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cultivation
Sibao Wu1,2†, Rongrong Zhou1,2†, Yuting Ma1,2, Yong Fang1,2, Guopai Xie3, Xuezhi Gao4, Yazhong Xiao1,2, 
Juanjuan Liu1,2* and Zemin Fang1,2*   

Abstract 

Background:  Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) 
is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. 
Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostrea-
tus cultivation and DGW recycling.

Results:  Five dominant indigenous bacteria, Sphingobacterium sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. 
X3, Geobacillus sp. X4, and Aeribacillus sp. X5, were isolated from DGW and selected to develop a consortium-based 
microbial agent to compost DGW for P. ostreatus cultivation. Microbial agent inoculation led to faster carbohy-
drate metabolism, a higher temperature (73.2 vs. 71.2 °C), a longer thermophilic phase (5 vs. 3 days), and signifi-
cant dynamic changes in microbial community composition and diversity in composts than those of the controls. 
Metagenomic analysis showed the enhanced microbial metabolisms, such as xenobiotic biodegradation and metab-
olism and terpenoid and polyketide metabolism, during the mesophilic phase after microbial agent inoculation, 
which may facilitate the fungal colonization on the substrate. In accordance with the bioinformatic analysis, a faster 
colonization of P. ostreatus was observed in the composts with microbial inoculation than in control after composting 
for 48 h, as indicated from substantially higher fungal ergosterol content, faster lignocellulose degradation, and higher 
lignocellulase activities in the former than in the latter. The final mushroom yield shared no significant difference 
between composts with microbial inoculation and control, with 0.67 ± 0.05 and 0.60 ± 0.04 kg fresh mushroom/kg 
DGW, respectively (p > 0.05).

Conclusion:  The consortium-based microbial agent comprised indigenous microorganisms showing application 
potential in composting DGW for providing substrate for P. ostreatus cultivation and will provide an alternative to 
facilitate DGW recycling.
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Background
Pleurotus ostreatus, commonly known as the oyster 
mushroom, is cultivated worldwide and has become the 
second most popularly cultivated edible mushroom dur-
ing the last 10 years [1]. Many reasons are responsible 
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for the production increase. Among them, the economic, 
ecological, and medicinal benefits are highlighted [2]. 
Remarkably, P. ostreatus requires a shorter growth time 
when compared to other edible mushrooms and grows 
on a broad range of natural substrates from woodland, 
agricultural, and animal husbandry [1, 3]. Various agri-
cultural and agro-industrial by-products, such as straw, 
grass, sawdust, coffee pulp, and corncob are suitable sub-
strates for P. ostreatus cultivation. Usually, materials from 
local places are recommended for cultivators from differ-
ent countries to lower the costs of cultivation substrates. 
For example, coffee husk was practiced in Brazil to culti-
vate oyster mushrooms [4]. In Asian countries, sorghum, 
coffee pulp, cottonseed hulls, and wheat straw are popu-
lar materials used in P. ostreatus cultivation [1].

Distilled grain waste (DGW), the primary by-product 
of the Chinese spirit-making process, is produced and 
discharged as the primary solid waste [5, 6]. Approxi-
mately 25 million tons of DGW have been generated 
annually in China in the past 5 years. The traditional 
disposal of DGW into landfills, incineration to produce 
steam, or directly be utilized as fertilizer caused resource 
wastes and has resulted in severe environmental prob-
lems, including water and soil pollution, land devalua-
tion, and undesirable odor production [7], because the 
DGW has high water content (55‒60%) and organic mat-
ter content (80% of the dry weight), and easy to decay [8]. 
DGW is rich in carbohydrates, proteins, amino acids, 
vitamins, and microelements from microorganisms and 
fermented residues of sorghum, corn, wheat, rice, and 
rice husk [9]. Therefore, it is a suitable raw substrate for 
P. ostreatus cultivation. Thus, the proper and sustainable 
treatment of DGW to cultivate P. ostreatus will be one of 
the best solutions to facilitate the DGW re-utilization.

Fermentation material based on the composting of 
raw materials is widely practiced worldwide to facilitate 
mushroom cultivation due to the advantages of low pol-
lution, low cost, and simple process [2, 10]. Microorgan-
isms are one of the critical factors that affect composting. 
To promote the composting process, some researchers 
inoculate functional strains in the substrates to accelerate 
the composting process and increase the nutrient content 
of the substrates. For example, the degree of aromatic-
ity and stability of dissolved organic matter and humic 
substances were substantially enhanced after inoculation 
of a multifunctional thermophilic microbial consortium 
in manure–sugarcane leaf composting [11]. Addition of 
bacteria to cattle manure compost promoted microbial 
activity and the degradation of cellulose-rich waste [12]. 
However, in most studies, commercial general agents or 
strains from microbial collections were inoculated into 
compost. It is difficult to ensure whether the foreign 
strains could adapt to the local environment of a specific 

compost. As a result, several studies have screened func-
tional strains from natural compost to ensure that the 
microorganisms quickly adapt to the environment [13, 
14]. Although studies were taken on optimizing DGW 
composting conditions for biofertilizer preparation [8], 
no investigation was carried out to evaluate the applica-
tion potential of microbial agents on composting DGW 
for P. ostreatus cultivation.

In the present study, indigenous bacterial strains were 
isolated from DGW samples, based on which a consor-
tium-based microbial agent containing Sphingobacterium 
sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. X3, 
Geobacillus sp. X4, and Aeribacillus sp. X5 was devel-
oped to compost DGW for P. ostreatus cultivation. Given 
that the temperature determines microbial activities and 
is correlated with composting efficiency [15], DGW sam-
ples from the thermophilic phase of composting were 
analyzed and used to isolate beneficial bacteria. The 
effects of the microbial agent inoculation on DGW com-
posting and P. ostreatus colonization and growth were 
evaluated. The high-throughput sequencing technique 
was also used in this research to evaluate microbial com-
munity succession and metabolism after microbial agent 
inoculation.

Results and discussion
Screening bacteria from distilled grain waste compost 
for microbial inoculation
In order to obtain indigenous microorganisms to develop 
a microbial agent for DGW composting, samples from 
the thermophilic phase of DGW composting were used 
as the source of beneficial bacteria [15]. Simultaneously, 
high-throughput sequencing was employed to analyze 
the dominant microorganisms in DGW compost to guide 
the strain isolation. Results revealed that Thermobacillus, 
Thermoactinomyces, Stenotrophomonas, Pseudomonas, 
Symbiobacterium, Pseudoxanthomonas, Ureibacillus, 
Caldibacillus, Sphingobacterium, Thermobifida, Aeriba-
cillus, Bacillus, Geobacillus, Chelatococcus, and Thermo-
vum were the top 15 genera in the thermophilic phase 
of DGW compost (Fig. 1a). The bacterial genera can be 
more or less abundant depending on starting material, 
composting procedure, and analytical methodologies. 
For example, the dominant bacterial genera, including 
Pseudomonas, Sphingomonas, Bacillus, Geobacillus, Urei-
bacillus, Pseudoxanthomonas, and Thermobispora, were 
identified from composted P. ostreatus substrate when 
using wheat straw–alfalfa mixture as the starting material 
[16], while Acinetobacter, Pseudoxanthomonas, Sphingo-
bacterium, Terribacillus, Thermobacillus, and Thermobis-
pora were the dominant microbial genera in sugarcane 
straw compost [17].
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DGW samples were diluted to 10–8 and spread on LB 
plates to ensure that the dominant microorganisms in 
compost samples were efficiently isolated. Finally, five 
strains with different colony phenotypes were selected 
and utilized in the following experiments. The strains 
identified were Sphingobacterium sp. X1, Ureibacil-
lus sp. X2, Pseudoxanthomonas sp. X3, Geobacillus 
sp. X4, and Aeribacillus sp. X5 based on 16S rRNA 
gene sequence similarities (16S rDNA GenBank No. 
MZ323963-MZ323967) and belonged to the top fifteen 
genera as mentioned above (Fig.  1b, Additional file  1: 
Table  S1). These five species are well known to utilize 
complex organic matter, such as polysaccharides, phe-
nolic compounds, and polycyclic aromatic hydrocar-
bons [18–22]. For example, Sphingobacterium sp. is a 
promising candidate for lignocellulolytic enzymes [22] 

and acenaphthene utilization [23]. Ureibacillus sp. is 
well known for its high efficiency in removing phenolic 
compounds, its production of a broad range of ligno-
cellulolytic enzymes, including laccases, tyrosinase, 
peroxidases, catalases, and oxidases, and efficiently 
degrading furfural and 5-hydroxymethylfurfural with 
minor sugar consumption (< 5%) [24]. Pseudoxan-
thomonas sp. is the key diazotrophic community influ-
encing NH4

+-N transformation in dairy manure and 
corn stalk compost [25]. Geobacillus sp. can degrade 
and metabolize hemicellulose [26]. Based on the dual 
culture experiments on LB agar plates, these five strains 
showed no or trace competition between each other 
(data not shown). Thus, these five newly isolated strains 
were then employed to develop a consortium-based 
agent.

Geobacillus thermodenitrificans subsp. calidus F84b (Type) EU477773
Geobacillus thermodenitrificans subsp. thermodenitrificans KCTC3902 (Type) CP017694
Geobacillus subterraneus subsp. subterraneus KCTC 3922 (Type) CP014342
Aeribacillus composti N.8 (Type) LT594972

Aeribacillus pallidus KCTC3564 (Type) CP017703
Ureibacillus thermophilus HC148 (Type) DQ348072
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Pseudoxanthomonas suwonensis 4M1 (Type) AY927994
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Fig. 1  The identification of microorganisms in DGW composting. a The top 15 genera of microorganisms in DGW composting of the thermophilic 
phase. b The phylogenetic tree of the five screened microorganisms was constructed using the MEGA 7 program based on the maximum likelihood 
method
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Complex microbial agent inoculation improves 
physicochemical properties of DGW compost
The physicochemical properties of Compost M (with 
microbial inoculation) and Compost C (control with-
out microbial inoculation) were analyzed to evaluate the 
effect of the microbial agent inoculation on composting 
and summarized in Fig.  2. The internal temperature of 
the compost pile rapidly increased to over 65  °C within 
24 h in Compost M, one day earlier than that in Compost 
C (Fig.  2a). Although the temperature curves and the 
duration of the thermophilic phase (> 50 °C) between the 
two groups were similar, the temperature of Compost M 
reached and kept at the peak of 73.2 °C, in comparison to 
that of 71.2  °C in Compost C. Temperature can be used 
to evaluate the quality of composting [15] and reflects 
microbial activity during the composting process, espe-
cially at the early phase [27]. Thus, our results indicated 
that the microorganisms in Compost M were more active 
than those in Compost C. The acceleration of compost-
ing temperature might improve compost quality because 
this biological self-heat generation process is essen-
tial for killing pathogens and hastening maturity during 
composting [28]. Other studies also observed increased 

temperatures after adding extra microorganisms. For 
example, Chi et  al. [29] revealed that inoculating swine 
manure and rice straw co-compost with Streptomyces gri-
seorubens JSD-1 contributed to high temperatures (maxi-
mum 66.8  °C). Meanwhile, the high temperature caused 
moisture evaporation, leading to a porosity increase in 
composting feedstock and maintaining sufficient oxygen 
in the heap. Both the increase in temperature and oxygen 
content promoted the activity of microorganisms and 
accelerated the degradation of organic substances [30].

The pH value of Compost M rose faster than that 
of Compost C from about 6.5 to 8.5 at the initial stage 
of the composting process. Subsequently, pH of both 
groups remained at 8.5–8.9 without significant difference 
(p > 0.05, Fig.  2b). The increase in pH was attributed to 
volatile ammonia and ammonium produced by organic 
nitrogen decomposition [31]. Total Kjeldahl nitro-
gen (TKN) concentration increased in both composts 
because of the weight reduction of compost mass caused 
by organic degradation (Fig. 2c). However, the C/N ratio 
was reduced in the two groups, indicating that carbon 
decomposition was faster than nitrogen loss (Fig.  2d). 
Simultaneously, the higher TKN concentration but less 
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C/N ratio in Compost M than Compost C also suggested 
that organic matter was consumed faster in Compost M, 
indicating a more robust microbial metabolism in Com-
post M [32]. Following this, the content of water soluble 
sugar (WSS) rapidly decreased in Compost M between 
0 and 48  h (Fig.  2e). On the other hand, WSS content 
increased from 48 to 72 h in Compost M. This phenom-
enon may be due to the fast hydrolyzation of carbohy-
drates such as cellulose and hemicellulose [33]. In the 
end, WSS content in Compost M was higher than that in 
Compost C at 168 h (p < 0.05, Fig. 2e).

In total, our results showed that inoculation with a 
complex microbial agent caused changes in physico-
chemical properties of DGW compost which is a com-
mon phenomenon observed during composting of 
substrates with other microbial agents. For example, 
after inoculating a thermophilic bacterium (Geobacil-
lus stearothermophilus CHB1) in a sludge compost, Fang 
and the coworkers found that the high-temperature stage 
(> 50  °C) of the CHB1 inoculated compost and con-
trol compost without inoculum started on day 5 and 8, 
respectively. Furthermore, at the end of composting, the 
CHB1 inoculated compost showed a higher loss of total 
organic carbon, lower C/N ratio, and lower moisture 
content [34].

Complex microbial agent changed bacterial community 
diversity and composition
The microbial ecology of the substrate is the underlying 
driver of the composting process. However, the bacterial 
community composition of oyster mushroom substrate 
preparation via composting is still poorly understood 
[17]. Here, the bacterial community diversity of the two 
composting groups was analyzed at mesophilic, thermo-
philic, and cooling phases to obtain deep insights into 
variations in microbial composition and illustrate the 
effects of the microbial agent inoculation on compost-
ing. After the preliminary quality filtering, an average 
read depth of 76,323 reads per sample was obtained and 
clustered to amplicon sequence variants (ASV) at a high 
similarity level (≥ 97%). PCoA analysis based on ASV 
abundance was performed to gain an overview of micro-
bial composition. The microorganisms from the differ-
ent composting phases were distanced from each other 
(Additional file  1: Fig. S1a), indicating that temperature 
played an essential role in the succession of microbial 
communities [35]. Bacterial community richness slightly 

decreased during the thermophilic phase in Compost M 
comparing to Compost C as indicated by Chao 1 index 
(Additional file 1: Fig. S1b). By comparison, in Compost 
M, the bacterial community diversity represented by 
the Shannon index slightly increased (Additional file  1: 
Fig. S1c). These results suggested that the inoculation 
of microorganisms altered the α-diversity of the bacte-
rial community during the composting process, which 
may explain the rapid increase in temperature and the 
extended thermophilic phase in Compost M because 
microbial diversity correlates with the strong mineraliza-
tion of organic matter [36, 37].

Four phyla, namely Firmicutes, Proteobacteria, Bac-
teroidetes, and Actinobacteria, are most dominant in 
composting processes [38], and comprised the domi-
nant taxa in all samples, accounting for 95.48–99.65% 
at the different composting phases (Fig. 3a). In Compost 
C, the relative abundance of Proteobacteria was nega-
tively correlated with temperature, similar to a microbial 
inoculated compost with pig manure as the start mate-
rial [36]. The abundance increased from about 30.3% 
during the mesophilic and thermophilic phases to 44.3% 
during the cooling phase (Fig. 3b). By contrast, this pro-
portion did not considerably change at the three phases 
in Compost M. Consistent with some previous studies 
[39, 40], the composting process decreased the propor-
tion of Firmicutes but increased that of Bacteroidetes and 
Actinobacteria in both groups (Fig. 3b–d). Given that the 
inoculated bacteria were from 72  h of the thermophilic 
phase, the relative abundances of Proteobacteria (19.6%, 
p < 0.05), Firmicutes (14.9%, p < 0.05), and Bacteroidetes 
(14.6%, p < 0.05) were significantly higher in Compost M 
than those in Compost C during the thermophilic phase. 
Firmicutes, a classic fermenting group of bacteria [41], 
form heat-resistant endospores during the thermophilic 
phase [42]. Other members, such as Bacteroidetes, are 
responsible for breaking down lignocellulosic plant poly-
saccharides including hemicellulose and cellulose, and 
subsequently releasing short-chain fatty acids [43]. Thus, 
we speculate that the increase in the relative abundance 
of these three phyla led to a higher composting tempera-
ture and a faster carbohydrates consumption. Moreover, 
Actinobacteria was relatively abundant in Compost M 
during the cooling stage (p < 0.05).

At the genus level, Acinetobacter, Desemzia, Enterococ-
cus, and Aerococcus were abundant in both groups during 
the mesophilic phase, accounting for 67.98 and 51.00% 

Fig. 3  Changes in bacterial community composition during composting in DGW samples with and without microbial inoculation. a Phylum level. 
b The relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. c The heatmap of top 20 genera in DGW samples. d RDA of 
compost physiochemical properties with bacterial communities. M1, M2, and M3 represent the samples from mesophilic, thermophilic, and cooling 
phases of Compost M, respectively, while C1, C2, and C3 represent the samples from mesophilic, thermophilic, and cooling phases of Compost C. 
*p < 0.05

(See figure on next page.)
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of the total genera in Compost M and C, respectively 
(Fig.  3c). They gradually died during the thermophilic 
phase because of their sensitivity to heat [44]. Bacillus, 
Chelativorans, especially Sphingobacterium (15.57%) and 
Pseudoxanthomonas (21.67%), which were very few at 
the mesophilic phase, became the dominant genera dur-
ing the thermophilic phase because of their heat resist-
ance. These genera are decomposers and participate in 
carbon and nitrogen cycles [45, 46], and most of them 
were more abundant in Compost M than in Compost 
C. For example, Sphingobacterium, belongs to Bacteroi-
detes and is closely related to carbon and nitrogen cycles 
[47]. When the composting process entered the cool-
ing stage, some exogenous microorganisms, including 
Pseudomonas, Ruminofilibacter, Devosia, Persicitalea, 
and Leadbetterella entered and proliferated in the sam-
ples. Pseudomonas is widely distributed in nature and 
can decompose complex polymers, such as lignocellu-
lose [48], Ruminofilibacter can degrade xylan [49], and 
Devosia is a genus of cellulolytic bacteria [50]. These gen-
era may contribute to lignocellulose degradation during 
DGW composting.

Redundancy analysis (RDA) was conducted to explore 
correlations between bacterial communities and phys-
icochemical properties, including temperature, pH, 
TKN, C/N, and WSS (Fig.  3d). The bacteria during the 
three composting phases were divided into three clus-
ters. The correlations were ranked in the following order: 
C/N (r2 = 0.9876, p = 0.0083) > temperature (r2 = 0.9434, 
p = 0.0347) > pH (r2 = 0.9217, p = 0.0236) > TKN 
(r2 = 0.9099, p = 0.0375) > WSS (r2 = 0.9064, p = 0.1). 
Specifically, the C/N ratio was positively associated with 
Acinetobacter, Desemzia, Enterococcus, and Aerococcus. 
These genera were relatively abundant during the meso-
philic phase, responsible for substrate degradation [17], 
and then died (Fig.  3c). Temperature showed positive 
relationships with Aeribacillus, Ureibacillus, Geobacillus, 
Bacillus, Microbacterium, Sphingobacterium, Pseudoxan-
thomonas, Chelatococcus, and Chelativorans, which are 
thermophilic bacteria and can produce different extracel-
lular decomposing enzymes for degradation of carbohy-
drates and cellulose [45, 46, 51–53].

Complex microbial agent changed the potential function 
of bacterial community
Four main bacterial functions, including metabolism 
(eleven pathways), genetic information processing (four 
pathways), environmental information processing (two 
pathways), and cellular processes (four pathways), were 
enriched in the samples from both groups (Additional 
file  1: Fig. S2). Most predicted functional genes during 
the DGW composting process were assigned to metab-
olism (80.22–81.75% in Compost M, 79.86–81.19% in 

Compost C), which is associated with organic mat-
ter degradation [54, 55]. Distilled grain waste is rich in 
starch and lignocellulose. Similar to previous studies on 
lignocellulosic composting [54], the genes related to the 
metabolism of carbohydrates, amino acids, cofactors, 
and vitamins accounted for the top three highest propor-
tions during DGW composting. Their relative abundance 
substantially increased from the mesophilic phase to the 
thermophilic phase, probably because of the degrada-
tion of easily degradable compounds, such as starch and 
protein [56]. Carbohydrate metabolism was higher in 
Compost M than in Compost C during the thermophilic 
phase. This phenomenon may attribute to the increase in 
some microbes caused by the inoculants (Fig.  4a). Fur-
thermore, the increase in decomposers affected various 
complex compounds, such as cellulose and hemicellu-
lose; thus, the metabolism of carbohydrates, amino acids, 
cofactors, and vitamins remained high during the cooling 
phase. Unlike that in Compost C, xenobiotic biodegrada-
tion and metabolism, as well as terpenoid and polyketide 
metabolism, accelerated in Compost M during the mes-
ophilic phase (Fig.  4a). The lipid metabolism was active 
in both groups because of the high fatty acid content of 
DGW. The accelerated xenobiotic biodegradation and 
metabolism and lipid metabolism during the mesophilic 
phase of Compost M contributed to the degradation of 
complex components, such as alcohols, phenols, and 
aldehydes, in DGW, producing small molecular nutrition 
for P. ostreatus mycelial growth [2].

RDA correlating the metabolic functions and physico-
chemical properties further confirmed this fact (Fig. 4b). 
The correlations were ranked in the following order: 
C/N (r2 = 0.9953, p = 0.0013) > temperature (r2 = 0.9461, 
p = 0.0111) > pH (r2 = 0.9030, p = 0.05) > WSS 
(r2 = 0.8292, p = 0.0708) > TKN (r2 = 0.5385, p = 0.3055). 
The C/N ratio was positively associated with lipid metab-
olism and xenobiotic biodegradation and metabolism. 
Temperature was associated with the metabolism of 
amino acids, carbohydrates, and energy. Therefore, reg-
ulating the C/N ratio in composting can effectively pro-
mote the metabolism of microbial communities, increase 
temperature, and promote the degradation of organic 
matter (Fig. 3d and 4b).

The top 50 enriched KEGG function terms are shown 
in Fig.  5a. Among them, the biosynthesis of ansamy-
cin, synthesis and degradation of ketone bodies, fatty 
acid biosynthesis, and valine, leucine, and isoleucine 
biosynthesis accounted for the most active pathways 
at all periods of DGW composting (Fig.  5a). The abun-
dance of genes related to ansamycin synthesis in Com-
post M was enriched in the first two phases compared 
with Compost C. Ansamycin production can help defeat 
mycoviruses commonly infected by P. ostreatus and 
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promote its fruit body formation [57]. Moreover, genes 
related to glycolysis/gluconeogenesis, citrate cycle (TCA 
cycle), pentose phosphate pathway, pyruvate metabo-
lism, and C5-branched dibasic acid metabolism were 
also accounted for a relatively higher proportion com-
pared with the other pathways in both groups. These 

phenotypes were consistent with the fact that metabo-
lisms of carbohydrates, amino acids, and lipids are the 
main activities in composting [30].

Pearson correlation analysis revealed that func-
tion terms, such as glycolysis/gluconeogenesis, pyru-
vate metabolism, fatty acid metabolism, synthesis and 
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degradation of ketone bodies, secondary bile acid bio-
synthesis, and protein export were positively corre-
lated with C/N, OM, and WSS (p < 0.01 or p < 0.05) but 
negatively correlated with TKN and pH (Fig.  5b). The 
abundance of these genes decreased as the composting 
process progressed. The opposite trend was observed in 
glycine, serine, and threonine metabolism, streptomycin 
biosynthesis, and C5-branched dibasic acid metabolism 
(p < 0.01 or p < 0.05) (Fig. 5b). Microbes can interact and 
secrete many enzymes to degrade proteins and various 
complex carbohydrates in composting, especially dur-
ing the mesophilic and thermophilic phases, leading to 
fewer carbohydrates, relatively higher total nitrogen, and 
higher pH [58].

Complex microbial agent facilitates P. ostreatus 
colonization on DGW compost
Although the substrate preparation through compost-
ing for champignon cultivation (secondary decomposer) 
has been developed and improved for more than sev-
enty years, limited information has been gained about 
substrate preparation through composting for oyster 
mushroom cultivation (primary decomposer), which 
possesses entirely different physiological characteristics 
from champignon [2]. Thus, the effect of the consortium-
based microbial agent in composting DGW for P. ostrea-
tus cultivation was evaluated using DGW withdrawn at 
different time intervals as substrates. As shown in Fig. 6a, 
P. ostreatus could not colonization when directly using 
mixed raw DGW as the substrates because no ergosterol, 
which is commonly used as a marker to characterize fun-
gal growth [59], was detected in the DGW substrate. By 
comparison, after 48  h of composting, DGW was the 
favorable substrate for P. ostreatus growth. Its growth 
slowed down in the substrates as the composting process 
prolonged, and they stopped growing altogether in the 
substrate after 144 h of composting (Fig. 6a). Ergosterol 
content was substantially higher in Compost M than in 
Compost C, especially in DGW composted for 24 h, indi-
cating that fermentation material cultivation by compost-
ing DGW material facilitated the P. ostreatus mycelia 
growth because its growth was faster in the former than 
in the latter. A possible explanation for this result was 
the intense microbial activity caused by the inoculant. 
For example, DGW contains high concentrations of phe-
nolic compounds (3.5–5 mg/g dry matter) and fermented 
residues that fungi cannot easily use, thus restricting P. 
ostreatus growth in DGW. However, after one day of 
composting, the total concentration of phenolic com-
pounds decreased to 1.7 mg/g dry matter. As a whole, the 
inoculation of microbes shortened the DGW composting 
time and facilitated P. ostreatus mycelial growth.

P. ostreatus is a famous lignocellulose degradation fun-
gus that employs powerful enzymatic machinery, includ-
ing LiP, MnP, laccase, cellulose, and xylanase to grow in 
a wide range of agro-wastes [60]. Thus, the 48  h-com-
posted DGW samples of Compost M and Compost C 
were used as substrates to cultivate P. ostreatus, and the 
lignocellulose degradation and relative enzymatic activi-
ties were measured every 4 d to compare the mycelial 
growth status. The lignocellulose degradation ratios all 
increased significantly in Compost M than Compost C 
(p < 0.05 or p < 0.01, Fig. 6b). For example, the degradation 
ratios of lignin, cellulose and hemicellulose were 21.4%, 
7.5%, and 17.3% in Compost C after 24 d, while in Com-
post M they reached 38.4%, 13.0%, and 38.8%, respec-
tively. Correspondingly, higher LiP activity, MnP activity, 
laccase activity, cellulose activity and xylanase activity 
were observed throughout the culture period in Compost 
M (p < 0.05, p < 0.01 or p < 0.001, Fig. 6c–g). These results 
further suggested that microbes inoculated composting 
substrate promoted mushroom mycelial colonization.

Five batches of mushroom production experiments 
were conducted using the 48 h-composted DGW samples 
of Compost M and Compost C as substrates to cultivate 
P. ostreatus. The final yield of mushroom from Com-
post M was 0.67 ± 0.05  kg fresh mushroom/kg DGW, a 
bit higher than the control samples (0.60 ± 0.04 kg fresh 
mushroom/kg DGW), but without significant difference 
(p > 0.05). However, the harvesting time of the mushroom 
using substrate from Compost M was 5–7  days earlier 
than using substrate from Compost C.

Conclusion
A consortium-based microbial agent comprising five 
indigenous microorganisms was developed, and its pos-
sible use in composting DGW for P. ostreatus cultivation 
was evaluated. Results revealed that inoculation of this 
microbial agent influenced the physicochemical proper-
ties of the DGW compost, the dynamics of the microbial 
community structures and metabolic functions at differ-
ent composting phases, and P. ostreatus mycelial growth. 
Thus, the consortium-based microbial agent comprised 
indigenous microorganisms shows application potential 
in composting DGW for P. ostreatus cultivation and will 
provide an alternative way for DGW recycling.

Methods
Composting materials
Raw DGW was obtained from Golden Seed Winery (Fuy-
ang, Anhui Province, China). Corncob and lime were 
purchased from the local market. Corncob was crushed 
to about 0.5  cm in length. The physicochemical prop-
erties of raw substrates are listed in Additional file  1: 
Table  S2. P. ostreatus was maintained on PDA (potato 
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dextrose agar, filtrate of boiled-potato 200 g L−1, glucose 
20 g L−1, agar, 15 g L−1) slants at 4  °C and stored at the 
School of Life Sciences of Anhui University.

Screening and identification of microbial inoculum
The compost pile was made of a mixture of 100  kg of 
DGW and corncob. The 7:3 ratio of DGW and corncob 

were mixed to adjust the C/N to 30‒35. Lime was added 
to the composting substrate to adjust the pH to 6.5 [8]. 
The moisture was adjusted to 65% with tap water. The 
composting was conducted in a compartment equipped 
with ventilating machines. Samples from naturally com-
posting of 72  h (in thermophilic phase, > 70  °C) were 
withdrawn and divided into two parts. One part was 
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sent for 16S rDNA high-throughput sequencing. The 
other part was used for strain isolation. Briefly, sam-
ples were suspended in sterile PBS buffer and diluted 
via the standard dilution-to-extinction method to 10–8 
and then spread on Luria–Bertani (LB) agar plates (LB, 
tryptone 10 g L−1, yeast extract 5 g L−1, NaCl 10 g L−1, 
Agar, 10 g L−1) and incubated at 55 °C for 24 h [14]. Colo-
nies grew on the plates were picked and individually cul-
tured in liquid LB medium at 55 °C on a rotary shaker for 
24 h at 180 rpm. Each strain was identified based on the 
16S rRNA gene, which was amplified using the primers 
Bact-27F (5ʹ-AGA​GTT​TGATCMTGG​CTC​AG-3ʹ) and 
Bact-1492R (5ʹ-GGT​TAC​CTT​GTT​ACG​ACT​T-3ʹ). The 
obtained sequence was blasted in the Eztaxon database 
(https://​www.​ezbio​cloud.​net/) to match the most closely 
related species [61]. The strains used for developing the 
consortium-based microbial agent were selected based 
on their physiological functions, as reported in the refer-
ences. The phylogenetic tree of the five screened micro-
organisms was constructed using the MEGA 7 program 
[62] based on the maximum likelihood method with 1000 
bootstrap replicates.

Composting process and sampling
Five strains employed were individually cultivated in 2.4 
L LB medium to the logarithmic growth phase. Cells were 
mixed and withdrawn by centrifugation, resuspended in 
12 L sterile water, and used as inoculants. The compost-
ing materials were prepared as described above and seg-
regated into two parts: one part was used for microbial 
inoculation composting (Compost M), the other was uti-
lized as the control composting (Compost C). Compost 
M was inoculated with 0.2% (v/m) of the inoculants. The 
same volume of sterile water was added to Compost C 
as the control. Each experiment was performed in trip-
licate, and each repetition contained 200 kg of the com-
posting materials. The mixed materials were stacked to 
form trapezoidal piles 80 cm width at the top, 150 cm at 
the bottom, and 60 cm in height. The composting lasted 
for 186  h in compartments equipped with ventilating 
machines. Heaps were turned and thoroughly mixed 
every 24 h. A nine-point sampling method was employed 
for the sample and data collection to obtain representa-
tive results. A total of 1  kg of the sample was collected 
every 24 h and used to analyze physicochemical proper-
ties and utilized as the P. ostreatus cultivation substrate.

Samples collected at 18, 72, and 168 h, which belonged 
to the mesophilic, thermophilic, and cooling phases, 
were chosen and numbered in Compost M and Compost 
C for 16S rDNA high-throughput sequencing analysis. 
M1, M2, and M3 represented the samples from the mes-
ophilic, thermophilic, and cooling phases of Compost 

M, respectively, whereas C1, C2, and C3 represented the 
samples from Compost C, respectively.

Physicochemical analysis
The temperature was measured using an electronic ther-
mometer probe by inserting it into the center of the 
composting heap with three replicates every 6  h. Other 
determinations were repeated three times and conducted 
every 24  h. pH was measured using a pH meter after 
mixing 10 g of composting samples with 100 mL deion-
ized water [29]. The TKN and organic matter (OM) were 
determined via the Kjeldahl method (GB/T 6432–2018) 
and the dry combustion method (NY/T 304–1995), 
respectively. The WSS was measured via the anthrone 
sulfuric acid colorimetric method according to Laurentin 
and Edwards [63].

P. ostreatus cultivation and ergosterol content 
determination
The water content and pH of composting samples col-
lected at different time points were adjusted to 65% and 
7.0, respectively, and then autoclaved at 115 °C for 20 min 
[64, 65]. Five plugs (5  mm in diameter) of P. ostreatus 
actively growing on the PDA plate at 25  °C  were inoc-
ulated into 100  mL liquid PDA medium and grown at 
25 °C for 4 d with shaking at 120 rpm. The mycelia were 
then homogenized twice at 3,000 rpm for 5 s and used as 
the seed to inoculate into the sterile DGW composting 
material (5%, v/w) and cultured in the dark at 25 °C and 
80% humidity.

The P. ostreatus mycelial biomass was determined 
by measuring the content of ergosterol after 10  days of 
cultivation [66]. Three bags of cultures were withdrawn, 
dried at 60 ℃ to a constant weight, crushed, and sifted. 
Ergosterol was extracted by saponification reaction. In 
brief, samples were mixed with 20% NaOH solution, 
incubated at 85  °C for 2  h, and centrifuged at 2,000 × g 
for 20 min. Next, the precipitate was added with alcohol, 
thoroughly mixed, and centrifuged to obtain the super-
natant. The supernatant was filtered through 0.22  μm 
filters, and 200 μL of each sample was used to analyze 
ergosterol content via a high-performance liquid chro-
matography equipment equipped with an XDB C18 col-
umn (1250 mm × 4.6 mm, 5 µm; Agilent, Palo Alto, USA) 
and a UV detector (1260 DAD) at    30  °C. The eluting 
buffer was methanol. The flow rate was 1.0 mL/min.

The wrapped substrate bags (1.5–1.7 kg) were cultured 
in a humidity-, temperature-, and light-controlled pro-
duction house to evaluate the final mushroom yield. The 
mushroom production was closely monitored until the 
end of the third flush. The mushroom yield was calcu-
lated as the wet weight of kilogram fresh mushroom per 
kilogram substrate.

https://www.ezbiocloud.net/
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Lignocellulose contents and enzymatic activities during P. 
ostreatus colonization
The lignocellulose contents and relative enzymatic activi-
ties of DGW compost inoculated with P. ostreatus were 
estimated to evaluate the performance of P. ostreatus 
cultivated in the 48 h DGW composting samples. Three 
bags were withdrawn everyfour days. Twenty grams of 
the samples were randomly collected and transferred to 
a flask containing 100  mL deionized water and blended 
at 4  °C overnight and away from light, respectively. The 
mixtures were filtered for removing residues and fur-
ther separated for the supernatant to measure enzy-
matic activities by centrifugation at 8000 × g for 10 min. 
Laccase activity of the supernatant was determined 
with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate) 
(ABTS) (0.5  mM) as the substrate according to Bour-
bonnais and Paice [67]. Lignin peroxidase (LiP) activity 
was carried out based on the oxidation of veratryl alco-
hol to veratraldehyde as described by Arora [68]. Man-
ganese peroxidase (MnP) was measured in the presence 
of MnSO4 (0.5  mM), 2,6-dimethylphenol (2,6-DMP) 
(1.0  mM) and H2O2 according to Wariishi [69]. Xyla-
nase activity of the supernatant was estimated firstly 
using xylan solution and then adding 3,5-dinitrosalicylic 
acid (DNS) as described by Irfan [70]. Cellulase activity 
was carried out by measuring the reducing sugars by the 
method described by González Bautista [71].

The cellulose, hemicellulose, and lignin contents were 
determined on an XD-CXW-10 fiber analyzer accord-
ing to the method shown by Zang [72]. Among which, 
the hemicellulose content was calculated by subtraction 
of the acid-detergent fiber (ADF) from the neutral-deter-
gent fiber (NDF). The cellulose content was estimated by 
subtraction of the acid-detergent lignin (ADL) from the 
NDF. The lignin content was calculated as the difference 
between the ADL and the ash content.

Genomic DNA extraction and high‑throughput sequencing
Total microbial genomic DNA of composted DGW 
samples was extracted using the DNeasy PowerSoil Kit 
(Qiagen, Germany) following the manufacturer’s instruc-
tions. The quantity and quality of extracted DNA were 
analyzed using a NanoDrop ND-1000 spectrophotom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) and 
agarose gel electrophoresis, respectively. PCR amplifica-
tion of the V3–V4 regions of bacterial 16S rRNA genes 
was performed using the forward primer 338F (5ʹ-ACT​
CCT​ACG​GGA​GGC​AGC​AG-3ʹ) and the reverse primer 
806R (5ʹ-GGA​CTA​CHVGGG​TWT​CTAAT-3ʹ). Sam-
ple-specific 7  bp barcodes were incorporated into the 
primers for multiplex sequencing. Final PCR amplicons 
were purified with AMPure beads (Beckman Coulter, 

Indianapolis, IN) and quantified using the PicoGreen 
dsDNA assay kit (Invitrogen, Carlsbad, CA, USA). After 
the individual quantification step, amplicons were pooled 
in equal amounts, and paired-end 2 × 300 bp sequencing 
was performed using the Illumina MiSeq platform with 
MiSeq reagent kit v3 at Shanghai Personal Biotechnology 
Co., Ltd (Shanghai, China). A negative control to verify 
possible exogenous contamination was simultaneously 
set up according to the manufacturer’s instructions.

Sequence analysis
Quality check of sequencing data was performed using 
QIIME2 2019.4 [73] with slight modifications according 
to the official tutorials (http://​docs.​qiime2.​org/​2019.4/​
tutor​ials/). In brief, raw sequencing data were demulti-
plexed using the demux plugin followed by primers cut-
ting with the cutadapt plugin [74]. The sequence reads 
were first filtered using DADA2’s recommended param-
eters (i.e., an expected error threshold of 2 combined 
with the trimming of 10 nucleotides from the start and 
end of each read). Filtered reads were then de-replicated 
and de-noised using DADA2 default parameters [75]. 
De-replication combines identical reads into unique 
sequences and constructs consensus quality profiles for 
each combined lot of sequences; the consensus qual-
ity profiles then inform the de-noising algorithm, which 
infers error rates from samples and removes identified 
sequencing errors from the samples [75]. Nonsingleton 
amplicon sequence variants (ASVs) were aligned using 
the MAFFT 7.0 software [76] (via q2-alignment) and 
used to construct a phylogeny with FastTree 2 [77] based 
on an approximately maximum likelihood method (via 
q2-phylogeny). Taxonomy was assigned to ASVs by using 
the classify-sklearn naïve Bayes taxonomy classifier in 
feature-classifier plugin [78] based on the SILVA Release 
132 database (https://​www.​arb-​silva.​de/​docum​entat​ion/​
relea​se-​132) [79].

Bioinformatics analysis
Sequence data analyses were mainly performed using 
QIIME2 2019.4 and R packages (vision 3.2.0). ASV-
level α-diversity indices, such as Chao1 richness esti-
mator, Observed species, Shannon diversity index, and 
Simpson index, were calculated using the ASV table in 
QIIME2, and visualized as box plots. β-Diversity analy-
sis was performed to investigate structural variations in 
microbial communities across samples by using Jaccard 
metrics [80], Bray–Curtis metrics [81] and UniFrac dis-
tance metrics [82] and visualized via principal coordi-
nate analysis (PCoA) and nonmetric multidimensional 
scaling (NMDS) [83]. The significance of differentiation 
of microbiota structure among groups was assessed by 
ANOSIM (analysis of similarities) using QIIME2 [84]. 

http://docs.qiime2.org/2019.4/tutorials/
http://docs.qiime2.org/2019.4/tutorials/
https://www.arb-silva.de/documentation/release-132
https://www.arb-silva.de/documentation/release-132
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Taxonomic compositions and abundances were visual-
ized using MEGAN [85] and GraPhlAn [86].

Microbial functions were predicted using PICRUSt2 
(Phylogenetic investigation of communities by recon-
struction of unobserved states) [87] upon Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database (https://​
www.​kegg.​jp/). Level 3 KEGG ortholog functions about 
the relative abundance of metabolic functions were 
drawn in a heatmap using the “pheatmap” package of the 
R software (version 3.6.3) [88]. RDA was conducted using 
Canoco (version 5.0.2) to reveal relationships among 
multiple variations between environmental factors and 
community compositions and functions [89].

Statistical analysis
All experimental data are presented as mean ± standard 
deviation. SPSS analysis (Statistical Product and Ser-
vice Solutions 24.0 Windows, SPSS Inc, Chicago, USA) 
was used to investigate the statistical significance of the 
physicochemical properties of compost and the relative 
abundance of metabolic functions. The mean values of 
the samples of different cultivations were compared by 
ANOVA tests. Duncan’s multiple range test was used 
for means separation. The level of significance was set 
at p < 0.05. Other statistical significance was evaluated 
through one-way ANOVA, followed by Student’s t-test 
with GraphPad Prism 7.0. p < 0.05 was considered statis-
tically significant.
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