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Abstract 

Background:  Microbial-driven solubilization of lignocellulosic material is a natural mechanism that is exploited in 
anaerobic digesters (ADs) to produce biogas and other valuable bioproducts. Glycoside hydrolases (GHs) are the main 
enzymes that bacterial and archaeal populations use to break down complex polysaccharides in these reactors. Meth-
odologies for rapidly screening the physical presence and types of GHs can provide information about their functional 
activities as well as the taxonomical diversity within AD systems but are largely unavailable. Targeted proteomic 
methods could potentially be used to provide snapshots of the GHs expressed by microbial consortia in ADs, giving 
valuable insights into the functional lignocellulolytic degradation diversity of a community. Such observations would 
be essential to evaluate the hydrolytic performance of a reactor or potential issues with it.

Results:  As a proof of concept, we performed an in silico selection and evaluation of groups of tryptic peptides from 
five important GH families derived from a dataset of 1401 metagenome-assembled genomes (MAGs) in anaerobic 
digesters. Following empirical rules of peptide-based targeted proteomics, we selected groups of shared peptides 
among proteins within a GH family while at the same time being unique compared to all other background proteins. 
In particular, we were able to identify a tractable unique set of peptides that were sufficient to monitor the range of 
GH families. While a few thousand peptides would be needed for comprehensive characterization of the main GH 
families, we found that at least 50% of the proteins in these families (such as the key families) could be tracked with 
only 200 peptides. The unique peptides selected for groups of GHs were found to be sufficient for distinguishing 
enzyme specificity or microbial taxonomy. These in silico results demonstrate the presence of specific unique GH 
peptides even in a highly diverse and complex microbiome and reveal the potential for development of targeted 
metaproteomic approaches in ADs or lignocellulolytic microbiomes. Such an approach could be valuable for esti-
mating molecular-level enzymatic capabilities and responses of microbial communities to different substrates or 
conditions, which is a critical need in either building or utilizing constructed communities or defined cultures for 
bio-production.
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Background
The solubilization of lignocellulosic waste material (i.e., 
woody biomass and municipal solid waste) holds great 
potential for the generation of biogas and other valu-
able bioproducts [1]. This process can be achieved by 
employing anaerobic digestion by microbes which break 
down complex organic material to generate a variety 
of end-products, including biogas [2–4]. Amongst the 
metabolic steps performed by microbes during this con-
version, the hydrolysis of constituent polysaccharides is 
considered an essential and rate-limiting step [5–7]. The 
success of anaerobic digesters (ADs) to utilize complex 
biomass thus depends on the activity of (ligno-)cellulo-
lytic or hydrolytic bacteria and their repertoire of glyco-
side hydrolases (GHs) and other Carbohydrate-Active 
enZYmes (CAZymes) [5, 8, 9]. Therefore, to improve 
and maintain hydrolysis efficiencies, it is important to 
understand/identify the type of lignocellulose-degrading 
microorganisms that thrive in diverse bioreactor envi-
ronments and gain information about their metabolism.

The integrated application of multiple omics 
approaches has enabled a deep understanding of the 
metabolic potential of microbial communities and their 
function within ADs. Among these approaches, metapro-
teomic investigations in ADs have identified and quanti-
fied protein abundance changes, including those of GHs, 
in microbial communities in response to environmental 
and operational parameters [10–14]. Thus, it is feasible to 
consider that measuring the expression profiles of GHs 
or other relevant enzymes in ADs, and their changes over 
time, could provide information about the stable hydro-
lytic capabilities of a system and also diagnose potential 
causes of process failure such as variations in substrate 
availability [12, 15, 16]. Furthermore, the identification of 
specific GHs, or groups of them, as biomarkers of hydrol-
ysis could be used to explore/indicate the carbohydrate 
solubilization capabilities of environmental microbial 
communities and to assess their potential for use as inoc-
ula in ADs or bioreactors.

Although informative, it is difficult to envision tradi-
tional global metaproteomic approaches as routine meth-
ods for monitoring abundance changes in a select group 
of enzymes; these endeavors are time-consuming and 

labor-intensive [17]. Thus, precise and sensitive alterna-
tives that can provide faster decision-making capabilities 
regarding the hydrolytic potential of a microbial com-
munity either for use as inoculum or for adjustment of 
operational parameters in ADs are needed. As a point 
of reference, high-throughput technologies for the rapid 
screening of GH activities in different samples have been 
explored before. Some of these technologies have pri-
marily used genetic information to screen for the pres-
ence of hundreds of GHs in complex environments [18], 
but these provide indirect evidence of metabolism. Some 
others have employed labeled protein approaches, anti-
body-based assays, or whole proteome interrogations to 
uncover the metabolic activities of microbial isolates or 
crude fungal broths [7, 15, 17], and hence are designed for 
specific deconstruction systems or require prior knowl-
edge of the possible GHs present. To our knowledge, no 
information exists about the potential applicability of 
targeted proteomic approaches for the high-through-
put profiling of enzyme groups such as GHs in micro-
biomes. In comparison to gene-based approaches that 
highlight the potential for lignocellulolytic metabolism 
in microbial communities, MS-based proteomic tech-
niques provide information about the enzymes that are 
actively expressed by these communities. This is par-
ticularly important for biogas reactors, which contain a 
disproportionate number of microbial phyla that rely on 
the expression of few key enzymes or have minor groups 
within a community that are most active [12, 19–21].

While global proteomic studies provide a broad, agnos-
tic, quantitative interrogation of the entire range of meas-
urable proteins in a sample, targeted proteomics focuses 
only on measurements of selected proteins of interest by 
using peptide sequences unique to those proteins in an 
organism [22, 23]. In contrast to discovery proteomics, 
targeted proteomic approaches are significantly faster 
and provide much greater sensitivity. These approaches 
allow for the direct measurement of a smaller, selective 
set of proteins of interest in a sample without the need 
for using substrate binding affinities, antibodies, or other 
activity-based probes that have been used before for cer-
tain carbohydrate-processing enzymes [24, 25]. However, 
despite the potential advantages of targeted proteomic 

Conclusions:  This in silico study demonstrates the peptide selection strategy for quantifying relevant groups of 
GH proteins in a complex anaerobic microbiome and encourages the development of targeted metaproteomic 
approaches in fermenters. The results revealed that targeted metaproteomics could be a feasible approach for the 
screening of cellulolytic enzyme capacities for a range of anaerobic microbiome fermenters and thus could assist in 
bioreactor evaluation and optimization.
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approaches, their deployment in microbiomes is more 
complicated. Compared to single isolates, microbial 
communities are intrinsically complex, contain a much 
wider dynamic range of protein concentrations, and har-
bor extensive functional redundancy whereby multiple 
organisms perform the same function (i.e., by express-
ing functionally redundant proteins), making targeted 
protein measurements challenging. Therefore, targeted 
proteomic approaches for microbiomes, or “targeted 
metaproteomics”, require the adjustment of experimen-
tal design factors depending on the desired outcomes. 
Based on the research question, one of the adjustments 

is the selection of groups of peptides to identify/quan-
tify a specific category, such as function or taxon, instead 
of a single protein [26]. Indeed, a recent study on ocean 
microbiomes demonstrated that it is possible to distin-
guish related marine cyanobacterial species by using a 
set of shared peptides from distinct protein biomarkers 
[27]. Thus, similar approaches can be developed for other 
complex microbiomes, such as those in ADs, with a focus 
on estimating the abundances of key enzymatic activi-
ties or microbes and monitoring the changes. To develop 
a targeted metaproteomics approach for diagnosing 
and monitoring the hydrolytic potential of microbial 

Fig. 1  Selection of unique peptides for GH families in the development of a targeted proteomics assay. A In this paper, the in silico selection of 
shared peptides (in rectangles) within proteins from specific GH families that are otherwise unique to entire groups of them, was demonstrated. 
Potential applications are: B monitoring the stable hydrolytic capabilities of an anerobic digester or condition-dependent changes over time or 
C evaluation of the hydrolytic potential of a bacterial community extracted from the environment for use as the starting inoculum for a digester 
according to the expression of specific families of GHs
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communities in ADs, the first step would be to identify 
unique peptides not for individual proteins but for pro-
tein populations performing related relevant functions 
such as specific GH families (Fig.  1) [28, 29]. Note that 
the initial objective here is the qualitative identification 
and tracking of GH families without a focus on absolute 
quantification, although tracking abundance changes 
might also be possible with this experimental approach.

Here, the feasibility and challenges of a targeted 
metaproteomic approach for monitoring key enzymes 
of carbohydrate deconstructing systems were evaluated. 
Taking an example of microbial communities within 
anaerobic digesters, we demonstrate an in silico pep-
tide selection process for all proteins belonging to dif-
ferent GH families for a targeted analysis. To this end, 
we employed a dataset of 1401 high-quality (HQ) and 
medium–high quality (MHQ) metagenome-assembled 
genomes (MAGs) published by Campanaro et  al., 2020 
as part of the biogas microbiome project (https://​bioga​
smicr​obiome.​env.​dtu.​dk/) [30]. This dataset consists 
of a comprehensive repository of microbial genomes 
representing the diversity found in different anaerobic 
digesters. By assembling an artificial bacterial commu-
nity made of these microorganisms, the bioinformatics 
approach developed here identified discrete groups of 
shared peptides among proteins within a GH fam-
ily which were unique compared to other background 
proteins, including other GHs and non-GH proteins. 
Although there were more than 500 shared peptides 
in each evaluated  GH family, smaller numbers of these 
peptides could subset proteins in a GH family based on 
specific enzymatic activity and taxonomic origins. The 
presence of shared groups of peptides even in such a 
diverse and challenging microbiome, as tested here, is 
encouraging. These observations suggest the feasibility 
of this approach as a newer broad method for commu-
nity activity screening and molecular-level performance 
monitoring in operational ADs, most of which will have 
substantially lower microbial diversity and complexity.

Results and discussion
Evaluation of the range of the taxonomic diversity 
and distribution of CAZymes in the known 1401 MAGs 
biogas microbiome dataset
To assess the feasibility of the targeted metaprot-
eomic approach to identify and quantify specific func-
tions in AD microbiomes, an extensive dataset was 
used. The 1401 HQ and MHQ metagenome-assembled 
genomes  (MAGs) published by Campanaro et  al. [30] 
provided a comprehensive framework of microorganisms 
commonly found in ADs. In total, 96% of MAGs were of 
bacterial origin, and the remaining 4% were of archaeal 
origin (Additional file  1: Fig. S2). Bacterial MAGs were 

grouped into 47 known phyla, while archaeal MAGs were 
clustered into six phyla (Additional file 1: Fig. S2). Impor-
tantly, not every member of a phylum in this dataset is 
expected to be found coexisting in a single digester. For 
example, the inoculum type and lignocellulosic material 
used as feedstock in ADs influence the occurrence and 
abundance of hydrolytic microbial species [5]. In other 
words, the taxonomic diversity derived from a more 
realistic system will be far less complex than the one 
used here. However, employing this comprehensive set 
of MAGs allowed us to explore the selection of unique 
tryptic peptides at a broader, more challenging level. The 
presence of unique peptides in this highly diverse com-
munity would support the applicability of this approach 
in lower complexity microbiomes.

Among the bacterial phyla present in the dataset, sev-
eral have been associated with the degradation of poly-
saccharides in ADs fed with lignocellulosic biomass, 
including members of the phyla Firmicutes, Bacteroi-
detes, Fibrobacter, Spirochaetes, and Thermotogae [5, 31] 
(Fig. 2). Others, including representatives from the lesser-
known Candidatus Hydrogenedentes, Armatimonadetes, 
Lentisphaerae, and Planctomycetes phyla were present, 
which are potentially involved in the hydrolysis of poly-
saccharides [32]. Regarding archaeal MAGs, these were 
classified across six phyla, including the broad group of 
Euryarchaeota, which included the genera—Methano-
bacterium, Methanosarcina, Methanoculleus, and Metha-
nocorpusculum, known to act in concert with hydrolytic 
bacteria to produce methane as the end product in ADs 
[33].

The number of proteins predicted in each MAG and 
the numbers of annotated CAZymes varied consider-
ably (Fig.  2, Additional file  1: Fig. S3, Additional file  2: 
Table  S1, Additional file  3: Table  S2), reflecting the 
diverse metabolic specialization of different microbes 
during the anaerobic digestion of lignocellulose material. 
In total, 62,627 CAZymes were annotated across 1399 
MAGs, while 2 MAGs lacked CAZyme annotation infor-
mation according to our annotation criteria (see Materi-
als and methods). The boxplots presented in Fig. 2 show 
the percentages of CAZymes present in the different pro-
tein databases or whole “proteomes” when grouped at the 
phylum level. The median percentage of CAZymes found 
per phylum was below 4%, which is consistent with the 
general abundance range of 1–3% of these enzymes from 
the total gene content of all living organisms and with 
the > 3% of the gene content of organisms with specialized 
functions such as the breakdown of complex carbohy-
drates found in lignocellulose [34–36]. Not surprisingly, 
MAGs from bacterial phyla Bacteroidetes, Fibrobacteres, 
Verrumicrobia, and Planctomycetes, which are known to 
degrade various complex carbohydrates from plant/algae 

https://biogasmicrobiome.env.dtu.dk/
https://biogasmicrobiome.env.dtu.dk/
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Fig. 2  CAZymes annotated in the proteomes of different phyla. Box plots (left) show the percentage of CAZymes annotated in the proteomes of 
different bacterial and archaeal phyla using dbCAN2. The number of annotated MAGs per phylum are shown in parenthesis. Pie charts (right) show 
the relative fraction of different CAZyme classes, which include AAs (enzymes of the auxiliary activities), CBMs (carbohydrate-binding modules), CEs 
(carbohydrate esterases), GHs (glycoside hydrolases), GTs (glycosyltransferases), and PLs (polysaccharide lyases). Some proteins were also annotated 
with cohesin and S-layer homology domains, which are involved in the structure and formation of cellulosomes. MAGs lacking annotations at the 
phylum level are not shown
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material rich environments, were among the top phyla 
and had the highest median percentages of CAZymes 
in their proteomes (~ 2–4%). However, other less stud-
ied taxonomic groups, like the MAGs assigned to Can-
didatus Hydrogenedentes, Candidatus Marinimicrobia, 
and candidate division BRC1, also ranked high (~ 3%). 
The pie charts in Fig.  2 show that all these phyla have 
relatively higher proportions of carbohydrate degrading 
CAZymes—glycoside hydrolases (GHs), carbohydrate 
esterases (CEs), and polysaccharide lyases (PLs). In fact, 
more than 50% of the identified CAZymes in these phyla 
were GH proteins. This observation was also true for 11 
other bacterial proteomes from phyla such as Fusobacte-
ria, Thermotogae, and Firmicutes, which in biogas reac-
tors are known to contribute to the utilization of complex 
carbohydrates, further highlighting the importance of 
these enzymes in the hydrolytic process [37].

CAZymes were also annotated in the proteomes of 
archaeal MAGs, with the median percentages by phy-
lum being below 2% (Fig.  2). As opposed to bacterial 
phyla above, a large fraction of the annotated CAZymes 
in these archaeal phyla were glycosyl transferases (GTs), 
which are involved in the transfer of sugar moieties 
to specific acceptor molecules. Archaeal members are 
known to contain several genes expressing GTs in part 
due to their intricate protein N-glycosylation mecha-
nisms, which are hypothesized to contribute to their abil-
ity to survive and adapt to harsh environments [38]. In 
fact, GT2 and GT4 families are known to predominate 
in Archaea [39] and was true for most members of the 
phyla Euryarchaeota, whose 47 MAGs captured here 
contained on average ten times as many GT2 or GT4 
proteins compared to other GTs. The only exception was 
for a single archaeal MAG assigned to Candidatus Loki-
archaeota, whose 94% of identified CAZymes were GHs 

and the remaining were annotated to have carbohydrate-
binding and CE domains. These observations agreed with 
prior metatranscriptomics analyses, which have shown 
the similar expression of GH ORFs in members of Can-
didatus Lokiarchaeota, and anaerobic utilization of car-
bohydrates has been described as one of their metabolic 
capacities [40].

The repertoire of CAZymes in biogas microbiomes 
identified above was used as the starting point in the tar-
geted metaproteomic approach. As a proof of concept, 
the GH families with the highest number of representa-
tive proteins across the different MAGs in the biogas 
microbiome were selected as targets (Table  1), inten-
tionally, to assess the selection of peptides from a very 
large number of proteins. However, depending on the 
system under study, other GH families can also be con-
sidered. Given the diverse biogas reactor sources that 
these MAGs were derived from, along with the diversity 
of the input lignocellulosic feedstock [30], the selected 
GH families (Table  1) covered a wide variety of impor-
tant enzymatic functions. These ranged from the degra-
dation of complex carbohydrates like endo-xylanases in 
hemicellulose (GH43) to those that cleave a variety of 
monosaccharides from polysaccharides and proteogly-
cans (GH2, GH13, GH3, and GH23) [5, 20]. The expres-
sion of these enzymes or enzymatic functions has also 
been reported before in other metaproteomic studies on 
biogas digesters, which further suggests their relevance 
in lignocellulolytic systems [12, 19, 41, 42]. These target 
GH families were then submitted to the bioinformatics 
pipeline described in Materials and methods in order to 
identify the minimum set of unique tryptic peptides that 
can describe/quantify them (Additional file 4: Table S3).

Table 1  GH families selected from the biogas microbiome data to test the in silico development of a minimum list of unique peptides 
able to differentiate them from other proteins

a Descriptions from CAZypedia.org (http://​www.​cazyp​edia.​org/​index.​php?​title=​Main_​Page&​oldid=​13510)

GH family Enzymatic activitiesa # of protein seeds 
across every MAG

13 Some enzymatic activities include: α-amylase, oligo-1,6-glucosidase, α-glucosidase, pullulanase, cyclomaltodextri-
nase, maltotetraose-forming α-amylase, isoamylase, dextran glucosidase, trehalose-6-phosphate hydrolase, among 
others acting on complex polysaccharides

4024

2 Most common activities include β-galactosidases, β-glucuronidases, β-mannosidases, exo-β-glucosaminidases and, 
in plants, a mannosylglycoprotein endo-β-mannosidase

2182

3 Exo-acting β-d-glucosidases, α-l-arabinofuranosidases, β-d-xylopyranosidases, N-acetyl-β-d-glucosaminidases, 
and N-acetyl-β-d-glucosaminide phosphorylases

2134

43 The major activities reported are α-l-arabinofuranosidases, endo-α-l-arabinanases (or endo-processive arabinanases), 
and β-d-xylosidases

1465

23 GHs in this family are lytic transglycosylases of both bacterial and bacteriophage origin and family G lysozymes of 
eukaryotic origin. Both of these enzymes are active on peptidoglycan, but only the lysozymes are active on chitin 
and chitooligosaccharides

1090

http://www.cazypedia.org/index.php?title=Main_Page&oldid=13510
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A unique set of peptides can be selected to monitor GH 
families in the biogas microbiome
As observed in Fig.  3A, the total number of peptides 
required to measure all proteins for each of the five 
selected GH families, respectively, were around 800–
2000. While this is a larger measurement set than would 
be normally possible on a triple-quadrupole mass spec-
trometer under targeted measurements (which is typi-
cally limited to 500–800 peptide targets), this range is 
within reach on the newer Orbitrap mass spectrometers 
that employ parallel reaction monitoring (PRM); in par-
ticular, new intelligent acquisition approaches on these 
MS platforms appear to allow this to be extendable even 
up to a few tens of thousands of peptides [43–46]. The 
maximum numbers of proteins covered by a peptide 
were 68, 47, 51, 29, and 13 in GH families 13, 3, 2, 43, and 
23, respectively (Fig. 3B). Interestingly, we observed that 
different peptides selected within members belonging to 

the same families mapped to distinct domains in GHs 
and not always catalytic domains. Utilizing InterPro-
Scan searches [47], for example, in GH family 2, pep-
tide TSHYPNDPR mapped to a GH2 catalytic domain 
(IPR006103) in the proteins it covered, whereas peptide 
WYPGAGLYR mapped to a GH2 sugar binding domain 
(IPR006104) in all the protein sequences it covered 
(Additional file 1: Fig. S4). As stated above, these peptides 
did not span catalytic motifs (Additional file  1: Fig. S4), 
which are usually conserved in both position and func-
tion [28]. In other words, the lack of conserved Lys and/
or Arg residues, as well as the variability of other amino 
acids within these regions, may explain why more pro-
teins were not covered by single tryptic peptides satisfy-
ing the empirical rules of peptide selection (i.e., 6–25 aa 
in length, etc.).

It should be noted that in this study, despite the com-
munity of organisms being quite extensive as it was 

Fig. 3  Minimum number of unique tryptic peptides and their associated number of protein seeds in targeted GH families. A Total number of 
unique peptides selected for each GH family after comparison against other proteins in the biogas microbiome dataset and the number of protein 
seeds in which they are found. B Top 10 tryptic peptides (from blue bars in A) ranked by the highest number of protein seeds they cover in each GH 
family. C Percentages of total proteins in GH families covered by top 10, 50, 100, and 200 peptides ranked by protein coverage
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assembled from all the published data, only ~ 200 pep-
tides are theoretically sufficient to quantify the pres-
ence of ~ 50% proteins (equivalent to 545–2021 protein 
groups) from a GH family (Fig. 3C). We suspect that the 
microbial diversity of more defined biogas systems will be 
less complex, which would significantly reduce the num-
ber of tryptic peptides required to be monitored; thus, 
these results are encouraging and tractable for assaying 
and monitoring the capabilities of different microbial 
communities or keystone species within communities 
over time or across conditions in bioreactors.

The analytes identified for each of our targeted GH 
families also presented opportunities to investigate 
whether they could capture other relevant informa-
tion within the respective family. In particular, we were 
interested in exploring the poly-specificity that members 
within the same GH families have to different substrates 
[28]. This is particularly relevant for ADs as, depending 
on the type of lignocellulosic material fed to them, sets 
of GHs with more specialized enzymatic activities may 
become more important for the successful degradation of 
complex polysaccharides and these enzymes frequently 
display affinities for more than one substrate [48].

Unique tryptic peptides selected for groups of GHs can 
distinguish groups of proteins based on their enzymatic 
specificity
The majority of the GH families in the CAZy database are 
populated with enzymes having different substrate spe-
cificities. Such substrate specificity is usually expressed 
by the enzymatic commission numbers (EC) given to an 
enzyme [49]. The different substrate specificities of GHs 
have been suggested as an evolutionary divergence in 
these types of proteins, explained by the availability of 
carbohydrate metabolites with stereochemical resem-
blance to their original ones during evolution [29, 48]. 
For example, enzymes in the family GH3 are known to 
have dual or broad substrate specificities with respect 
to monosaccharide residues, linkage position, and chain 
length of the substrate [50]. This information led us to 
explore whether the identified peptides from selected 
families of GHs could also resolve groups of proteins 
within the same family with different enzymatic activi-
ties. To this end, we employed the GhostKOALA annota-
tion pipeline [51] to retrieve EC numbers for all the GH 
proteins captured by the different peptides in the biogas 
microbiome (Additional file 4: Table S3).

Interestingly, we observed that the selected unique 
peptides grouped proteins within GH families based on 
different EC numbers (Fig.  4). For example, out of the 
1055 peptides originally selected for family GH2, 443 
captured GH2 proteins with beta-galactosidase activity 
(EC 3.2.1.23), while 196 were specific to GH2 proteins 

that have beta-mannosidase activity (EC.3.2.1.31). Even 
in the GH13 family, which contains ~ 30 different enzy-
matic specificities [52], discrete groupings of peptides 
and proteins according to EC numbers were observed. 
For example, to target GH13 proteins with amylo-(1,4 
to 1,6)transglucosidase (EC 2.4.1.18) activity within the 
broad biogas microbiome studied here, only 247 peptides 
are necessary, while proteins annotated as cyclomalto-
dextrinases (EC 3.2.1.54), glucan 1,4-alpha-maltohydro-
lases (3.2.1.133) and neopullulanases (3.2.1.135) can be 
differentiated from other GH13 proteins by 189 peptides.

The differentiation given by the peptides selected here 
could be useful to target specific groups of GH proteins 
by substrate affinity in a bioreactor. This type of func-
tional categorization of tryptic peptides within families 
of GHs has not been shown before and opens the possi-
bility of monitoring enzymes dependent or independent 
of their families, but grouped under several EC num-
bers. These observations also encouraged us to continue 
exploring other types of categorizations given by the 
identified unique peptides, such as the taxonomic origins 
of the proteins. By determining which peptides are spe-
cific to certain phyla, a reduced number of peptides could 
in theory be used to target specific enzymatic activi-
ties from specific GH families produced from specific 
microbes.

Unique tryptic peptides selected for groups of GHs can 
distinguish groups of proteins based on their taxonomic 
origins
In ADs, the hydrolytic ability of anaerobic bacteria for 
transforming polysaccharides into lower molecular 
weight intermediates that are used by other microbes 
during the anaerobic digestion food chain is a key ele-
ment for their success [5]. Hence, we decided to use 
this data to categorize the peptides we selected and the 
proteins they mapped to based on their phylum-level 
origins. The phylum-level information of all MAGs anno-
tated using dbCAN2 was taken from the biogas microbi-
ome data from Campanaro et al. [30].

Figure  5A shows the top 10 peptides (ranked by cov-
erage of the number of proteins in Fig.  3B), and the 
phyla of the proteins they can quantify in each GH fam-
ily. Although these peptides are still part of different 
domains of these proteins like those presented in Addi-
tional file  1: Fig. S4, it was interesting to observe the 
taxa distribution that they can capture. We noticed that 
some peptides captured proteins from different phyla, as 
seen in the broad functional groups of GH13, GH3, and 
GH2 families, while there were other peptides in families 
GH43 and GH23 that provided taxa-specific resolution. 
In family GH43, for example, peptides ITQDGR, VYVY-
GSHDR, WYALLFGDR were identified only in proteins 
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from MAGs assigned to the Firmicutes, while peptide 
YLFWGSFR was specific to Bacteroidetes proteins. In 
family GH23, many more peptides covered proteins from 
single phyla; five of the top ten peptides mapped exclu-
sively to proteins from Bacteroidetes and three of these 
GH23-specific peptides mapped only to proteins origi-
nated from Proteobacteria. However, these observations 
are mainly related to the total contribution of GH pro-
teins per MAG/phylum, as the dataset used here has a 
greater representation of Firmicutes, Proteobacteria, and 
Bacteroidetes organisms (Additional file 1: Fig. S2).

From the total number of peptides selected for each 
GH family, we also calculated how many were neces-
sary to cover all proteins related to phyla known for high 
hydrolytic potential in anaerobic environments (Fig. 5B) 
[5]. We observed that between 195 and 854 peptides are 
necessary to cover all Firmicutes proteins in each of the 

analyzed GH families, while the numbers were less for 
the other phyla analyzed. Importantly, because of how 
the selection of unique peptides was conceived in this 
study, these numbers include shared peptides across 
proteins with different taxonomic assignments. Thus, 
it is expected that these numbers could be less if one is 
only looking to target proteins from only a specific phy-
lum. Indeed, alternative ways to develop the selection of 
unique peptides for GH families based on specific taxa 
can be planned. For example, if the goal is to monitor 
GH proteins from a specific taxonomic group (i.e., from 
a particular phylum) in a biological system, one could 
compare the phylum specific GH proteins against a back-
ground proteome comprising all remaining proteins from 
other phyla to identify relevant unique peptides instead 
of the broader taxa-agnostic comparisons described here.

Fig. 4  Functional classification of groups of proteins captured by the identified unique peptides for each GH family. Functional annotation of 
proteins captured by unique peptides was done with GhostKOALA. N/A = lacks annotation. A table of all EC numbers shown in the figure is 
presented in the Additional file 1: Table S4
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The findings presented here are important from a 
microbiological point of view, as members of the hydro-
lytic Firmicutes and Bacteroidetes phyla are the most 
commonly found taxonomic groups in biogas plants [5]. 
The results suggest that it may be feasible to focus on 
GH proteins that are only derived from such keystone 
taxonomic groups and track their abundances within a 
complex community using a targeted metaproteomic 
approach.

Conclusions
The focus of this work was to explore the in silico selec-
tion of a minimum set of peptides needed to exclusively 
target groups of proteins in GH families as a case study 
for the development of a targeted metaproteomic assay 
for identifying and quantifying these enzymes in anaer-
obic digesters (AD). Contrary to most traditional tar-
geted proteomic workflows, in targeted metaproteomics, 

shared peptides across several proteomes specific to 
a category (such as a GH family) can be used to obtain 
relevant biological information about the system under 
study. Due to the reported hydrolytic functional redun-
dancy found in bacterial communities thriving in 
biogas-producing reactors, we thought that it was more 
important to define unique peptides for a GH family 
instead of focusing on individual proteins or taxa.

During our analyses, we found that the number of tryp-
tic peptides specific to GH families using sequence infor-
mation derived from the biogas microbiome project range 
around 1000 in each case; nevertheless, ~ 200 peptides in 
each family were able to cover and hence identify ~ 50% 
of proteins belonging to each of the targeted GH families, 
which in most microbiomes would cover > 95% of a GH 
family abundance. These peptides can be further utilized 
to provide different degrees of functional distinction or 
taxonomical information, as demonstrated in this study. 

Fig. 5  Classification of identified peptides by taxonomy using sequence information from the biogas microbiome MAGs. A Stacked bars show 
the classification of groups of proteins captured by the identified peptides, based on their taxonomical origins at the phylum level. Numbers in 
parenthesis are the total number of proteins in which the peptide is found. B Number of identified peptides required to cover all the proteins 
produced by members of a phylum for each GH family. NA, lacks annotation at the phylum level
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The number of tryptic peptides identified for the targeted 
GH proteins is expected to be lower in more representa-
tive or realistic datasets from biogas-producing reactors 
that contain substantially fewer members than the ones 
included here. Applied to defined microbiomes perform-
ing industrial processes, this approach can not only mon-
itor the changes in the total abundance of key enzyme 
families like GHs, but also provide information about the 
contributing proteins, enzymatic activities, and microbes 
producing them; a level of resolution which is crucial 
for the control and monitoring of defined communities. 
Interestingly, this study was also useful to determine that 
it is possible to find unique peptides for individual GH 
proteins even within the same family (i.e., a GH3 protein 
versus another GH3) in a microbiome, like in more tradi-
tional targeted proteomic applications.

Targeted metaproteomics provides a way to iden-
tify and quantify proteins that can serve as indicators 
of the hydrolytic capacity or any other enzymatic activ-
ity of cellulolytic systems such as ADs. Currently, tech-
niques that measure biodegradable organics present in 
the sludge fraction of a bioreactor (i.e., oxygen content, 
C/N ratios measurement) are employed to evaluate 
the performance of the anaerobic digestion process in 
faster ways, but these metrics lack molecular-level reso-
lution and are comparatively less sensitive. In terms of 
protein abundance, the hydrolytic capacity of anaerobic 
digesters has been assessed by isolating active enzymes 
from different sample fractions and conducting in  vitro 
substrate-degradation assays to characterize their enzy-
matic activity, but these do not reveal sequence-level 
identities of the CAZymes that are actively participating 
in the process and neither of their microbial origins [53, 
54]. For families of GH proteins, targeted metaproteomic 
assays in ADs could be valuable to screen their expres-
sion or predict potential hydrolytic alterations based 
on changes to baseline or “stable operation” abundance 
values. In addition, these assays would be valuable for 
estimating molecular-level capabilities and responses of 
microbial communities to different substrates or condi-
tions, which is a critical need in either building or uti-
lizing constructed communities or defined cultures for 
bio-production. While we considered the worst-case 
scenario of a microbiome consisting of all known AD-
related microbes, this assay would be most useful for 
more realistic lower complexity systems or assaying for 
specific activities within semi-defined microbiomes. The 
flexibility of these assays also allows them to be adapted 
to target other important CAZyme groups, such as car-
bohydrate esterases or methanogenesis enzymes. Addi-
tionally, such targeted characterizations could also be 
useful in health and nutrition, such as monitoring the 
levels of GHs in the rumen or human gut microbiome 

[34, 55], or be more widely applicable in any field inter-
ested in the study of carbohydrate metabolism. Impor-
tantly, in the human gut, alterations in the abundance 
levels of certain CAZymes have been linked to a num-
ber of diseases including Crohn’s disease, food allergies, 
colon cancer, amongst others [34, 56–58]. Furthermore, 
similar targeted metaproteomic approaches can also be 
adapted for monitoring abundances of biomarkers or key 
enzymatic activities during methanogenesis or anaerobic 
methane oxidation, which are crucial processes in the 
global geochemical cycles. Further investigations aiming 
to find peptides specific to groups of GHs for targeted 
metaproteomic applications could explore alternative 
avenues to reduce the potential number of candidates in 
them. These include, for example, the digestion of protein 
targets and background databases with enzymes other 
than trypsin that could exploit the sequence similarities 
of active site regions found in several GH families. Of 
note, after the initial in silico determination of a set of 
peptides, these analytes need to be tested experimentally 
to select the ones that can provide adequate signals in a 
mass spectrometer. This process will further reduce the 
list of initial peptide candidates, albeit at the expense of 
losing some proteins of interest.

Materials and methods
Re‑processing of 1401 MAGs in dbCAN2 to assign 
CAZymes
Predicted genes and coding sequences (CDS) from 1401 
bacterial and archaeal high-quality (HQ) [Complete-
ness > 90%, Contamination < 5%] and medium–high 
quality (MHQ) [90% > Completeness ≥ 70%; 5% < Con-
tamination < 10%] metagenome-assembled genomes 
(MAGs) reported in Campanaro et  al. [30] were kindly 
provided by the first author of the study. The biogas 
microbiome project was a collaborative effort in which 
134 published datasets (~ 0.9 Tbp sequence data) derived 
from a wide range of different biogas reactor systems 
(full-scale biogas plants and laboratory-scale bioreac-
tors) fed with complex carbohydrates, proteins, and 
lipids, have been re-analyzed using comprehensive 
metagenome-centric analyses. The provided CDS were 
defined using Prodigal v2.6.2 ran in normal mode. The 
number of protein coding sequences from each MAG is 
provided in Additional file  2: Table  S1. Identification of 
proteins with CAZymes’ domains was performed with 
the Carbohydrate-active enzyme Annotation (dbCAN2) 
meta server [59] for each MAG and used for downstream 
in silico analyses of unique peptides. CAZyme anno-
tation included all major enzymatic categories in the 
CAZy database besides others like cohesin and S-layer 
homology domains which are structural components of 
bacterial cellulosomes [60]. The dbCAN2 searches were 
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performed using the HMMER [61], DIAMOND [62], and 
Hotpep [63] tools. Proteins annotated by ≥ 2 tools were 
only considered to define CAZymes as per the software 
recommendations. HMMER annotations took priority 
over DIAMOND and Hotpep tools. In the cases where 
no HMMER annotation was obtained, common annota-
tions between DIAMOND and Hotpep were only con-
sidered, otherwise, they were discarded. The number of 
proteins for each CAZyme class identified for each MAG 
is provided in Additional file 3: Table S2.

Selection of “unique” tryptic peptides from GH families 
in the biogas microbiome MAGs
For selection of tryptic peptides unique to a GH fam-
ily when compared to the rest of the microbiome, two 
sequence files were generated for each GH family of inter-
est. For each of the highly represented GH families (tar-
gets), the corresponding protein sequences across all the 
MAGs were extracted from their original proteome files 
and subsequently clustered at 100% identity using CD-
HIT v4.7 [64] to remove partial or fragmented sequences. 
For each target GH family, the protein sequences remain-
ing in each MAG after removal of the GH family specific 
sequences were combined to create protein sequence 
backgrounds for selecting unique peptides. In contrast to 
traditional targeted proteomic approaches, it was essen-
tial to ensure that the selected tryptic peptides uniquely 
identify groups of proteins belonging to a GH family 
instead of individual proteins. As such, the uniqueness 
of each peptide candidate was compared to other non-
GH bacterial and/or archaeal proteins, as well as to GH 
proteins belonging to other non-targeted GH families. 
Before generation of an initial list of tryptic peptides, the 
first 24 N-terminal amino acids from the clustered and 
targeted GH sequence seeds were removed using an in-
house developed Python script to prevent utilization of 
potential signal peptides, which functionally get cleaved 
off in the protein maturation process. Target and back-
ground sequences were then digested in silico by trypsin 
using the prot2pept command of the Unipept [65] com-
mand line interface (CLI) (https://​unipe​pt.​ugent.​be/​
clido​cs/​prot2​pept). The resulting tryptic peptides for the 
target GH family were then filtered following empiri-
cal rules of peptide selection [23, 66]. Several factors 
are usually considered to choose peptides for targeted 
proteomic experiments, which include MS properties, 
cleavage sites, and presence/absence of natural or chemi-
cally induced post-translational modifications. Since this 
demonstration was completely in silico, we emphasized 
peptide selection based on length (6–25 amino acids) 
and absence of residues with higher propensity towards 
artifactual modifications (i.e., Met or Cys). Hence, tryp-
tic peptides having 6–25 amino acids without Met or 

Cys residues were only retained from the resultant target 
peptidomes so as to follow empirical targeted proteomic 
rules of peptide selection [23]. Peptidomes from targets 
and corresponding backgrounds were then compared 
using an in-house Python script, and unique peptides 
mapping only to the sequences (protein populations) of a 
target GH family were selected.

Generation of a minimum list of unique tryptic peptides 
for GH families
A Python3 script was developed to select the minimum 
number of shared tryptic peptides between proteins in 
a GH family (peptides unique to the family). Briefly, the 
script takes the lists of unique tryptic peptides for distinct 
GH families obtained above and assembles groups of 
peptides and the corresponding proteins. The script then 
prioritizes groups with peptides mapping to the highest 
number of proteins and compares it against all other pep-
tides–proteins groups in the list. To avoid consideration 
of already covered proteins into the counting of peptides 
to protein groups, the protein is then removed from the 
list of all the other peptides that map to it. These com-
parisons then repeat with the adjusted groups of pro-
teins. In each successive iteration, peptides covering the 
largest number of proteins were selected until a final list 
of peptides covering all the proteins in the input list was 
obtained. Additional file  1: Fig. S1 provides an example 
depicting how the script works.
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AD: Anaerobic digester; MAG: Metagenome-assembled genome; CAZyme: 
Carbohydrate active enzyme; GH: Glycoside hydrolase; CE: Carbohydrate ester-
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PRM: Parallel reaction monitoring.
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Number of high quality (HQ) & medium high quality (MHQ) MAGs identi-
fied in the biogas microbiome project. MAGs were assigned to different 
phyla based on the tiered taxonomic assignment strategy described in 
the original paper by Campanaro et al., 2020. The inset shows the total 
percentages of MAGs per superkingdom. N/A- MAGs not assigned at the 
phylum level. Figure S3. Distribution of the sizes of the predicted pro-
teomes from the HQ & MHQ quality MAGs from the biogas microbiome 
project. Coding sequences (CDS) were annotated using Prodigal v2.6.2. 
Figure S4. The identified tryptic peptides did not map to catalytic regions 
of the proteins. The figure shows examples of two GH2 protein sequences 
in the biogas microbiome dataset analyzed with InterProScan. According 
to our bioinformatic analysis, the unique tryptic peptides TSHYPNDPR and 
WYPGAGLYR are found in 51 and 25 different GH2 proteins, respectively. 
These numbers were among the highest numbers of proteins covered by 
single peptides in this family. As observed, these two peptides mapped to 
different GH2 family domains (highlighted in blue and purple colors). No 
tryptic peptides matching our selection criteria mapped to the active site 
motif in GH2 proteins (in yellow, PS00608) which is used as the signature 
pattern to classify GH proteins into this family. Table S4. Description of EC 
numbers shown in Fig. 4. 

Additional file 2: Table S1. List of 1401 high quality and medium–high 
quality metagenome-assembled genomes (MAGs) from Campanaro et al. 
(2020) used for this study. 

Additional file 3: Table S2. CAZy annotation results from the proteome 
of 1399 high quality and medium–high quality MAGs using the carbohy-
drate-active enzyme Annotation (dbCAN2) meta server. dbCAN2 searches 
were performed using HMMER, DIAMOND, and Hotpep tools. 

Additional file 4: Table S3. Minimum number of tryptic peptides cover-
ing the highest number of proteins per GH family analyzed. Each peptide 
is specific to each GH family. GhostKOALA annotation results to get 
enzyme commission (EC) numbers for each protein are also shown.

Acknowledgements
We acknowledge Dr. Richard J. Giannone (ORNL) for internal technical review 
of the manuscript and Dr. Stefano Campanaro for providing the files for the 
metagenome-assembled genomes from the recent study [30].

Authors’ contributions
M.I.V.S., P.C., and R.L.H. designed the study. M.I.V.S. and P.C. collected and ana-
lyzed data. M.I.V.S., P.C., and R.L.H. wrote the manuscript. All authors edited and 
reviewed the manuscript. R.L.H supervised the research. All authors read and 
approved the final manuscript.

Funding
Research funding was provided by the ORNL Center for Bioenergy Innovation, 
which is supported by the U.S. Department of Energy (DOE) Office of Biologi-
cal and Environmental Research.

Availability of data and materials
The MAGs files analyzed in this study were provided by Dr. Stefano Campanaro 
from Campanaro et al., 2020, as mentioned earlier. Custom scripts and all other 
data generated or analyzed during this study are included in this published 
article, its additional files, or available at the GitHub repository: https://​github.​
com/​pchir​ania/​targe​ted_​mp.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, 
USA. 2 UT‑ORNL Graduate School of Genome Science and Technology, Univer-
sity of Tennessee, Knoxville, TN 37996, USA. 

Received: 10 December 2021   Accepted: 22 February 2022

References
	1.	 Fardin JF, de Barros Jr O, Dias AP. Biomass: some basics and biogas. In: 

Advances in renewable energies and power technologies. Elsevier; 2018. 
p. 1–37. https://​doi.​org/​10.​1016/​B978-0-​12-​813185-​5.​00001-2.

	2.	 Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas pro-
duction from anaerobic digestion of lignocellulosic biomass by different 
enhancement techniques. Process Biochem. 2019;84:81–90.

	3.	 Pramanik SK, Suja FB, Zain SM, Pramanik BKJBTR. The anaerobic digestion 
process of biogas production from food waste: prospects and constraints. 
Bioresour Technol Rep. 2019;8: 100310.

	4.	 Rasapoor M, Young B, Brar R, Sarmah A, Zhuang WQ, Baroutian S. 
Recognizing the challenges of anaerobic digestion: critical steps toward 
improving biogas generation. Fuel. 2020. https://​doi.​org/​10.​1016/j.​fuel.​
2019.​116497.

	5.	 Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM. Presence 
and role of anaerobic hydrolytic microbes in conversion of ligno-
cellulosic biomass for biogas production. Crit Rev Env Sci Technol. 
2015;45(23):2523–64.

	6.	 Weiland P. Biogas production: current state and perspectives. Appl Micro-
biol Biot. 2010;85(4):849–60.

	7.	 Chauvigne-Hines LM, Anderson LN, Weaver HM, Brown JN, Koech PK, 
Nicora CD, Hofstad BA, Smith RD, Wilkins MJ, Callister SJ, Wright AT. Suite 
of activity-based probes for cellulose-degrading enzymes. J Am Chem 
Soc. 2012;134(50):20521–32.

	8.	 Kougias PG, Campanaro S, Treu L, Tsapekos P, Armani A, Angelidaki I. 
Spatial distribution and diverse metabolic functions of lignocellulose-
degrading uncultured bacteria as revealed by genome-centric metagen-
omics. Appl Environ Microbiol. 2018. https://​doi.​org/​10.​1128/​AEM.​
01244-​18.

	9.	 Bertucci M, Calusinska M, Goux X, Rouland-Lefevre C, Untereiner B, Ferrer 
P, Gerin PA, Delfosse P. Carbohydrate hydrolytic potential and redundancy 
of an anaerobic digestion microbiome exposed to acidosis, as uncovered 
by metagenomics. Appl Environ Microbiol. 2019. https://​doi.​org/​10.​1128/​
AEM.​00895-​19.

	10.	 Gullert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer 
B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, Streit WR. Deep 
metagenome and metatranscriptome analyses of microbial communities 
affiliated with an industrial biogas fermenter, a cow rumen, and elephant 
feces reveal major differences in carbohydrate hydrolysis strategies. 
Biotechnol Biofuels. 2016;9:121.

	11.	 Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, 
Puhler A, Schluter A, Sczyrba A. Deeply sequenced metagenome and 
metatranscriptome of a biogas-producing microbial community from an 
agricultural production-scale biogas plant. Gigascience. 2015;4:33.

	12.	 Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, 
Rapp E, Puhler A, Reichl U, Klocke M. Metagenome and metaproteome 
analyses of microbial communities in mesophilic biogas-producing 
anaerobic batch fermentations indicate concerted plant carbohydrate 
degradation. Syst Appl Microbiol. 2013;36(5):330–8.

	13.	 Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke 
S, Fracowiak J, Puhler A, Schluter A. An integrated metagenome and 
-proteome analysis of the microbial community residing in a biogas 
production plant. J Biotechnol. 2016;231:268–79.

	14.	 Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, Klocke 
M, Reichl U. Metaproteome analysis of the microbial communities in 
agricultural biogas plants. N Biotechnol. 2013;30(6):614–22.

	15.	 Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of com-
plex microbial communities in biogas plants. Microb Biotechnol. 
2015;8(5):749–63.

	16.	 Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW. Linking 
microbial community structure, interactions and function in anaerobic 

https://github.com/pchirania/targeted_mp
https://github.com/pchirania/targeted_mp
https://doi.org/10.1016/B978-0-12-813185-5.00001-2
https://doi.org/10.1016/j.fuel.2019.116497
https://doi.org/10.1016/j.fuel.2019.116497
https://doi.org/10.1128/AEM.01244-18
https://doi.org/10.1128/AEM.01244-18
https://doi.org/10.1128/AEM.00895-19
https://doi.org/10.1128/AEM.00895-19


Page 14 of 15Villalobos Solis et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:32 

digesters using new molecular techniques. Curr Opin Biotechnol. 
2014;27:55–64.

	17.	 Vidal-Melgosa S, Pedersen HL, Schuckel J, Arnal G, Dumon C, Amby DB, 
Monrad RN, Westereng B, Willats WG. A new versatile microarray-based 
method for high throughput screening of carbohydrate-active enzymes. 
J Biol Chem. 2015;290(14):9020–36.

	18.	 Abot A, Arnal G, Auer L, Lazuka A, Labourdette D, Lamarre S, Trouilh L, 
Laville E, Lombard V, Potocki-Veronese G, Henrissat B, O’Donohue M, 
Hernandez-Raquet G, Dumon C, Leberre VA. CAZyChip: dynamic assess-
ment of exploration of glycoside hydrolases in microbial ecosystems. 
BMC Genomics. 2016;17:671.

	19.	 Hassa J, Maus I, Off S, Puhler A, Scherer P, Klocke M, Schluter A. 
Metagenome, metatranscriptome, and metaproteome approaches 
unraveled compositions and functional relationships of microbial 
communities residing in biogas plants. Appl Microbiol Biotechnol. 
2018;102(12):5045–63.

	20.	 Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard 
M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer 
P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke 
M. Unraveling the microbiome of a thermophilic biogas plant by metage-
nome and metatranscriptome analysis complemented by characteriza-
tion of bacterial and archaeal isolates. Biotechnol Biofuels. 2016;9:171.

	21.	 Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M, Rapp E, 
Schluter A, Sczyrba A, Reichl U. Proteotyping of biogas plant microbi-
omes separates biogas plants according to process temperature and 
reactor type. Biotechnol Biofuels. 2016;9:155.

	22.	 Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction 
monitoring for high resolution and high mass accuracy quantitative, 
targeted proteomics. Mol Cell Proteomics. 2012;11(11):1475–88.

	23.	 Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring 
for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

	24.	 Stubbs KA, Vocadlo DJ. Affinity-based proteomics probes; tools for study-
ing carbohydrate-processing enzymes. Aust J Chem. 2009;62(6):521–7.

	25.	 Witte MD, van der Marel GA, Aerts JMFG, Overkleeft HS. Irreversible inhibi-
tors and activity-based probes as research tools in chemical glycobiology. 
Org Biomol Chem. 2011;9(17):5908–26.

	26.	 Mesuere B, Van der Jeugt F, Devreese B, Vandamme P, Dawyndt PJP. The 
unique peptidome: taxon-specific tryptic peptides as biomarkers for 
targeted metaproteomics. Proteomics. 2016;16(17):2313–8.

	27.	 Saito MA, Dorsk A, Post AF, McIlvin MR, Rappé MS, DiTullio GR, Moran 
DMJP. Needles in the blue sea: sub-species specificity in targeted protein 
biomarker analyses within the vast oceanic microbial metaproteome. 
Proteomics. 2015;15(20):3521–31.

	28.	 Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. 
Families, modules, and implications for genomics. Plant Physiol. 
2000;124(4):1515–9.

	29.	 Henrissat B. A classification of glycosyl hydrolases based on amino acid 
sequence similarities. Biochem J. 1991;280(Pt 2):309–16.

	30.	 Campanaro S, Treu L, Rodriguez RL, Kovalovszki A, Ziels RM, Maus I, Zhu 
X, Kougias PG, Basile A, Luo G, Schluter A, Konstantinidis KT, Angelidaki I. 
New insights from the biogas microbiome by comprehensive genome-
resolved metagenomics of nearly 1600 species originating from multiple 
anaerobic digesters. Biotechnol Biofuels. 2020;13:25.

	31.	 Rui J, Li J, Zhang S, Yan X, Wang Y, Li X. The core populations and co-
occurrence patterns of prokaryotic communities in household biogas 
digesters. Biotechnol Biofuels. 2015;8:158.

	32.	 Hagen LH, Frank JA, Zamanzadeh M, Eijsink VGH, Pope PB, Horn SJ, Arn-
tzen MO. Quantitative metaproteomics highlight the metabolic contribu-
tions of uncultured phylotypes in a thermophilic anaerobic digester. Appl 
Environ Microbiol. 2017. https://​doi.​org/​10.​1128/​AEM.​01955-​16.

	33.	 Bayer EA, Morag E, Lamed R. The cellulosome—a treasure-trove for 
biotechnology. Trends Biotechnol. 1994;12(9):379–86.

	34.	 El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abun-
dance and variety of carbohydrate-active enzymes in the human gut 
microbiota. Nat Rev Microbiol. 2013;11(7):497–504.

	35.	 Coutinho PM, Stam M, Blanc E, Henrissat B. Why are there so many 
carbohydrate-active enzyme-related genes in plants? Trends Plant Sci. 
2003;8(12):563–5.

	36.	 Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y. 
dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) 
sequence and annotation. Nucleic Acids Res. 2018;46(D1):D516–21.

	37.	 Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I. 
Metagenomic analysis and functional characterization of the biogas 
microbiome using high throughput shotgun sequencing and a novel 
binning strategy. Biotechnol Biofuels. 2016. https://​doi.​org/​10.​1186/​
s13068-​016-​0441-1.

	38.	 Calo D, Kaminski L, Eichler J. Protein glycosylation in Archaea: sweet and 
extreme. Glycobiology. 2010;20(9):1065–76.

	39.	 Magidovich H, Eichler J. Glycosyltransferases and oligosaccharyltrans-
ferases in Archaea: putative components of the N-glycosylation pathway 
in the third domain of life. FEMS Microbiol Lett. 2009;300(1):122–30.

	40.	 Orsi WD, Vuillemin A, Rodriguez P, Coskun OK, Gomez-Saez GV, Lavik G, 
Morholz V, Ferdelman TG. Metabolic activity analyses demonstrate that 
Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. 
Nat Microbiol. 2020;5(2):248–55.

	41.	 Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, 
Kausmann R, Heiermann M, Klocke M, Reichl U. Sample prefractionation 
with liquid isoelectric focusing enables in depth microbial metapro-
teome analysis of mesophilic and thermophilic biogas plants. Anaerobe. 
2014;29:59–67.

	42.	 Abendroth C, Simeonov C, Pereto J, Antunez O, Gavidia R, Luschnig O, 
Porcar M. From grass to gas: microbiome dynamics of grass biomass 
acidification under mesophilic and thermophilic temperatures. Biotech-
nol Biofuels. 2017;10:171.

	43.	 Gallien S, Kim SY, Domon B. Large-scale targeted proteomics using inter-
nal standard triggered-parallel reaction monitoring (IS-PRM). Mol Cell 
Proteomics. 2015;14(6):1630–44.

	44.	 van Bentum M, Selbach M. An introduction to advanced targeted acqui-
sition methods. Mol Cell Proteomics. 2021;20: 100165.

	45.	 Wichmann C, Meier F, Virreira Winter S, Brunner AD, Cox J, Mann M. Max-
Quant.Live enables global targeting of more than 25,000 peptides. Mol 
Cell Proteomics. 2019;18(5):982–94.

	46.	 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted 
proteomic quantification on quadrupole-orbitrap mass spectrometer. 
Mol Cell Proteomics. 2012;11(12):1709–23.

	47.	 Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, 
Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Wil-
liams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi 
H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, 
Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD. 
The InterPro protein families and domains database: 20 years on. Nucleic 
Acids Res. 2020. https://​doi.​org/​10.​1093/​nar/​gkaa9​77.

	48.	 Henrissat B, Davies G. Structural and sequence-based classification of 
glycoside hydrolases. Curr Opin Struct Biol. 1997;7(5):637–44.

	49.	 Cornish-Bowden A. Current IUBMB recommendations on enzyme 
nomenclature and kinetics. Perspect Sci. 2014;1(1–6):74–87.

	50.	 Fincher G, Mark B, Brumer H. Glycoside hydrolase family 3. http://​www.​
cazyp​edia.​org/. Accessed May 6, 2020.

	51.	 Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG 
tools for functional characterization of genome and metagenome 
sequences. J Mol Biol. 2016;428(4):726–31.

	52.	 Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 
The Carbohydrate-Active EnZymes database (CAZy): an expert resource 
for glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233–8.

	53.	 Adney WS, Rivard CJ, Grohmann K, Himmel ME. Characterization of 
polysaccharidase activity optima in the anaerobic-digestion of municipal 
solid-waste. Biotech Lett. 1989;11(3):207–10.

	54.	 Gasch C, Hildebrandt I, Rebbe F, Röske I. Enzymatic monitoring and 
control of a two-phase batch digester leaching system with integrated 
anaerobic filter. Energy Sustain Soc. 2013;3(1):10.

	55.	 El Kaoutari A, Armougom F, Leroy Q, Vialettes B, Million M, Raoult D, Hen-
rissat B. Development and validation of a microarray for the investigation 
of the CAZymes encoded by the human gut microbiome. PLoS ONE. 
2013;8(12): e84033.

	56.	 Hehemann JH, Kelly AG, Pudlo NA, Martens EC, Boraston AB. Bacteria 
of the human gut microbiome catabolize red seaweed glycans with 
carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl 
Acad Sci U S A. 2012;109(48):19786–91.

	57.	 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, 
Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, 
Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong 
M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda 

https://doi.org/10.1128/AEM.01955-16
https://doi.org/10.1186/s13068-016-0441-1
https://doi.org/10.1186/s13068-016-0441-1
https://doi.org/10.1093/nar/gkaa977
http://www.cazypedia.org/
http://www.cazypedia.org/


Page 15 of 15Villalobos Solis et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:32 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen 
H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen 
O, Kristiansen K, Wang J. A metagenome-wide association study of gut 
microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

	58.	 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, 
Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath 
AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. 
Nature. 2009;457(7228):480–4.

	59.	 Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for 
automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 
2012;40(Web Server issue):W445–51.

	60.	 Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The 
carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 
2014;42(Database issue):D490–5.

	61.	 Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence 
similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29-37.

	62.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using 
DIAMOND. Nat Methods. 2015;12(1):59.

	63.	 Busk PK, Pilgaard B, Lezyk MJ, Meyer AS, Lange L. Homology to peptide 
pattern for annotation of carbohydrate-active enzymes and prediction of 
function. BMC Bioinform. 2017;18(1):214.

	64.	 Li W, Godzik A. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics. 
2006;22(13):1658–9.

	65.	 Gurdeep Singh R, Tanca A, Palomba A, Van der Jeugt F, Verschaffelt P, 
Uzzau S, Martens L, Dawyndt P, Mesuere B. Unipept 4.0: functional analy-
sis of metaproteome data. J Proteome Res. 2019;18(2):606–15.

	66.	 Gallien S, Duriez E, Domon B. Selected reaction monitoring applied to 
proteomics. J Mass Spectrom. 2011;46(3):298–312.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	In silico evaluation of a targeted metaproteomics strategy for broad screening of cellulolytic enzyme capacities in anaerobic microbiome bioreactors
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results and discussion
	Evaluation of the range of the taxonomic diversity and distribution of CAZymes in the known 1401 MAGs biogas microbiome dataset
	A unique set of peptides can be selected to monitor GH families in the biogas microbiome
	Unique tryptic peptides selected for groups of GHs can distinguish groups of proteins based on their enzymatic specificity
	Unique tryptic peptides selected for groups of GHs can distinguish groups of proteins based on their taxonomic origins

	Conclusions
	Materials and methods
	Re-processing of 1401 MAGs in dbCAN2 to assign CAZymes
	Selection of “unique” tryptic peptides from GH families in the biogas microbiome MAGs
	Generation of a minimum list of unique tryptic peptides for GH families

	Acknowledgements
	References




