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Abstract 

Background:  Lignin is a complex aromatic heteropolymer comprising 15–30% dry weight of the lignocellulose. The 
complex structural characteristic of lignin renders it difficult for value-added utilization. Exploring efficient lignin-
degrading microorganisms and investigating their lignin-degradation mechanisms would be beneficial for promot‑
ing lignin valorization. In this study, a newly isolated white-rot basidiomycete, Trametes hirsuta X-13, with capacity to 
utilize alkaline lignin as the sole substrate was investigated.

Results:  The analysis of the fermentation properties of T. hirsuta X-13 using alkaline lignin as the sole substrate, 
including the mycelial growth, activities of ligninolytic enzymes and the rates of lignin degradation and decoloriza‑
tion confirmed its great ligninolysis capacity. The maximum lignin degradation rate reached 39.8% after 11 days of 
T. hirsuta X-13 treatment, which was higher than that of reported fungi under the same condition. Fourier transform 
infrared spectrometry (FTIR), gas chromatography–mass spectrometry (GC–MS) scanning electron micrographs (SEM), 
two-dimensional heteronuclear single quantum coherence NMR analysis (2D-HSQC NMR) collaborated with pyroly‑
sis gas chromatography–mass spectrometry (py-GC/MS) analyses proved that lignin structure was severely decon‑
structed along with amounts of monomer aromatics generated. Furthermore, according to those chemical analysis, 
in addition to canonical Cα–Cβ breakage, the cleavage of lignin interunit linkages of β–β might also occur by T. hirsuta 
X-13.

Conclusions:  This study characterized a newly isolated white-rot basidiomycete T. hirsuta X-13 with impressive alka‑
line lignin degradation ability and provided mechanistic insight into its ligninolysis mechanism, which will be valuable 
for the development of lignin valorization strategies.
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Background
Lignin is a complex aromatic and optically inactive 
amorphous heteropolymer accounting for 15–30% 
dry weight of the lignocellulosic biomass, which is the 
most abundant source of renewable aromatic carbon on 
earth. It contains three different phenyl propane units 
(p-hydroxyphenyl, guaiacyl and syringyl units) connected 
by a multiplicity of C–O and C–C bonds, such as β-O-
4, β–β, 4-O-5, β-5 [1]. The heterogeneous and complex 
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structural characteristics of lignin render it difficult 
for degradation. In lignocellulosic biomass structure, 
lignin is embedded between cellulose and hemicellulose 
structures, forming a complex heterogeneous network 
that limits the accessibility of enzymes or chemicals [2]. 
Hence, depolymerization of lignin structure of lignocellu-
losic biomass is a crucial step in the biorefinery industry 
aiming at increasing the accessibility of relevant enzymes 
to polysaccharides [3]. In addition, lignin consist of phe-
nyl propane units also representing a potentially intrigu-
ing valuable source of renewable aromatic chemicals [4, 
5]. The valorization of lignin by microorganisms which 
converted it into valuable chemicals such as vanillin, 
eugenol and other phenolics has attracted much atten-
tion [6–8].

To date, a number of microorganisms including fungi 
and bacteria were found with capacity to depolymerize 
lignin [1, 9]. In fungi, as the extensively studied lignin 
degraders, white-rot basidiomycetes were demonstrated 
as the exclusive species that can degrade lignin com-
pletely [10, 11]. White-rot basidiomycete fungi produce 
several types of highly efficient and unique extracellular 
oxidative enzymes including laccase, and lignin-degrad-
ing peroxidases that are involved in lignin degradation. 
Instead of degrading lignin, brown-rot fungi were found 
to modify the lignin structure through hydroxyl radi-
cal oxidants produced via Fenton chemistry pathway 
[12, 13]. Although some bacteria, such as Pseudomonas 
putida, Cupriavidus basilensis, and Rhodococcus jostii 
have been reported with lignin degradation ability, their 
lignin depolymerization activities were significantly 
weaker than those of fungi [14–16]. Hence, ligninolytic 
fungi especially white-rot basidiomycete fungi repre-
sent promising microorganisms for lignin biological 
treatment.

Although ligninolytic enzymes have been extensively 
identified and characterized in white-rot fungi, the deg-
radation pathways of lignin largely remain unknown. The 
only demonstrated ligninolysis routes in white-rot fungi 
were Cα–Cβ and β-O-4 cleavages based on the detection 
of the corresponding benzoic acid derivatives during the 
lignocellulosic biomass degradation [17–20]. Further-
more, knowledge of the degradation routes of lignin by 
white-rot basidiomycete fungi when used as the sole car-
bon source were less studied. With the global availability 
and chemical versatility, lignin is regarded as an intrigu-
ing renewable aromatic complex and has a promising 
potential in the production of commercially valuable 
chemicals [21]. Yet so far the use of enzymatic technology 
for commercial lignin conversion remains challenging. 
Exploring efficient lignin-degrading fungi and investigat-
ing their degradation mechanisms for lignin substrate 
would be available for promoting lignin valorization.

In this study, we characterized a newly isolated ligni-
nolytic white-rot basidiomycete Trametes hirsuta X-13. 
To assess the lignin degradation ability, the fermenta-
tion properties of T. hirsuta X-13 using alkaline lignin 
as the sole carbon source including the mycelial growth, 
activities of lignin-degrading enzymes and rates of lignin 
degradation and decolorization were investigated. Fur-
thermore, Fourier transform infrared spectrometry 
(FTIR), gas chromatography–mass spectrometry (GC–
MS), scanning electron micrographs (SEM), two-dimen-
sional heteronuclear single quantum coherence NMR 
analysis (2D-HSQC NMR) and pyrolysis gas chromatog-
raphy–mass spectrometry (py-GC/MS) were employed 
for exploration of the structure variations of lignin resi-
dues, the corresponding metabolic compounds and the 
ligninolysis route by the strain.

Results and discussion
Isolation, screening and identification of ligninolytic 
fungus strain
During the isolation process, 13 strains in total were iso-
lated from collected rotten wood samples. Of these iso-
lates, the strain X-13 produced the largest colorization 
zone and decolorization zone on guaiacol-containing 
and Azure B-containing PDA medium, respectively, in 
the screening procedure (Additional file  1: Figure S1). 
Guaiacol and Azure B are commonly used as indicators 
for determining the lignolytic potential [22]. This indi-
cated the potentially strong ligninolytic activity of strain 
X-13. The morphological analysis of strain showed that 
the colony of strain X-13 was milky white with the dense 
hyphae, and it revealed a thread-like septate mycelium 
without any reproductive structures (Additional file  2: 
Figure S2), which were similar to those of reported Tram-
etes hirsuta genus strains [23, 24]. Moreover, the ITS 
region sequence of strain X-13 (GenBank: MT995079) 
showed 99% similarity with that of white-rot basidiomy-
cete Trametes hirsuta JL-22-2 according to NCBI BLAST 
algorithm analysis. As shown in Fig. 1, phylogenetic tree 
analysis revealed that strain X-13 belongs to species of 
Trametes hirsuta. Therefore, the strain X-13 was iden-
tified as Trametes hirsuta strain, which has since been 
deposited in the China General Microbiological Culture 
Collection (CGMCC No. 18567).

Characterization of lignin degradation by T. hirsuta X‑13
To evaluate the lignin degradation property of T. hirsuta 
X-13, the growth of mycelial biomass, the rates of lignin 
degradation and decolorization, and the ligninolytic 
enzymes activity were investigated during the incuba-
tion with alkaline lignin as sole carbon source. As shown 
in Fig. 2a, the dry weight of mycelial biomass increased 
with the time and achieved a maximum on day 7 and 
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then started to decline gradually. This suggested that T. 
hirsuta X-13 could utilize alkaline lignin as the sole car-
bon and energy source for growth. Although numerous 
microorganisms including fungi and bacteria have been 
found with lignin degradation ability, less was reported 
with sole lignin substrate for growth [10, 11]. As the com-
plete oxidation of lignin is highly exothermic, lignin deg-
radation is too slow to function as a source of metabolic 
energy [25]. Hence, during the lignin degradation process 

of the most ligninolytic microorganisms, additional car-
bon or nitrogen source was needed to be supplemented 
to initiate lignin depolymerization [25–27]. Despite that 
the presence of polysaccharides impurities in the alka-
line lignin might also contribute to the growth of T. hir-
suta X-13, the small amount of these (1.52%) (Additional 
file 3: Table S1) limited their effects on the strain growth. 
The rapid growth of T. hirsuta X-13 in the medium con-
taining alkaline lignin as the sole carbon source suggested 

Fig. 1  Phylogenetic tree presents the relationship of strain X-13 with other related fungal strains based on ITS region sequences. The phylogenetic 
tree was constructed by the maximum likelihood algorithm (1000 bootstrap trials)

Fig. 2  The variations of lignin degradation and decolorization, mycelial biomass growth (a) and ligninolytic enzymes activities (b) during the T. 
hirsuta X-13 incubation with lignin as the sole carbon source
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the dramatic capacity of lignin depolymerization and 
metabolism for this fungus strain. The decline of fungal 
growth after 7  days of incubation in lignin-containing 
medium might be due to the accumulation of toxic meta-
bolic compounds including lignin-derived aromatic com-
pounds and the reduction of nutrient essential for strain 
growth.

The rates of lignin degradation and decolorization 
showed the same trends during whole incubation time 
(Fig. 2a). The rates of both lignin degradation and decol-
orization increased rapidly in the initial 7  days, which 
then almost remained unchanged. This was directly cor-
related with the mycelial biomass growth of the strain. 
The maximum rates of both lignin degradation and 
decolorization were obtained at 11th day, with the values 
of 39.8% and 52.4%, respectively. The maximum lignin 
degradation rate by T. hirsuta X-13 was higher than that 
of reported fungi under the same condition [11]. These 
results further indicated the strong ability of lignin degra-
dation by T. hirsuta X-13.

The degradation of lignin by white-rot fungi mainly 
depends on the action of a series of ligninolytic enzymes 
including laccase, lignin peroxidase and manganese per-
oxidase [28]. As shown in Fig.  2b, the activities of lac-
case (Lac) and manganese peroxidase (MnP) showed 
approximate increase trend during the initial 7  days. 
After that, they started to decline. The lignin peroxidase 
(LiP) activity was undetected across the whole incuba-
tion time. Furthermore, secretomic analysis was carried 
out to provide insight into the ligninolytic system of T. 
hirsuta X-13. There were in total 792 proteins identified 
in lignin cultures of T. hirsuta X-13 (Additional file  4), 
which were divided into six categories according to their 
biological function (Additional file  5 and Additional 
file  6: Figure S3). Among these, 42 proteins that func-
tioned as ligninolytic enzymes are listed in Additional 
file 7: Table S2, which include six laccases, eight manga-
nese peroxidases, four lignin peroxidases, two dye-decol-
orizing peroxidases and one GMC oxidoreductase. Most 
of those identified ligninolytic enzymes were predicted as 
the extracellular proteins. The existence of the abundance 
of those ligninolytic enzymes cocktail in the secretory 
proteins of T. hirsuta X-13 indicated its strong ability 
towards lignin degradation. Although four lignin peroxi-
dases were found, the corresponding activity was unde-
tectable during the lignin degradation by T. hirsuta X-13, 
which might be due to that the protein level of lignin per-
oxidase was too low to be detected for enzyme activity. 
It should be noted that considerable amount of proteins 
(71) belonging to CAZy (glycoside hydrolase, carbohy-
drate esterase and carbohydrate-binding module) were 
found in the secretory proteins. As lignin was used as 
the sole carbon with less impurity, those identified CAZy 

enzymes might be derived from the constitutive expres-
sion by the strain with low level [29, 30]. Quantitative 
secretomic analysis is needed in further study to clarify 
this speculation. In addition, the variation of detected 
ligninolytic enzymes activity was in line with that of 
strain growth and lignin degradation. These results sug-
gested that laccase and manganese peroxidase were the 
main enzymes responsible for lignin degradation by T. 
hirsuta X-13. A number of Trametes genus strains have 
been found with lignin-degrading activity, and they could 
secrete abundance of lignin-degrading enzymes includ-
ing laccase, lignin peroxidase and manganese peroxidase 
[31, 32]. However, the lignin degradation studies with 
these strains were conducted under the co-existence of a 
large amount of glucose substrate [33, 34]. The utilization 
of alkaline lignin as the sole carbon resource by Trametes 
hirsuta strain was rarely reported.

FTIR analysis
To investigate the changes of functional groups and 
chemical structures of alkaline lignin after treatment with 
T. hirsuta X-13, FTIR analysis was performed. As shown 
in Fig. 3, the FTIR spectra of raw and treated lignin by T. 
hirsuta X-13 displayed distinct changes, especially on the 
lignin fingerprint region (1700–1000  cm−1). The major 
peaks of samples were assigned as listed in Table 1 based 
on the previous literature reports [35–37].

The intensities of bands at 2860  cm−1 and 1420  cm−1 
which were assigned to C–H stretching in aromatic 
methoxyl groups and aromatic skeletal vibrations com-
bined with O–CH3 in plane deform, respectively, were 
reduced with the increase in the treatment time of T. 

Fig. 3  FTIR spectra of the control and treated lignin samples with 
T. hirsuta X-13 for 7 and 13 days. The labeled peaks with number 
assigned to the corresponding functional groups and structures are 
listed in Table 1
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hirsuta X-13, suggesting the demethoxylation reac-
tion of lignin by the strain. The decline of the intensi-
ties of the bands at 1275  cm−1 and 1041  cm−1 ascribed 
to C–O in guaiacyl group, and 1511  cm−1 belongs to 
aromatic skeletal vibrations (G > S) in T. hirsuta X-13-
treated samples implied the removal of guaiacyl unit in 
lignin. Meanwhile, the weakened intensities of bands at 
1600  cm−1 and 1317  cm−1, relating to aromatic skeletal 
vibrations and C=O stretch (S > G) and C–O in syrin-
gyl group, respectively, suggested the decline of syringyl 
unit content in lignin after T. hirsuta X-13 treatment. 
The decreased intensities of the bands at 1090 cm−1 cor-
responding to C–O vibrations in aliphatic ethers and/or 
in secondary alcohols in T. hirsuta X-13-treated samples 
illustrated that more easily degradable materials were 
produced after the demethylation and side chain oxida-
tion of lignin. In addition, the reduction of intensity of 
the bands at 618  cm−1 ascribed to stretching vibrations 
of the C–S bond linked to the aromatic ring indicated a 
side chain oxidation of lignin. These significant variations 
of FTIR spectra on T. hirsuta X-13-treated lignin rela-
tive to control indicated that lignin structure was largely 
destructed by this fungus strain, which further demon-
strated its impressive ligninolytic capacity.

GC–MS analysis
To investigate the degradation products from alkaline 
lignin by T. hirsuta X-13, GC–MS analysis was carried 
out. The low molecular weight metabolic compounds 
identified from the peaks of the total ion chromatograms 
(Additional file 8: Figure S4) are listed in Table 2. A total 
of 12 aromatics and 3 fatty acids were identified from the 
lignin samples after 13 days of T. hirsuta X-13 treatment, 

and only 4 aromatics were obtained from the control 
group. Among these aromatic compounds, 2,4-dihy-
droxybenzaldehyde, gentisic acid, 2,6-dihydroxybenzoic 
acid, 3,4,5-trihydroxybenzoic acid, 3,5-ditert-butylphe-
nol, 4,5-dihydroxyphenylacetic acid, 2-hydroxybenzoic 
acid, 3,5-dimethoxy-4-hydroxyacetophenone, 4‑hydroxy-
phenylacetic acid, 3,4-dihydroxyphenylacetic acid were 
only observed in T. hirsuta X-13-treated sample, sug-
gesting the occurrence of lignin depolymerization by the 

Table 1  Functional groups and structures assignment of the FTIR spectra peaks

Number Wavenumber (cm−1) Functional groups and structures assignment

1 3420 OH stretching vibration

2 3210 OH stretching vibration

3 3050 OH stretching vibration

4 2860 C–H stretching in aromatic methoxyl groups

5 1650 Absorbed O–H and conjugated C–O

6 1635 C=C stretching vibration peak in benzene ring

7 1600 Aromatic skeletal vibrations and C=O stretch; S > G

8 1511 Aromatic skeletal vibrations; G > S

9 1420 Aromatic skeletal vibrations combined with O–CH3 in plane deform

10 1317 C–O in syringyl group

11 1275 C–O in guaiacyl group

12 1090 C–O vibrations in aliphatic ethers and/or in secondary alcohols

13 1041 C–O in guaiacyl group

14 618 Stretching vibrations of the C–S bond linked to the aromatic ring

Table 2  Identification of degradation products from the control 
and T. hirsuta X-13-treated lignin cultures by GC–MS method

RT (min) Compound Control Treated

8.10 2,4-Dihydroxybenzaldehyde −  + 

8.78 Gentisic acid −  + 

11.06 Phenylacetic acid +   + 

12.40 2,6-Dihydroxybenzoic acid −  + 

12.66 Dodecanedioic acid −  + 

13.99 3,4,5-Trihydroxybenzoic acid −  + 

14.20 9,12,15-Octadecatrienoic acid −  + 

14.83 3,5-Ditert-butylphenol −  + 

14.95 Acetovanillone  +  −
16.00 4,5-Dihydroxyphenylacetic acid −  + 

16.21 4-Hydroxybenzaldehyde  +  −
17.39 2-Hydroxybenzoic acid −  + 

17.76 Vanillin  +  −
17.84 3,5-Dimethoxy-4-hydroxyacetophenone −  + 

19.47 Hexadecanoic acid −  + 

19.92 4‑Hydroxyphenylacetic acid −  + 

20.60 4,6-Dihydroxybenzoic acid  +   + 

24.07 3,4-Dihydroxyphenylacetic acid −  + 
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strain treatment. Meanwhile, the presence of three long-
chain fatty acid compounds, i.e., dodecanedioic acid, 
9,12,15-octadecatrienoic acid and hexadecanoic acid 
in T. hirsuta X-13-treated sample might indicate that 
the generated aromatic compounds derived from lignin 
structure were further converted to fatty acid compounds 
via aromatic ring cleavage by the strain [38, 39]. However, 
further studies are needed to elucidate the metabolic 
pathway of fatty acids during the lignin degradation by T. 
hirsuta X-13. In addition, the predomination of aromatic 
acid compounds in the identified products implied the 
splitting of the aliphatic side chains of lignin units by T. 
hirsuta X-13. These suggested that the lignin structure 
was deeply destructed by the strain, which was consistent 
with FTIR analysis results.

It is noticeable that there were three unique aromatic 
compounds, i.e., acetovanillone, 4-hydroxybenzalde-
hyde and vanillin identified in the control group. These 
three aromatic compounds were the canonical aromatic 
metabolites presented in bacterial lignin degradation 
process [15, 25, 40, 41]. Moreover, vanillin generated 
from Cα–Cβ oxidative cleavage of β-aryl ether compo-
nents of lignin was the major metabolite in lignin degra-
dation process of many lignin-degrading microorganisms 
[1]. The presence of these three aromatic compounds in 
the control group suggested that the partial oxidation 
and degradation of lignin occurred during the produc-
tion process [15, 37]. While the absence of these three 
aromatic compounds in lignin-derived metabolites of T. 
hirsuta X-13-treated group indicated the catabolism of 
these compounds by the strain for growth.

Acetovanillone could be converted to ferulic acid or 
vanillin by C–C coupling reaction, while this compound 
was found to be resistant for some bacteria [42]. That 
acetovanillone and its intermediate metabolites (feru-
lic acid and vanillin) were not detected suggested the 
strong degradation and metabolism capacity of T. hir-
suta X-13 for lignin and its aromatic units. The appear-
ance of 4-hydroxyphenylacetic acid corresponding with 
the absence of 4-hydroxybenzoic acid implied that Cα–Cβ 
cleavage might exist during the 4-hydroxybenzoic acid 
degradation by T. hirsuta X-13 [43]. It has been reported 
that the Cα–Cβ cleavage for lignin or aromatic com-
pounds could be catalyzed by laccase [37, 44]. This was 
in line with the above results of enzymatic analysis that 
laccase activities were detected across the whole process 
of lignin degradation by T. hirsuta X-13.

SEM analysis
To investigate the morphological changes of alkaline 
lignin after degraded by T. hirsuta X-13, SEM analysis 
was performed to observe the surface microstructure of 
lignin samples. As shown in Fig. 4, the surface structure 

of control lignin samples and after T. hirsuta X-13 treat-
ment revealed a dramatic distinction. The control lignin 
samples consist of large fragments with smooth flat 
surface structure (Fig.  4a, b). However, the particle size 
of lignin treated by T. hirsuta X-13 was reduced with 
smaller fragments generated (Fig. 4c). Moreover, the sur-
face of treated lignin turned rugged with more cracks 
(Fig.  4d). The remarkable changes of treated lignin par-
ticle size and surface also confirmed that the lignin was 
severely degraded by T. hirsuta X-13.

2D‑HSQC NMR characterization
To explore the changes in alkaline lignin structure during 
fungal treatment, 2D-HSQC NMR spectra analysis was 
employed. The 2D-HSQC NMR spectra of control lignin 
samples and after 7 and 13 days treatment by T. hirsuta 
X-13 are presented in Fig.  5. The correlation peaks of 
lignin from the spectra are assigned and listed in Table 3. 
As shown in Fig.  5a, signals from the aliphatic (δC/δH 
80–140/6.0–8.0) and aromatic (δC/δH 50–80/2.5–6.0) 
regions of the spectra including methoxyls, β-O-4 (aryl 
ethers), β–β (resinols) and β-5 (phenylcoumarans) struc-
tures, pCA (p-coumarates), FA (ferulate), S-, G- and 
H-type units, were clearly detected in NMR spectra of 
control samples. The relative abundances of lignin inter-
unit linkages and dominant aromatic units are listed in 
Table 4. It should be noted that compared to control, the 
intensities of signals of most of those structures were sig-
nificantly decreased in the lignin residual after treated 
by T. hirsuta X-13 (Fig. 5). This might be due to that the 
lignin structure was greatly modified after the fungus 
strain treatment, which might severely impede the solu-
bility of lignin residual in dimethyl sulfoxide.

In aliphatic region, as listed in Table 4, the percentage 
of lignin interunit linkages greatly changed in T. hirsuta 
X-13-treated sample relative to control, suggesting that 
the interunit linkages in lignin might be severely decon-
structed during T. hirsuta X-13 degradation. The con-
densation degree (β–β/β-O-4) of the lignin were largely 
decreased with the increment of incubation time of T. 
hirsuta X-13, which further confirmed the depolym-
erization of lignin by T. hirsuta X-13. In addition, the 
percentages of resinol (β–β) and cinnamyl alcohol were 
reduced with the increment of incubation time of T. 
hirsuta X-13, indicating that β–β and lignin end-groups 
were more susceptible to degrade by T. hirsuta X-13. 
C–C bonds including β–β were found to be more resist-
ant to microorganism cleavage than ether bonds [45–47]. 
Though β–β cleavages pathway have been reported in the 
lignin degradation by Ceriporiopsis subvermispora, the 
used substrate was lignocellulosic biomass wheat straw 
instead of pure lignin in these study [19, 20]. The com-
plicated composition of biomass might disturb the lignin 
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utilization by the fungi and the polysaccharides compo-
nents residues might affect the signals of lignin detec-
tion in NMR spectra [48, 49]. The employment of lignin 
as the sole carbon source for exploring the fungus lignin 
degradation pathway provided a controlled substrate 
for research. By using alkaline lignin as the sole carbon 
source, our results showed that β–β cleavage might occur 
during the lignin degradation process of T. hirsuta X-13. 
These results implied that the strain could substantially 
cleave the highly stable interunit linkage of lignin. Lac-
case has been found with capacity to break the lignin 
interunit linkages including β–β [37, 50, 51]. The secre-
tion of laccase by T. hirsuta X-13 might be responsible 
for cleavage of this interunit linkage of lignin.

In the aromatic region, the percentage of G-type was 
more than twice those of S- and H-type units, suggest-
ing that this alkaline lignin belongs to G-rich lignin 
(Table 4). Compared to control, the percentage of H-type 
unite in the lignin residual treated by T. hirsuta X-13 was 
decreased. While the percentages of G- and S-type units 
changed with opposite trends during the treatment of T. 
hirsuta X-13. The ratio of S/G declined in the lignin resid-
ual after degraded by T. hirsuta X-13 for 7 days relative 

to control, and the value of which increased from 0.35 
up to 0.66 after 13  days treatment. A similar variation 
trend of S/G ratio was also obtained from the py-GC–MS 
analysis (Additional file  9: Table  S3). The detected S/G 
ratio in py-GC–MS experiment was lower than that of 
2D-HSQC NMR spectra analysis, which might be caused 
by that the demethylation reaction rate of S-type unit 
was faster than that of G-type unit in pyrolysis process 
[52]. This indicated that S-type unit was more susceptible 
to utilized by T. hirsuta X-13 in the first 7 days incuba-
tion, while it preferentially degraded G-type unit in the 
last 6  days of incubation. S-type unit was regarded as 
the most recalcitrant structure toward biodegradation 
than other two units, as it has two methoxyl groups with 
lower redox potential [53]. The preferential degradation 
of recalcitrant structure of S-type unit in the early stage 
might be attributed to the fast growth of fungus in the 
first 7  days incubation, which might secrete more rel-
evant enzymes to attack the structure. The reduction of 
these basic lignin-derived aromatic units might be attrib-
uted to the further conversion into other aromatics or 
fatty acids via demethylation and cleavage of aromatic 
ring, which then consumed by the strain for growth [54]. 

Fig. 4  Scanning electron micrographs of the control (a, 2000 × and b, 30,000×) and treated lignin samples by T. hirsuta X-13 for 13 days (c, 
2000× and d, 30,000×)



Page 8 of 13Ma et al. Biotechnol Biofuels          (2021) 14:189 

The accumulation of certain toxic metabolic compounds 
derived from these lignin-derived aromatic units might 
contribute to the decline of fungal growth after 7  days 
incubation. Further studies focusing on quantitation and 
tracking of these aromatics are needed to elucidate the 
metabolism of lignin-derived aromatics by the fungus 
strain.

Conclusions
In summary, this study characterized the strong capac-
ity of a newly isolated white-rot basidiomycete T. hir-
suta X-13 for lignin degradation and provided a lignin 
degradation route insight into its ligninolysis. The maxi-
mum lignin degradation rate reached 39.8% after 11 days 
of treatment with this strain using alkaline lignin as the 
sole carbon source. Both Lac and MnP activities were 
observed across the whole incubation time. The employ-
ment of chemical analysis elucidated that the structure of 
lignin residual was severely destructed, and the cleavage 

of the interunit linkages of lignin including Cα–Cβ and 
β–β occurred in the ligninolysis routes of T. hirsuta X-13. 
These results suggested that T. hirsuta X-13 might be a 
promising candidate for application on lignin valoriza-
tion, and the insight of its ligninolysis pathway could 
broaden the knowledge of lignin degradation mecha-
nisms of fungi.

Methods
Ligninolytic fungus strain isolation
Rotten wood samples were collected from the forests of 
Yuelu Mountain in Changsha city, China. The samples 
were cut to 0.5 × 0.5  cm and was washed three times 
using sterile water. Then the samples were placed in the 
center of Petri dish containing enrichment medium. 
Potato dextrose broth (PDA) medium contained (g/L) 
potato extract (200), glucose (10), MgSO4 (1.5), KH2PO4 
(3.0), vitamin B (0.05), agar (15) were used as enrichment 
medium. After cultivation of isolated fungus strains for 

Fig. 5  2D-HSQC NMR spectra of the control (a) and treated lignin samples after 7 days (b) and 13 days (c) by T. hirsuta X-13. Chemical shift 
assignments are listed in Table 3. The main structures present in lignin: (A) β-aryl ether (β-O-4); (B) phenylcoumaran (β-5); (C) resinol (β–β); (I) 
cinnamyl alcohol; (G) guaiacyl; (S) syringyl; (FA) ferulate; (pCA) p-coumarate; (H) p-hydroxyphenyl
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2 to 3 generations, the pure isolates obtained were fur-
ther inoculated in the screen media for ligninolytic strain 
screening. The screen media included Azure B-con-
taining and guaiacol-containing PDA medium which 

containing potato dextrose agar (PDA) supplemented 
with Azure B (0.1 g/L) or guaiacol (0.1 g/L), respectively. 
The strains produced the largest diameter of the decolor-
ization zone in Azure B-containing PDA medium or col-
orization zone in guaiacol-containing PDA medium were 
selected for further study.

Microorganism identification
The isolated fungus was identified by morphological 
analysis and internal transcribed region sequence (ITS) 
fingerprinting. Total DNA of fungus strain was extracted 
using a Fungi Genomic DNA Extraction Kit (Solarbio, 
Beijing, China). Amplification of ITS region sequence 
was performed using ITS 1 forward (TCC​GTA​GGT​GAA​
CCT​GCG​G) and ITS 4 reverse (TCC​TCC​GCT​TAT​TGA​
TAT​GC) as the primer. The amplified products were 
sequenced and analyzed by the NCBI BLAST algorithm 
tool. The phylogenetic analysis was conducted by MEGA 
5.0 based on maximum likelihood algorithm.

Lignin degradation
To prepare fungus seed cultures, an agar square from 
fully grown mycelia on PDA medium was inoculated in 
100  mL of basic medium contained (g/L) glucose 20.0, 
peptone 1.0, yeast extract 2.0, (NH4)2SO4 4.0, KH2PO4 
1.0, K2HPO4 1.0, CaCl2 0.3 g/L, MgSO4 0.3, NaCl 0.1, and 
incubated at 28  °C for 7  days with shaking at 180  rpm. 
The seed cultures were centrifuged at 4000 rpm for 5 min 
to collect the fungus pellets. The collected pellets were 
washed three times with 0.9% NaCl to remove the cul-
tures. Then the washed pellets were inoculated into lignin 
medium contained (g/L) (NH4)2SO4 4.0, KH2PO4 1.0, 
K2HPO4 1.0, NaCl 0.1, MgSO4 0.3, MnSO4 0.05, FeSO4 
0.01, CuSO4 0.01, ZnSO4 0.01, CoCl2 0.005, Na2MoO4 
0.001, KAl(SO4)2 0.001, H3BO3 0.01, alkaline lignin (from 
Norway spruce (Picea abies) wood) (CAS No. 8068-
05-1, Catalog number 370959, Sigma-Aldrich) 3.0, and 
incubated at 28 °C with shaking at 180 rpm for 13 days. 
Cultures containing alkaline lignin without inoculat-
ing fungus strain were used as control and incubated in 
the same conditions as the fungal treatment. The culture 
sample was centrifuged at 12,000  rpm for 10  min, and 
the collected pellets were washed twice with deionized 
water to elute the absorbed lignin on the surface of fun-
gus mycelium. The washed cell pellets were collected and 
dried at 45  °C for 48  h for mycelial biomass dry weight 
assay. The supernatant and eluent were collected and lyo-
philized completely. The dried powder was weighed for 
degradation rate calculation as the following formula:

where M0 is the initial lignin weight, and Mn is the nth 
day sampling lignin residue weight.

Lignin degradation rate (%) = [(M0 −Mn)/M0] × 100%,

Table 3  Assignments of 13C–1H correlation signals in the 
2D-HSQC NMR spectra from lignin

Signals δC/δH Assignments

Bβ 52.19/3.54 Phenylcoumaran (B)

Cβ 55.98/3.37 Cβ–Hβ in resinol (C)

MeO 56.23/3.72 C–H in methoxyls

Iγ 63.65–65.41/3.88–3.97 Cγ–Hγ in cinnamyl alcohol end-groups 
(I)

Aγ 62.48/3.45 Cγ–Hγ in phenylglycerol (A)

Aβ 75.89/3.50 Cβ–Hβ in phenylglycerol (A)

Aα 77.70/4.39 Cα–Hα in phenylglycerol (A)

Cγ 71.34/3.79 Cγ–Hγ in resinol (C)

S2,6 106.64/7.23 C2,6–H2,6 in syringyl units (S)

G2 115.58/6.82 C2–H2 in guaiacyl units (G)

G5 115.48/6.81 C5–H5 in guaiacyl units (G)

G6 115.49/6.80 C6–H6 in guaiacyl units (G)

FA2 111.14/7.19 C2–H2 in ferulate (FA)

pCA 115.39/6.67 C–H in p-coumarates (pCA)

FA6 127.36/7.38 C6–H6 in ferulate (FA)

H2,6 129.17/7.87 C2,6–H2,6 in p-hydroxyphenyl units (H)

Table 4  Semiquantitative 2D-HSQC NMR spectra analysis of 
structural characteristics of lignin

a Relative distribution of lignin interunit linkages
b Relative distribution of lignin aromatic units (H + G + S = 100)
c p-Coumarate and ferulate molar content as percentages of lignin content 
(H + G + S)

Control 7 days 13 days

Lignin interunit linkagesa (%)

 β-Aryl ether 80.2 87.2 96.0

 Phenylcoumaran 1.2 1.3 1.7

 Resinol 7.3 3.5 0.7

 Cinnamyl alcohol 11.3 8.0 1.6

 Total 100 100 100

 Condensation degree 
(β–β/β-O-4)

0.091 0.040 0.007

Lignin aromatic unitsb

 H (%) 20.1 (124.6) 11.8 (10.1) 11.9 (6.2)

 G (%) 55.1 (340.7) 65.4 (56.2) 53.2 (27.8)

 S (%) 24.8 (153.3) 22.7 (19.5) 35.0 (18.3)

 Total 100 (618.6) 100 (85.8) 100 (52.3)

 S/G ratio 0.45 0.35 0.66

p-Hydroxycinnamatesc

 p-Coumarate (%) 31.1 23.4 18.6

 Ferulates (%) 24.8 15.2 12.4
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The decolorization of the lignin culture sample was 
assayed according to the standard method of the Cana-
dian Pulp and Paper Association [55]. All assays were 
performed with three replicates.

Ligninolytic enzyme assay
Laccase (Lac) activity was detected by using 2,2,-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) 
as substrate and monitoring the production of ABTS 
radical at 420  nm (ε420 = 36,000  M−1  cm−1) accord-
ing to the method of Nakagawa et  al. [56]. Lignin per-
oxidase (LiP) activity was assessed by monitoring 
oxidation of veratryl alcohol to veratraldehyde at 310 nm 
(ε310 = 9300  M−1  cm−1) based on the method of Kirk 
et  al. [57]. Manganese peroxidase (MnP) activity was 
assayed by monitoring oxidation of 2,6-dimethyl phenol 
to coerulignone at 469  nm (ε469 = 49,600  M−1  cm−1) 
according to method of Wariishi et al. [58]. The amount 
of enzyme needed to produce 1 μM product per minute 
under the assay conditions was defined as one unit of 
enzyme activity.

Secretory proteins extraction and identification
The culture samples of fungus strains incubated in lignin-
containing medium was withdrawn at 7th day and cen-
trifuged at 12,000  rpm, 4  °C for 10  min. The collected 
supernatant was filtered through 0.45-μm membranes 
and was lyophilized completely. The dried powder was 
resuspended in a buffer containing 8  M urea, 4% (w/v) 
3-[(3-cholamidopropyl) dimethylammonio] propanesul-
fonate, 40 mM dithiothreitol. Protein concentration was 
determined by a non-interference protein assay kit (San-
gon Bio-tech, Shanghai, China). The peptide obtained 
by trypsin digestion was subjected to nano-liquid chro-
matography–tandem mass spectrometry (nanoLC–MS/
MS). NanoLC–MS/MS analysis was performed on an 
Orbitrap Fusion Tribrid MS (Thermo, Waltham, MA, 
USA) equipped with an UltiMate 3000 system accord-
ing to the procedure described in our previous work [59]. 
The obtained raw MS/MS data were processed by Max-
quant proteomics software (Version 1.6.4) against Uni-
Prot proteomes of Trametes genus. The parameters used 
for peptide identification was set as described in our pre-
vious work [59].

GC–MS analysis
The cultures used for GC–MS analysis were pretreated 
as previously described [60]. The procedure of GC–MS 
test was performed as described by Chen et al. [40]. The 
obtained mass spectra were compared with that of the 
NIST library available in the instrument and the reten-
tion time to the original standards.

FTIR analysis
The chemical structure changes of lignin before and 
after treated by strain were investigated by FTIR anal-
ysis. Samples were ground with dry KBr prior to test. 
FTIR analysis was conducted on A Varian 2000 FTIR 
spectrometer range from 4000 to 400  cm−1 at 4  cm−1 
spectral resolution for 32 scans.

SEM analysis
The collected lignin samples were freeze-dried, then 
covered with gold to prevent buildup of static charges. 
SEM analysis was carried out with a JEOL JSM-7900F 
scanning electron microscopy (Tokyo, Japan).

2D‑HSQC NMR analysis
Approximately 50  mg of dried lignin powder was dis-
solved in 0.5  mL of dimethyl sulfoxide (DMSO)-d6 in 
an NMR tube. To promote the lignin solubility, the 
NMR tube was dipped into an ultrasonic bath for 3 h. 
2D-HSQC NMR analysis was conducted on a Bruker 
AVANCE 400  MHz NMR spectrometer (Bruker Bio-
Spin, Rheinstetten, Germany). The spectra were col-
lected at 25 °C using a Bruker standard pulse sequence 
“hsqcetgpsisp2”. The procedure was performed as 
described by Ma et  al. with slight modification [45]. 
The spectral widths of 1H and 13C were 5000  Hz and 
18,000 Hz, respectively. A total of 2048 collected com-
plex points with 1.5  s recycle delay were acquired for 
1H dimension. The number of transients was 64 for 
13C dimension with 256 time increments. The 1JCH was 
set to 145  Hz. HSQC correlation peaks were assigned 
by comparison with the literature reports [37, 61–64]. 
Semiquantitative analysis of volume intergrals of HSQC 
correlation peaks was conducted by MestReNova 11.0.4 
as described by Ma et al. [45].

Py‑GC/MS analysis
Analytical pyrolysis coupled to gas chromatography 
with mass spectrometeric detection was conducted 
as previously described with some modification [60]. 
Briefly, pyrolysis was performed at 500  °C for 1  min 
on PY-3030D pyrolyzer (Frontier Lab, Japan) cou-
pled with a gas chromatography/mass spectrometer 
(7890B-5977A, Agilent Technologies, Germany). The 
chromatography was programmed from 40 °C to 150 °C 
at 5 °C/min, followed by 10 °C/min to 280 °C, and then 
held for 20  min. The chromatographic signals were 
identified by comparing the experimental mass spec-
trum with those reported in the National Institute of 
Standards and Technology (NIST) library. The relative 
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abundance of each identified pyrolysate was calculated 
as the percentage of the sum of all peak areas.

Statistical analysis
The statistical analysis was performed by Origin 9.0 
software, and the experimental data were presented as 
the replicate mean ± standard deviation (SD).
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