of cellulases, thereby decreasing the mono-
saccharides yield of saccharification process [13, 14, 19]. 
Therefore, it was necessary further remove the acetyl 
group of HPAA-pretreated poplar.

XPS analysis
The higher O/C ratio reflects lower lignin and extractives 
contents on the surface of biomass [20]. The O/C ration 
of HPAA40-pretreated poplar was 0.38, which was close 
to the 0.39 of non-pretreated poplar (Table 2). When the 
HPAA concentration was higher than 40%, the O/C ratio 
of poplar increased to 0.40–0.45. This data showed that 

Table 1  Chemical compositions of poplar after pretreated with 40%–100% HPAA (v/v) at 60 °C for 2 h, expressed as percentage of dry 
matter

Pretreatment label Glucan (%) Xylan (%) Lignin (%) Acetyl (%) Solid 
recovery 
(%)

Removal

Glucan (%) Xylan (%) Lignin (%)

Raw 43.4 ± 0.0 17.4 ± 0.2 27.9 ± 0.3 3.7 ± 0.2 – – – –

HPAA40 47.4 ± 0.1 15.7 ± 0.3 26.5 ± 0.4 5.1 ± 0.3 90.2 1.3 18.7 14.3

HPAA60 55.0 ± 0.2 18.1 ± 0.1 19.8 ± 0.2 5.8 ± 0.3 72.4 8.3 24.4 48.6

HPAA80 63.7 ± 0.7 20.0 ± 0.3 7.7 ± 0.0 5.5 ± 0.7 62.7 7.9 27.7 82.8

HPAA100 70.8 ± 0.6 19.5 ± 0.2 4.5 ± 0.5 5.9 ± 0.7 55.1 10.1 38.1 91.2
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pretreatment with 60%–100% HPAA could decrease the 
lignin or extractives (i.e., fatty acids, hydrocarbons) con-
tents on the surface of poplar [21]. Meanwhile, the C1 
peak is primarily composed of lignin and extractives [22]. 
With HPAA concentration increased from 40 to 100%, 
the C1 peak value of the poplar was decreased from 
55.1% to 46.7%, which showed that increasing HPAA 
loading could remove the lignin from the surface of pop-
lar [20, 22].

Enzymatic hydrolysis
After poplar pretreated with 40%–100% HPAA for 2  h, 
glucose yields of poplar by a CTec2 loading of 10 FPU/g 
DM increased from 11.4% to 16.5%–90.1% (Fig. 1). This 
result might be attributed to the lignin removal of poplar 
by HPAA pretreatment [9, 11]. With HPAA concentra-
tion increased from 40% to 100%, the glucose and xylose 
yields of poplar samples improved from 16.5% and 12.0% 
to 90.1% and 84.9%, respectively (Fig.  1). The glucose 
yield of HPAA80-pretreated poplar was 88.1%, which was 
slightly lower than those yields of HPAA100-pretreated 
poplar. This data showed that excessive HPAA loading 
(more than 80%) cannot greatly improve the hydrolysis 
yield of poplar.

Alkaline post‑incubation
Component analysis
After alkaline post-incubation with 0.1% sodium hydrox-
ide, 15.6%–37.8% acetyl groups of HPAA-pretreated 
poplar were removed (Table  3). Meanwhile, 22.1%–
64.5% lignin of HPAA-pretreated poplar was removed. 
The acetyl and lignin removals of HPAA100-pretreated 
poplar were higher than those of HPAA60- and 
HPAA80-pretreated poplar. Those data suggested that the 
acetyl and lignin of poplar pretreated with higher HPAA 

Table 2  XPS analysis of poplar after pretreated with 40%–100% 
HPAA (v/v) at 60 °C for 2 h

C1 corresponds to class of carbon that corresponds to carbon atoms bonded to 
carbon or hydrogen (C–C or C-H)

C2 corresponds to class of carbon atoms bonded to single non-carbonyl 
oxygen(C–O)

C3 corresponds to class of carbon atoms bonded to a carbonyl or two non-
carbonyls (C=O or O–C–O)

Pretreatment label O/C C1 (%) C2 (%) C3 (%)

Raw 0.39 ± 0.0 56.3 ± 0.1 31.3 ± 0.5 12.4 ± 0.4

HPAA40 0.38 ± 0.0 55.1 ± 0.2 33.4 ± 0.1 11.5 ± 0.3

HPAA60 0.40 ± 0.0 52.3 ± 0.7 34.7 ± 0.5 13.0 ± 0.1

HPAA80 0.45 ± 0.0 46.7 ± 0.0 37.6 ± 0.7 15.7 ± 0.7

HPAA100 0.43 ± 0.0 47.3 ± 0.6 37.0 ± 1.1 15.7 ± 0.5
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Fig.1  The monosaccharide yields of 40%–100% HPAA-pretreated 
poplar by CTec2 (10 FPU/g DM) at 50 °C and pH 5.0 for 72 h

Table 3  Chemical compositions of poplar after HPAA–sodium hydroxide (HPAA–SH) process, expressed as percentage of dry matter

In HPAA–SH process, HPAA pretreatment conditions were 40%–100% HPAA (v/v) at 60 °C for 2 h and alkaline post-incubation conditions were 0.1% and 1.0% sodium 
hydroxide at 50 °C for 1 h. The removal of HPAA–SH-pretreated poplar was based on the HPAA-pretreated poplar

Pretreatment label Glucan (%) Xylan (%) Lignin (%) Acetyl (%) Solid 
recovery 
(%)

Removal

Glucan (%) Xylan (%) Lignin (%) Acetyl (%)

HPAA40–SH0.1 52.0 ± 0.9 17.8 ± 0.4 19.7 ± 0.1 4.8 ± 0.2 87.7 4.0 0.2 34.8 16.8

HPAA60–SH0.1 56.3 ± 0.2 18.9 ± 0.3 16.8 ± 0.1 5.3 ± 0.2 92.0 5.8 4.1 22.1 15.6

HPAA80–SH0.1 68.0 ± 0.5 20.0 ± 0.3 4.1 ± 0.0 5.2 ± 0.1 89.5 4.5 10.5 52.5 15.6

HPAA100–SH0.1 71.9 ± 0.6 18.4 ± 0.4 1.9 ± 0.0 4.3 ± 0.3 85.3 13.4 19.4 64.5 37.8

HPAA40–SH1.0 56.1 ± 0.1 18.4 ± 0.0 18.8 ± 0.2 0.5 ± 0.0 79.8 5.7 6.4 43.6 92.1

HPAA60–SH1.0 68.2 ± 0.4 20.1 ± 0.2 6.1 ± 0.0 0.5 ± 0.0 76.2 5.5 15.4 76.7 93.9

HPAA80–SH1.0 76.7 ± 2.5 20.0 ± 0.2 1.4 ± 0.0 0.4 ± 0.0 77.5 6.7 22.4 85.4 94.7

HPAA100–SH1.0 80.5 ± 2.6 17.7 ± 0.8 0.2 ± 0.0 0.4 ± 0.0 75.7 14.0 31.5 96.5 95.0
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concentration might be easier removed by 0.1% sodium 
hydroxide.

However, when the sodium hydroxide concentration 
increased to 1.0%, the acetyl groups of HPAA–SH1.0-
pretreated poplar were greatly decreased to 0.4%–0.5% 
(Table  3). This data showed that 1.0% sodium hydrox-
ide was very effective at the deacetylation of the HPAA-
pretreated poplar. Meanwhile, 43.6%–96.5% lignin of 
HPAA-pretreated poplar was removed by 1.0% sodium 
hydroxide. These data suggested that 1.0% sodium 
hydroxide pretreatment had relatively strong deligni-
fication and deacetylation ability on HPAA-pretreated 
poplar.

XPS analysis
After alkaline post-incubation with 0.1% sodium hydrox-
ide, the O/C ratio of HPAA-pretreated poplar improved 

to 0.39–0.47 (Table 4). A high O/C suggests higher carbo-
hydrate content is cover on the surface of biomass, while 
a low O/C shows more lignin [23]. This data indicated 
that alkaline post-incubation reduced the surface lignin 
of HPAA-pretreated poplar [21, 24]. This result was con-
sistent with the previous report that sodium hydroxide 
treatment decreases the surface lignin of hybrid Pen-
nisetum [24]. When the sodium hydroxide concentra-
tion was increased to 1.0%, the O/C ratios of poplar of 
HPAA-pretreated poplar were increased to 0.40–0.50, 
which were higher than those of HPAA–SH0.1-pretreated 
poplar. It implied that post-incubation with 1.0% sodium 
hydroxide could remove more surface lignin of HPAA-
pretreated poplar than that with 0.1% sodium hydroxide. 
The decrease of surface lignin would be beneficial to the 
following hydrolysis of HPAA-pretreated poplar as sur-
face lignin limits the accessibility of cellulase to cellulose 
in poplar [25].

Enzymatic hydrolysis
After alkaline post-incubation with 0.1% sodium 
hydroxide, the glucose yields of HPAA40-, HPAA60-, 
and HPAA80-pretreated poplar samples increased from 
16.5%–88.1% to 19.3%–98.9% (Fig.  2A). This increase 
was due to the delignification and deacetylation by 
alkaline incubation [12, 26]. Unexpectedly, the incu-
bation with 0.1% NaOH decreased the glucose yield 
of HPAA100-pretreated poplar from 90.1% to 80.3%. 
Meanwhile, the glucose yield (90.8%) of HPAA80–SH1.0-
pretreated poplar was lower than that of HPAA80–SH0.1-
pretreated poplar (98.9%). This phenomenon has been 
confirmed by many other authors, which exhibited 

Table 4  XPS analysis of HPAA–SH-pretreated poplar

In HPAA–SH process, HPAA pretreatment conditions were 40%–100% HPAA (v/v) 
at 60 °C for 2 h and alkaline post-incubation conditions were 0.1% and 1.0% 
sodium hydroxide at 50 °C for 1 h

Pretreatment label O/C C1 (%) C2 (%) C3 (%)

HPAA40–SH0.1 0.39 ± 0.0 54.4 ± 0.3 32.9 ± 0.6 12.7 ± 0.3

HPAA60–SH0.1 0.42 ± 0.0 49.3 ± 0.1 36.0 ± 0.5 14.6 ± 0.4

HPAA80–SH0.1 0.47 ± 0.0 43.8 ± 0.3 41.5 ± 0.0 14.7 ± 0.3

HPAA100–SH0.1 0.46 ± 0.0 45.6 ± 0.0 38.1 ± 0.3 16.3 ± 0.3

HPAA40–SH1.0 0.40 ± 0.0 53.4 ± 0.2 34.9 ± 0.8 11.7 ± 0.6

HPAA60–SH1.0 0.44 ± 0.0 49.4 ± 0.1 37.5 ± 0.2 13.1 ± 0.1

HPAA80–SH1.0 0.50 ± 0.0 43.6 ± 0.1 41.5 ± 0.1 15.0 ± 0.0

HPAA100–SH1.0 0.50 ± 0.0 40.6 ± 0.2 43.0 ± 0.3 16.5 ± 0.0

0

20

40

60

80

100

40 60 80 100

G
lu

co
se

 y
ie

ld
 (%

)

HPAA concentration (%)

(A) (B)

HPAA-SH

HPAA-SH

0

20

40

60

80

100

40 60 80 100

X
yl

os
e 

yi
el

d 
(%

)

HPAC concentration (%)

HPAA-SH₀.₁

HPAA-SH₁.₀

Fig. 2  Effects of alkaline post-incubation on the glucose (A) and xylose (B) yields of 40%–100% HPAA-pretreated poplar by CTec2 (10 FPU/g DM) at 
50 °C and pH 5.0 for 72 h
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further delignification of sample by alkaline incubation 
cannot increase efficiency of enzymatic hydrolysis any-
more [27, 28]. These results might be due to that higher 
sodium hydroxide and HPAA concentration removed 
much amorphous cellulose [11] in poplar because the 
amorphous cellulose was easier to hydrolysis [29]. Fur-
thermore, excessive removal of lignin during pretreat-
ment results in the aggregation of cellulose, which could 
negatively affect the surface accessibility [29, 30]. Hence, 
the aggregation of cellulose by pretreatment could be 
a reason that higher HPAA or alkali concentrations 
reduced the hydrolysis yield of poplar.

When the sodium hydroxide concentration increased 
to 1.0%, the glucose yields of HPAA40–SH1.0-, HPAA60–
SH1.0-, HPAA80–SH1.0-, and HPAA100–SH1.0-pre-
treated poplar were 65.1%, 95.0%, 90.8%, and 91.7%, 
respectively. The glucose yields of HPAA60–SH1.0- and 
HPAA100-pretreated poplar were close (Figs.  1 and 3), 
which showed that alkaline incubation can reduce 40% 
HPAA loading in pretreatment without obvious decrease 
of hydrolysis yield.

Additionally, alkaline post-incubation with 1.0% 
sodium hydroxide greatly improved the xylose yield of 
HPAA-pretreated poplar from 12.0% to 85.7% to 77.0%–
95.2% (Fig. 2B). These data could be due to that alkaline 
post-incubation removed the acetyl group of hemicel-
lulose in HPAA-pretreated poplar, which reduced the 
steric hindrance of acetyl group to xylanase in CTec2 and 
improved the hydrolysis efficiency of xylanase [13].

It was found that linear relationship (R2 > 0.95) existed 
between the glucose and xylose yields in enzymatic 
hydrolysis of HPAA- and HPAA–SH-pretreated poplar 

(Fig. 3). This result could be due to the synergistic effect 
of the cellulase and xylanase in CTec2 affected the enzy-
matic hydrolysis [31]. Higher xylose yields were got from 
HPAA–SH1.0-pretreated poplar than HPAA- and HPAA–
SH0.1-pretreated poplar when the same amount of glu-
cose was released. This data showed that the xylan in 
HPAA–SH1.0-pretreated poplar was more easily hydro-
lyzed than that xylan in HPAA- and HPAA–SH0.1-pre-
treated poplar.

Relationship between lignin content 
and hydrolysis yield
In alkaline incubation process, lignin content and acetyl 
group are two main factors affecting enzymatic hydroly-
sis of pretreated lignocellulose [28, 32]. In a certain range 
of lignin content, the materials with lower lignin content 
are more easily degraded by cellulase [28]. In this work, 
the relationships between lignin contents and the glucose 
yields of HPAA- and HPAA–SH-pretreated poplar were 
analyzed  (Additional file 1: Fig. S1). The lignin contents 
and the glucose yields of HPAA–SH-pretreated poplar 
showed lower linear correlation (R2 = 0.72–0.82) than 
those of HPAA-pretreated poplar (0.9). This result might 
be due to alkaline incubation removed excessive lignin 
of poplar and excessive delignification of poplar, which 
could not increase efficiency of enzymatic hydrolysis any-
more [28].

A linear relationship (R2 > 0.94) existed between lignin 
content and the xylose yields in the hydrolysis of HPAA–
SH1.0-pretreated poplar. However, the xylose yields of 
HPAA- and HPAA–SH0.1-pretreated poplar showed 
lower linear correlation with lignin contents. These data 
could be due to the presence of high acetyl contents in 
the HPAA- and HPAA–SH0.1-pretreated poplar (Tables 1 
and 3), which impacted the hydrolysis of poplar xylan 
[12].

Relationship between acetyl content 
and hydrolysis yield
After alkaline incubation with different concentrations 
of sodium hydroxide, the HPAA–SH-pretreated poplar 
samples contained different acetyl contents (Table  3). 
When the HPAA concentrations in pretreatment were 
40% or 60%, a linear relationship (R2 > 0.99) between 
acetyl content and monosaccharides (glucose and xylose) 
yields existed  (Additional file 1: Fig. S2). This data indi-
cated that acetyl content played a very important role 
in the hydrolysis of 40% and 60% HPAA-pretreated 
poplar [32]. However, it was not found the linear rela-
tion between acetyl content and monosaccharide yields 
in 80% and 100% HPAA-pretreated poplar, which indi-
cated that besides acetyl group, there some other factors 
(such as cellulase and xylanase activities in hydrolysate, 

HPAA: y = 0.9977x - 1.6767
R² = 0.9832

HPAA-SH0.1: y = 0.9573x + 0.5788
R² = 0.9894

HPAA-SH1.0: y = 0.5961x + 38.722
R² = 0.9575
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Fig.3  Relationship between xylose and glucose yields in the 
hydrolysis of 2% HPAA- and HPAA–SH-pretreated poplar



Page 6 of 9Wen et al. Biotechnol Biofuels          (2021) 14:151 

inhibitor in hydrolysate, amorphous cellulose content in 
samples) might affect the enzymatic hydrolysis of 80% or 
100% HPAA-pretreated poplar [32, 33].

Mass balance
Figure 4 presents the mass balance of poplar after HPAA 
pretreatment and subsequent enzymatic hydrolysis using 
CTec2. After pretreatment with 100% HPAA, 390.5 g glu-
cose and 103.8 g xylose were got from 1 000 g raw pop-
lar by enzymatic hydrolysis. Interestingly, HPAA60–SH1.0 
and HPAA80–SH0.1 pretreatments processes gave 514.6 g 
and 536.1  g monosaccharides (glucose and xylose) 
from 1 000  g raw poplar, which were higher than those 
obtained from HPAA100 pretreatment (494.3  g) with-
out alkaline post-incubation. These results showed that 
alkaline incubation not only reduced the HPAA loading 
in the pretreatment, but also increased monosaccharide 
yields from poplar. In previous report, after poplar pre-
treated with 80% HPAA, only 190.0 g glucose and 86.0 g 
xylose  were obtained from 1 000  g raw poplar by enzy-
matic hydrolysis [34]. Compared with the previous report 
[34], the higher monosaccharide yields obtained in this 
work improved the economic benefit, and the relatively 

lower HPAA concentration (60%) improved the safety of 
pretreatment.

Normally, the pretreatment temperature of poplar is 
higher than 150 °C [35–39]. Herein, the temperatures of 
HPAA pretreatment and alkaline post-incubation were 
60  °C and 50  °C, respectively, indicating that they were 
relatively mild pretreatments. Moreover, some reports 
obtained relatively low glucose yields (less than 65.0%) 
from pretreated poplar and the cellulase loading were 
higher than 15 FPU/g DM [40–42]. Furthermore, the 
enzymatic hydrolysis of HPAA-pretreated lignocelluloses 
needs extra cellulase or surfactant to improve hydrolysis 
yield [11, 43, 44]. Herein, more than 95.0% glucose yields 
were got from poplar and only 10 FPU CTec2 per g DM 
was used in the enzymatic hydrolysis without extra cel-
lulase or surfactant. Therefore, the HPAA–SH process 
had a great potential to decrease the cost of monosac-
charides production from poplar. To reduce the cost of 
the HPAA–SH pretreatment, pressure shift distillation 
can be employed to separate acetic acid and the peracetic 
acid formed in HPAA solution [45, 46]. Furthermore, the 
HPAA solution can be reused in the next pretreatment to 
reduce the cost. Sodium hydroxide solution in alkaline 

Glucan 433.8 g 
Xylan 173.6 g 
Lignin 279.3 g

Non-pretreated poplar
1000.0 g

HPAA60 Pretreatment 
60 °C, 60% HPAA, 2 h 

Alkali incubation 
50 °C, 0.1% NaOH, 1 h

Alkali incubation 
50 °C, 1.0% NaOH, 1 h 

Glucose 419.3 g 
Xylose 116.8 g 

Enzymatic hydrolysis 
10 FPU/g DM CTec2 for 72 h 

HPAA80 Pretreatment
60 °C, 80% HPAA, 2 h 

HPAA60 pretreated poplar
724.0 g 
Glucan 398.0 g 
Xylan 131.3 g 
Lignin 143.5 g 

HPAA80-SH0.1
pretreated poplar 
561.2 g 
Glucan 381.6 g 
Xylan 112.3 g 
Lignin 22.8 g

HPAA60-SH1.0
pretreated poplar 
551.7 g 
Glucan 376.1 g 
Xylan 111.0 g 
Lignin 33.5 g

Enzymatic hydrolysis 
10 FPU/g DM CTec2 for 72 h 

Glucose 397.1 g 
Xylose 117.5 g 

HPAA80 pretreated poplar
627.0 g 
Glucan 399.6 g 
Xylan 125.5g 
Lignin 48.1 g 

HPAA100 Pretreatment  
60 °C, 100% HPAA, 2 h 

HPAA100 pretreated poplar 
551.0 g 
Glucan 390.1 g 
Xylan 107.5 g 
Lignin 24.6 g 

Glucose 390.5 g 
Xylose 103.8 g 

Enzymatic hydrolysis 
10 FPU/g DM CTec2 for 72 h 

Fig.4  Mass balances for production of monosaccharides from poplar after HPAA80–SH0.1 and HPAA60–SH1.0 pretreatments
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post-incubation can be reused in next process. Further-
more, sodium hydroxide solution also can be diluted 
and neutralized as a buffer used in enzymatic hydrolysis, 
which can eliminate washing process of poplar [18]. The 
process of HPAA and alkaline post-incubation reduced 
HPAA loading and provided a preferable feature for the 
production of sugars from poplar with relatively mild 
conditions.

Conclusions
HPAA pretreatment removed 14.3%–91.2% lignin of 
poplar and increased the acetyl content to 5.1%–5.9%. 
More than 93.0% acetyl and 76.0% lignin contents of 
HPAA60-pretreated poplar was removed by 1.0% sodium 
hydroxide. Alkaline incubation reduced 40% HPAA load-
ing in pretreatment and increased the glucose yield of 
HPAA60-pretreated poplar to 95.0%. The results in this 
work showed that alkaline post-incubation had strong 
ability on the deacetylation and delignification of HPAA-
pretreated poplar, exhibiting a strong promotion on 
enzymatic hydrolysis yield. This report provided a scien-
tific guidance for production of monosaccharides from 
poplar by HPAA pretreatment with less HPAA loading 
and low temperature.

Materials and methods
Materials
Poplar was obtained from the Nanjing Forestry Univer-
sity (Jiangsu, China). Cellic CTec2 (Novozymes A/S, 
Bagsværd, Denmark) had an activity of 123.0 filter paper 
units (FPU)/mL (176.2 mg protein/mL). Acetic acid and 
sodium hydroxide used in this work were purchased from 
Guanghua sci-tech Co., Ltd (Guangdong, China).

HPAA pretreatment
The HPAA solution was prepared by mixing hydrogen 
peroxide (30%, w/w) and acetic acid (99%, w/w) at a ratio 
of 1:1 (v/v) [11]. HPAA pretreatments were investigated 
at 60  °C with 40%–100% (v/v). The pretreatment with 
40%, 60%, 80%, and 100% HPAA were labeled as HPAA40, 
HPAA60, HPAA80, and HPAA100, respectively. All pre-
treatments were performed at a solid-to-liquid ratio of 
1:10 (w/v) for 2 h with 100 mM H2SO4 as a catalyst. The 
solid residues were separated by filtration and washed 
extensively with distilled water until the wash water had a 
neutral pH, then stored at − 20 °C for chemical composi-
tion analysis and enzymatic hydrolysis. All pretreatments 
were carried out in duplicate and the average values are 
presented.

Alkaline post‑incubation
HPAA-pretreated samples were employed for the 
subsequent alkaline post-incubation. The alkaline 

post-incubation was performed at 50  °C for 1  h with 
a solid-to-liquid ratio of 1:10 (w/v) by 0.1% and 1.0% 
sodium hydroxide, respectively, which were labeled as 
HPAA–SH0.1 and HPAA–SH1.0. All experiments were car-
ried out in duplicate and the average values are presented.

Enzymatic hydrolysis
Enzymatic hydrolysis of poplar samples was conducted 
in 10-mL test tubes (601,051–1, Biosharp, Hefei, China) 
with a working volume of 3.0  mL in 50  mM sodium 
citrate buffer (pH 5.0) at 50  °C and 200  rpm. Poplar 
samples were loaded at 2% (w/v) with a Cellic CTec2 
loading of 10 FPU/g DM for 72 h. All hydrolysis experi-
ments were carried out in duplicate and the average 
values are presented.

Analytical methods
Monosaccharides were analyzed by the method as 
described previously [21]. The contents of glucan, 
xylan and lignin of poplar were determined by the 
National Renewable Energy Laboratory analytical pro-
cedure [47]. The acetyl contents of poplar solids were 
determined as per NREL Laboratory Analytical Proce-
dure 002 method using glacial acetic acid as a calibra-
tion standard [11]. XPS analysis was consistent with 
the method previously reported [48]. All experiments 
were carried out in duplicate and the average values are 
presented.

Calculations
Calculations
The recovery and removal of each component were cal-
culated by the following formula:

where Wbefore pretreatment and Wafter pretreatment were the 
weight of poplar before and after pretreatment.

where Wcomponent before pretreatment and Wcomponent after pretreat-

ment were the weight of the components (cellulose, xylan, 
and lignin) in poplar before and after pretreatment.

The glucose and xylose yields of enzymatic hydrolysis 
were calculated based on the following equations:

(1)Soild recovery(%) =
Wafter pretreatment

Wbefore pretreatment
× 100

(2)

Removal (%) =

(

1−
Wcomponent after pretreatment

Wcomponent before pretreatment

)

× 100

(3)

Glucose yield (%)

=

Glucose in enzymatic hydrolysate× 0.9

Glucan in treated poplar
× 100
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(4)

Xylose yield (%)

=

Xylose in enzymatic hydrolysate × 0.88

Xylan in treated poplar
× 100
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