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Abstract 

Background:  Owing to increasing concerns about climate change and the depletion of fossil fuels, the develop-
ment of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. 
Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essen-
tial to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based 
microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, 
xylose, and arabinose) faster than any previously reported microorganisms.

Results:  The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic 
activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution signifi-
cantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate 
(0.67 h−1 and 2.15 g gdry cell weight

−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars 
by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrat-
ing efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L).

Conclusions:  In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization 
of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolution-
ary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse 
biochemicals from lignocellulosic biomass.
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Background
In recent decades, efficient conversion of lignocellulosic 
biomass (e.g., switchgrass, sorghum) into chemicals has 
been extensively studied owing to its high sugar content 

and abundance [1–4]. Various microorganisms such as 
Escherichia coli and Saccharomyces cerevisiae have been 
utilized and engineered to improve their catabolic activi-
ties for major sugars (i.e., glucose, xylose, and arabinose) 
[5–7]. These efforts have successfully demonstrated the 
potential of microbial processes for the sustainable pro-
duction of diverse value-added chemicals.

Because process efficiencies are greatly affected by the 
innate metabolic activities of host microorganisms, it is 
essential to exploit a host that can efficiently and rapidly 
utilize sugars from lignocellulosic biomass (e.g., glucose, 
xylose, and arabinose) [8]. In this regard, Vibrio species 
have been recently suggested as a new powerful platform 
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owing to their superior growth on various sugars over 
conventional host platforms [9–12]. In addition, its high 
tolerance to osmotic stress is expected to help improve 
biochemical production [13]. Indeed, a few pioneering 
studies have shown that a broad spectrum of biochemi-
cals (e.g., ethanol, 2,3-butanediol, lycopene) can be pro-
duced from biomass sugars at high rates [9, 14–16] with 
the development of genetic toolboxes for controllable 
gene expression and genome editing [17]. These studies 
suggest that the use of Vibrio species would greatly expe-
dite biochemical production from biomass.

To expand its application for lignocellulosic biomass 
conversion, several issues need to be addressed. A few 
Vibrio species (e.g., Vibrio sp. dhg and Vibrio natrie-
gens) show no detectable growth or sugar consumption 
when grown on xylose, the second most abundant sugar 
in lignocellulose [10] (Additional file 1: Table S1), likely 
owing to their aquatic habitat [18]. Indeed, only 0.43% 
(61 out of 14,153) of Vibrio genomes deposited at the 
National Center for Biotechnology Information (NCBI) 
have complete sets of xylose catabolic genes. In con-
trast, more than 10% (338 out of 3,366) of E. coli strains 
have the genes (Additional file 1: Fig. S1). Furthermore, 
similar to many other microorganisms, the preferential 

utilization of sugars by carbon catabolite repression 
(CCR) [19] would lower the efficiency of bioprocesses 
[20]. Therefore, further studies to construct efficient 
catabolism of lignocellulose-derived sugars in Vibrio 
species are warranted to leverage its huge innate meta-
bolic activity in bioprocessing.

In this study, we reported an engineered Vibrio sp. 
dhg that can rapidly and simultaneously utilize three 
major sugars (glucose, xylose, and arabinose) of ligno-
cellulosic biomass (Fig. 1). First, based on the genome 
analysis of Vibrio sp. dhg, we heterologously expressed 
xylose isomerase from E. coli W, which was absent in 
Vibrio sp. dhg, to complete the xylose utilization path-
way. This engineered strain was evolutionarily opti-
mized by continuous growth in a xylose-supplemented 
minimal medium to achieve high xylose catabolic effi-
ciency. Furthermore, we enabled the simultaneous 
utilization of glucose, xylose, and arabinose by deregu-
lating its native glucose-induced CCR. Finally, we dem-
onstrated the huge potential of the generated platform 
by achieving high lactate production (83  g/L in 72  h) 
with rapid co-consumption of sugars. Collectively, we 
believe that the developed strain will be widely utilized 

Fig. 1  Generation of Vibrio-based microbial platform for efficient utilization of lignocellulosic sugars
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and greatly accelerate the production of diverse bio-
chemicals from lignocellulosic biomass.

Results
Construction of the xylose isomerase pathway in Vibrio sp. 
dhg
We analyzed the genome of Vibrio sp. dhg to identify its 
endogenous pathways for sugar catabolism and to deter-
mine the genes required for xylose utilization. To this 
end, we queried the names of essential enzymes in each 
sugar catabolic pathway from the annotated reference 
genome of Vibrio sp. dhg [9]. If there was no matched 
enzyme name, we queried the amino acid sequence of 
an enzyme from a representative microorganism using 
Protein BLAST [21]. Genomic analysis revealed that 
Vibrio sp. dhg can catabolize glucose and arabinose via 
the Embden–Meyerhof–Parnas (EMP) pathway and 
pentose phosphate pathway (PPP) (Fig.  2A, Additional 
file 1: Table S2). Still, it does not have any complete gene 
sets of four known xylose utilization pathways (i.e., the 
isomerase pathway, oxidoreductase pathway, Weimberg 
pathway, and Dahms pathway, Additional file 1: Fig. S2). 
Considering that the xylose isomerase pathway provides 
the highest carbon yield and energy generation [22] 
(Additional file 1: Tables S3, 4), we decided to construct 
the xylose isomerase pathway in Vibrio sp. dhg.

To achieve this goal, we expressed heterologous xylA 
from E. coli W in Vibrio sp. dhg, which was the only 
required gene to construct the xylose isomerase pathway; 
all other genes including xylB encoding xylulokinase, 
another key enzyme for xylose isomerase pathway, were 
identified in Vibrio sp. dhg (Additional file 1: Table S2). 
To ensure the stable and constitutive expression of 
xylA, we used a synthetic promoter (VP13, equivalent 
to PJ23100) and an optimized 5’-UTR generated by UTR 
Designer [23]. Furthermore, the expression cassette was 
integrated into the chromosome by replacing dns encod-
ing an extracellular nuclease; this gene was known to be 
non-essential for cell viability and its deletion enhances 
transformation efficiency [24]. Notably, the resulting 
VXA0 strain showed growth on xylose as the sole car-
bon source by successfully activating the xylose isomer-
ase pathway. However, the strain showed a long lag phase 
(up to 4 days) before its growth and a low growth rate 
(0.01 h−1), indicating a necessity for further optimization.

Evolutionary optimization of xylose catabolism in Vibrio 
sp. dhg
We applied an adaptive laboratory evolution (ALE) 
strategy [25–27] to further improve xylose utilization 
(Fig. 2B). Given that the VXA0 strain grew on xylose as 
a sole carbon source, we grew and iteratively passaged 
this strain in a xylose-supplemented minimal medium 

(see Methods for detail). Surprisingly, the population in 
the second flask displayed no lag phase time and a sig-
nificantly increased growth rate (0.1 h−1). Thereafter, the 
growth rates of the populations gradually increased over 
time (Fig. 2B). Within 2 months, a dramatically improved 
growth rate of 0.58  h−1 was achieved in the 38th flask. 
This observation implied the generation and accumula-
tion of novel mutations augmenting xylose catabolism. 
The evolved population underwent 164 generations, 
equivalent to 1.4 × 1012 cumulative cell divisions (CCD).

For a detailed characterization, we isolated evolved 
strains from multiple timepoints. We evaluated their 
maximum specific growth rates and specific sugar con-
sumption rates in the xylose minimal medium (Fig. 2B). 
Specifically, three clones were isolated from four  time-
points (a total of 12 clones): three intermediate time-
points (the 1st, 3rd, and 15th flasks), where clear jumps 
in growth rates were observed, and the endpoint of the 
ALE experiment (the 38th flask). The growth rates of 
the isolated clones generally showed a similar trend to 
the population growth rates; higher growth rates were 
observed with clones isolated from later flasks. In addi-
tion to increases in growth rates, xylose uptake rates were 
greatly improved. Resultantly, the three endpoint isolates 
showed the growth rates and specific xylose uptake rates 
of 0.67 h−1 and 2.15 g gdcw

−1 h−1, respectively, as a maxi-
mum. It should be noted that these values were superior 
to those of any other reported microbial platforms [5, 22, 
28–31] that consume xylose (Additional file 1: Table S5).

Identification and validation of beneficial mutations 
improving xylose utilization
Whole-genome sequencing was performed for the 
VXA0 strain and the evolved isolates to identify 
mutations that improved xylose utilization (Fig.  2C). 
We identified five mutations in four regions in the 
genomes of the evolved isolates by the comparison 
with the genome of the starting strain (Additional 
file  1: Table  S6, 7): (i) an deletion mutation substitut-
ing 1423 bases (Chr2; 1,846,276–1,847,699) into T of 
two neighboring genes (yrkL encoding an NADH oxi-
doreductase and deoR encoding a transcription factor 
for mannitol utilization family proteins), (ii) a single 
nucleotide variation (SNV) mutation in scrC encod-
ing bifunctional diguanylate cyclase/phosphodiester-
ase (Chr2; 1,409,023, C to T resulting T32I), (iii and 
iv) SNV mutations in the promoter (Chr1; 2,768,285) 
and coding sequence (Chr1; 2,768,325, C to A result-
ing A3D) of the xylA gene, and (v) a SNV mutation 
in cafA encoding a cytoplasmic axial filament protein 
(Chr1; 2,875,221, T to A resulting early termination). 
Among these mutations, three mutations (i, iii, and iv) 
appear to substantially improve the maximum specific 
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Fig. 2  Improved xylose catabolism via ALE and elucidation of mutational mechanisms. A Predicted metabolic pathway of glucose, xylose, and 
arabinose in the VXA38 strain and genetic context of the region with major effective mutations. Key pathways are colored in yellow (glycolysis), gray 
(pentose phosphate pathway), pink (tricarboxylic acid cycle), blue (arabinose utilization pathway), and green (xylose isomerase pathway). Light and 
dark green indicate xylose isomerase (xylA) and xylulokinase (xylB), respectively. Light brown indicates the transcription factor for mannitol utilization 
family proteins (deoR), a putative repressor for atlA, xylB, and atlT. yrkL, atlA, and atlT encode NADH oxidoreductase, D-arabitol 4-dehydrogenase, 
and MFS superfamily transporters, respectively. Xylulose 5-phosphate is abbreviated as X5P. B Specific growth rates and xylose uptake rates of the 
isolates Blue indicates the maximum specific growth rate, and red indicates the specific xylose consumption rate. The subset graph indicates the 
specific growth rates in each flask during the ALE experiment. Red arrows indicate flasks selected for evolved clone isolation. C Mutation analysis 
of the starting and evolved strains. The red boxes indicate the presence of mutations. V55Hfs2X means that the 55th amino acid was changed from 
valine to histidine (V55H) and the stop codon was generated after 2 amino acids (57th) owing to the frameshift (fs2X). X indicates the generation 
of a stop codon. D Cell growth (optical density at 600 nm, OD600) over time with xylose minimal medium. Symbols: black circle, VXA38C (VXA38-1 
with empty vector); green square, VXA38Y (VXA38-1 with additional yrkL expression); purple diamond, VXA38D (VXA38-1 with additional deoR 
expression). E Relative amounts of xylB transcripts in the VXA38C and VXA38D strains. F Catalytic efficiencies (kcat/Km in min−1 mM−1) of wild-type 
(VXW) and mutant (VXM) xylose isomerase G Normalized specific fluorescence of strains expressing the xylA-sgfp fused protein under the original 
PJ23100 (VXPW) and mutant promoter (VXPM)



Page 5 of 12Woo et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:58 	

growth rate on xylose. While the mutation in scrC did 
not affect growth during the exponential phase, it sig-
nificantly reduced the lag time (Additional file  1: Fig. 
S3). It is likely that the cafA mutation does not affect 
xylose catabolism, given that no significant difference 
was observed between the VXA15-1 and VXA15-3 
strains (Additional file 1: Fig. S3) and the mutation did 
not persist.

To understand how xylose catabolism was improved 
during exponential growth, we characterized the effects 
of the three mutations (i, iii, and iv). Initially, the effect of 
the mutation in yrkL and deoR was studied, since it first 
occurred, and an operon, divergently expressed next to 
deoR, contained a putative xylulokinase gene (52% amino 
acid identity of XylB from E. coli, Fig. 2A and Additional 
file  1: Fig. S4). This operon additionally contains atlA 
and atlT which encode D-arabitol 4-dehydrogenase and 
MFS superfamily transporter, respectively; Xylulokinase 
has often been found from arabitol utilization operons 
in many microorganisms [32–34], suggesting the impor-
tance of the putative xylB gene in the xylose metabolism 
in Vibrio sp. dhg. Initially, we individually expressed 
the intact yrkL and deoR genes in the endpoint iso-
late, VXA38-1, using a plasmid. The resulting VXA38Y 
(VXA38-1 with yrkL expression), VXA38D (VXA38-1 
with deoR expression), and VXA38C (VXA38-1 with an 
empty plasmid as a control) strains were cultivated in 
xylose minimal medium (Fig.  2D). Notably, DeoR com-
plementation completely impaired growth on xylose, 
whereas YrkL expression did not affect growth. Next, we 
analyzed the expression level of xylB upon DeoR expres-
sion; xylB was barely expressed (up to 100-fold, Fig. 2E), 
confirming the importance of this xylB gene in xylose 
metabolism. Collectively, these observations showed 
that the insufficient activity of xylulokinase was one of 
the rate-limiting steps in xylose metabolism, and higher 
growth was achieved by the truncation of DeoR, which 
upregulated xylB expression.

Next, we investigated the roles of these two mutations 
in the xylA coding sequence and its promoter region. 
Since the coding sequence mutation is non-synony-
mous, it was expected that the activity of XylA would be 
affected. Thus, we compared the specific activities (kcat/
Km) of the purified mutant and wild-type XylA. Nota-
bly, it was found that the A3D mutation resulted in a 
1.3-fold higher catalytic efficiency (kcat/Km) (Fig. 2F and 
Additional file  1: Fig. S5). Given that the mutated resi-
due is located at the N-terminus, far from known active 
sites of similar XylA in other microorganisms [35, 36], 
this mutation likely affects the assembled structure of 
its homotetramer; a further detailed study is warranted. 
Nevertheless, this analysis confirmed that the higher 
activity of XylA enhanced xylose catabolism.

Finally, we investigated the effect of mutations on the 
expression levels of xylA. Since they are located in either 
the -10 box of PJ23100 or the proximal region to the start 
codon, it was likely that xylA expression was affected. In 
particular, the mutated promoter sequence became more 
similar to the consensus sequence of bacterial promot-
ers [37], suggesting that the mutation potentially led to 
a higher expression of xylA. For validation, we quantified 
the amount of XylA by generating a fusion protein of the 
wild-type or mutant XylA with a green fluorescent pro-
tein (sGFP) expressed under the wild-type and mutant 
promoters (Fig. 2G). It was found that the amount of the 
fusion protein was sixfold higher with the mutant pro-
moter compared to that with the wild-type promoter, 
whereas the mutation in the coding sequence did not 
affect the expression level (Additional file  1: Fig. S6). 
Collectively, the low activity of XylA was a bottleneck 
for xylose catabolism, and its expression cassette was 
mutated to increase its transcription level and specific 
enzyme activity.

Enabling simultaneous utilization of glucose, xylose, 
and arabinose
We further engineered the VXA38-1 strain to simultane-
ously utilize the major sugars (glucose, xylose, and arab-
inose) obtained from lignocellulose (Fig. 3A). Cultivation 
of the wild-type and VXA38-1 strains with a mixture of 
the three sugars (Fig. 3B, C) showed that the xylose and 
arabinose catabolism is repressed in the presence of glu-
cose, similar to many other bacteria [38–40]; after glu-
cose was depleted, xylose and arabinose were consumed 
simultaneously. In many bacteria, including Vibrio spe-
cies [41–44], it is known that glucose is preferentially uti-
lized by suppressed gene expression of the non-favored 
sugar utilization pathway by the cAMP receptor pro-
tein (CRP) (Fig. 3A). Given that the activity of adenylate 
cyclase (AC), which controls intracellular cAMP levels, 
is regulated by the phosphotransferase system (PTS) [40, 
45], it was shown that altered PTS by the deletion of PtsG 
(a key enzyme consisting of PTS, EIIBC) enabled co-con-
sumption of multiple sugars in E. coli, Klebsiella oxytoca, 
Enterobacter aerogenes, and Corynebacterium glutami-
cum [38–40]. Similarly, we also tested whether the dele-
tion of ptsG could enable the co-consumption of sugars. 
Consistent with previous studies, this strain successfully 
co-utilized the three sugars (Fig. 3D). However, the glu-
cose utilization and byproduct (i.e., acetate) formation 
were severely reduced, indicating the necessity for fur-
ther optimization [41].

To restore glucose transportation, we additionally 
expressed an alternative non-PTS galactose symporter, 
GalP, from E. coli in VXA38P (Fig. 3A). Although its pri-
mary substrate is galactose, it can also uptake glucose 
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without affecting the cAMP level [45, 46]. Surprisingly, 
the resulting VXA38PG strain showed a substantial 
increase in glucose uptake without affecting the simul-
taneous utilization of xylose and arabinose (Fig.  3E). 
Moreover, the total sugar consumption rate was signifi-
cantly increased in VXA38PG (2.01 g gdcw

−1  h−1) strain 
compared to the VXA38P strain (1.69 g gdcw

−1 h−1). The 
recovered acetate production also confirmed its poten-
tial to serve as a production host. Considering the rapid 
and simultaneous utilization of all major sugars in ligno-
cellulose, the resulting strain was further engineered for 
chemical production.

Efficient lactate production from lignocellulose‑derived 
sugars
We applied the developed VXA38PG strain, which can 
rapidly and simultaneously utilize the three lignocel-
lulosic sugars for biochemical production. As a model 
compound, we chose lactate, which has various industrial 
applications, such as an acidulant, a preservative, and a 

monomer for biodegradable plastics [47] (Fig.  4A). To 
efficiently produce lactate, byproduct-producing path-
ways were blocked by deleting fumarate reductase (frd-
ABCD) and pyruvate-formate lyase (pflB) in the genome. 
Furthermore, endogenous lactate dehydrogenase (ldhA) 
was overexpressed in the plasmid.

We cultivated the engineered strain, VXA38PGL, in 
a medium (Fig. 4B) supplemented with a mixture of the 
three sugars (i.e., glucose, xylose, and arabinose) at a ratio 
of 6:3:1, mimicking the contents of these sugars in ligno-
cellulose [48, 49]. Mimetic sugar (40 g/L) was periodically 
supplemented with a 12 h interval. As a result, 83 g/L of 
lactate was produced over 72 h, which corresponds to a 
productivity of 1.15  g/L/h. Notably, byproduct forma-
tion was minimized, resulting in a high yield (0.80  g/g, 
133 g of lactate from 166 g of the total sugars), equivalent 
to 80% of the theoretical maximum yield (Fig.  4C). The 
titer was the highest, and the yield was comparable with 
those of other similar studies (Additional file 1: Table S8). 
Moreover, 1.4-fold higher productivity was achieved 

Fig. 3  Engineering for simultaneous utilization of lignocellulose-derived sugars. A Altered PTS to enable co-consumption of glucose, xylose, and 
arabinose. In the wild type, CRP cannot activate genes for arabinose and xylose utilization. Inactivation of PtsG increases the concentration of 
phosphorylated EIIA, which activates AC and increases cAMP concentration. CRP activated by cAMP promotes the transcription of genes related 
to the catabolism of xylose and arabinose. Glucose can be transported through GalP instead of EIIBC. Abbreviations: Glc, glucose; Xyl, xylose; Ara, 
arabinose; G6P, glucose-6-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; EI, enzyme I; HPr, histidine protein; EIIA, enzyme II A component; 
EIIBC, enzyme II BC component; AC, adenylate cyclase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CRP, cAMP receptor 
protein; GalP, galactose–proton symporter. Growth profiles of B wild-type Vibrio sp. dhg, C VXA38-1, D VXA38P, and E VXA38PG strains in minimal 
medium containing 2 g/L of glucose, xylose, and arabinose. The left and right y-axes indicate cell biomass (OD600) and sugar concentration (g/L), 
respectively, and the x-axis indicates time (h). Symbols: black circles, OD600; blue squares, glucose; green diamonds, xylose; purple triangles, 
arabinose; yellow inverted triangle, acetate
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compared with that of E. coli in a medium with an identi-
cal sugar composition by leveraging the high metabolic 
efficiency of Vibrio sp. dhg. These results collectively 
support the potential of the strain as a platform for the 
lignocellulose-based fermentation process due to its high 
performance.

Discussion
This study supports the power of the ALE strategy for 
generating platform strains for strain. Although rational 
engineering approaches have been widely applied to 
engineer microorganisms, they are often limited due to 
insufficient comprehension of the complex and multilay-
ered network in microorganisms. In this regard, the ALE 
strategy can efficiently complement the limitations of 
rational engineering, particularly for growth-associated 
phenotypes [50, 51]. Rate-limiting steps in a given micro-
organism can be identified and autonomously optimized 
by natural selection. Indeed, it was found that the low 
activities of XylA and XylB were bottlenecks, and they 
were evolutionarily optimized by ALE.

Although the effect of ScrC mutation was not stud-
ied in detail, further studies are needed to elucidate its 
role in Vibrio species. It has been reported that ScrC in 
Vibrio species controls the intracellular level of cyclic 
di-GMP (c-di-GMP) by converting two molecules of 
GTP into c-di-GMP followed by c-di-GMP into pGpG 
via its diguanylate cyclase activity and phosphodiester-
ase activity [52–54]. C-di-GMP is known to be involved 
in bacterial global stress responses by regulating the 
expression of genes related to motility, biofilm formation, 
and virulence factors [55, 56]. Although mutations in a 

global stress response mechanism have been commonly 
observed in recent ALE studies [57–59], additional stud-
ies are needed to understand the clear mutational mecha-
nism for removing lag in xylose conditions. Potentially, 
c-di-GMP might directly affect the expression of genes 
related to xylose catabolism or indirectly affect catabo-
lism via reduced biofilm formation, which is important 
for overall planktonic cell growth and sugar utilization 
[60, 61].

To apply the developed platform for actual lignocel-
lulose conversion, further fermentation studies with 
biomass hydrolysates are warranted. Potentially, its per-
formance could change with actual hydrolysates, since 
they are known to contain diverse growth-inhibiting 
compounds, such as furfural, 5-hydroxymethylfurfural, 
and levulinic acid, which originated from the degrada-
tion of sugars during acid/heat treatments [62, 63]. This 
issue could be overcome by optimizing pretreatment to 
minimize the formation of toxic compounds and maxi-
mize sugar yields, which have been actively investigated 
[64–66]. Alternatively, the developed strain can be sub-
jected to another round of ALE to tolerize it against toxic 
compounds.

Finally, Vibrio species have high potential as a novel 
microbial chassis for the bio-based industry. The high 
metabolic efficiency of Vibrio species can improve the 
productivity of any target compounds [9, 10, 17], which 
is greatly helpful in increasing the economic feasibility of 
microorganism-based biochemical production processes. 
Moreover, its remarkable growth shortens biological 
experiments, making it a suitable chassis for research 
purposes, such as molecular biology, evolutionary 

Fig. 4  Lactate production using the VXA38PGL. A Schematic lactate production pathway in VXA38PGL B Growth and sugar consumption profiles 
of the VXAPGL strain. The left and right y-axes indicate the cell biomass (OD600) and consumed sugar concentration (g/L), respectively. The x-axis 
indicates the time (h). C Lactate and byproduct production profile of the VXAPGL strain. The x- and y-axes indicate time (h) and product titer (g/L), 
respectively. Red arrows indicate the timepoint when the oxygen supply was stopped, and nitrogen gas was supplied. Symbols: black circles, OD600; 
blue squares, glucose; dark blue squares, xylose; green squares, arabinose; brown diamonds, lactate; purple triangles, pyruvate; dark yellow inverted 
triangles, acetate
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biology, and protein engineering [11, 12, 67]. Therefore, 
further studies on the deployment of Vibrio species as 
microbial platforms are highly promising.

Conclusions
In this study, we developed a Vibrio-based microbial plat-
form with rapid and simultaneous utilization of the three 
major sugars from lignocellulosic biomass by applying an 
integrated approach of rational and evolutionary engi-
neering. We constructed a xylose isomerase pathway 
by heterologous chromosomal expression of the xylose 
isomerase gene based on genomic analysis. Furthermore, 
we obtained an efficient strain displaying a growth rate of 
0.67 h−1 and a sugar uptake rate of 2.15 g gdcw −1 h−1 on 
xylose, via ALE. It was confirmed that the evolved strain 
catabolized xylose at a faster rate than any reported 
microorganism (Additional file 1: Table S5). Subsequent 
mutation analysis and reverse engineering revealed that 
the improved phenotype was achieved by autonomous 
optimization in a multi-level process for catabolizing 
xylose. We then achieved simultaneous utilization of 
glucose, xylose, and arabinose by removing CCR in the 
strain and demonstrated efficient lactate production with 
remarkable productivity.

Methods
Microbes and culture media
Escherichia coli strains were cultured in LB medium with 
appropriate antibiotics at 37  °C. Vibrio sp. dhg and its 
derivative strains were cultivated in the buffered mini-
mal medium (5  g/L (NH4)2SO4, 30  g/L NaCl, 10.7  g/L 
K2HPO4, 5.2  g/L KH2PO4, 0.5  g/L MgSO4·7H2O, and 
2  mL  L−1 trace metal solution (ATCC MD-TMS), sup-
plemented with various concentrations of carbon sources 
and yeast extract) and LBv2 medium (10  g/L tryptone, 
5  g/L yeast extract, 21.92  g/L NaCl, 0.3  g/L KCl, and 
2.2 g/L MgCl2) with appropriate antibiotics at 37  °C [9]. 
Agar plates were prepared by including 15  g/L of agar 
into the media. The pH of all media and a buffer was 
adjusted to 7.

Culture conditions
For routine cell cultures at the flask scale, colonies were 
picked from LB or LBv2 medium agar plates and inocu-
lated in 3 mL of M9 or buffered medium supplemented 
with 4 g/L of sugar (glucose, xylose, and arabinose) con-
tained in 15  mL test tubes. After overnight incubation, 
the culture was re-inoculated into a fresh medium at 
an OD600 (optical density at 600 nm) of 0.05. When the 
OD600 reached 1.0, cells were transferred into a 350 mL 
Erlenmeyer flask containing 25  mL of the medium at 
an OD600 of 0.05. Cultures were conducted in a rotary 
shaker (Hanil Scientific, Gimpo, Korea) at 37  °C and 

200  rpm. Appropriate antibiotics were supplemented. 
All cell cultures were conducted in triplicates. OD600 
was measured using a UV-1700 spectrophotometer (Shi-
madzu, Kyoto, Japan).  OD600 of 1.0 corresponds to 0.31 
gdcw /L and 0.27 gdcw /L for E. coli and Vibrio sp. dhg, 
respectively. The maximum specific growth rate (μ, h−1) 
was calculated by linear regression of ln(OD600) and time 
(h) during the exponential growth phase. Maximum spe-
cific sugar uptake rates (g gdcw

−1 L−1) were calculated by 
dividing the maximum specific growth rates by the bio-
mass yields. The cumulative cell division number was 
calculated by summation of division events calculated 
from the initial cell number and the total number of gen-
erations in a flask [68]. An OD600 of 1 was regarded as an 
8 × 108 cell number [69].

For a bioreactor scale culture with a mimetic sugar 
medium, colonies were picked from LBv2 medium agar 
plates, inoculated in 3  mL of LBv2, and cultured over-
night. Subsequently, the culture was refreshed by inoc-
ulating into several flasks containing 50  mL of LBv2 
supplemented with 20 g/L of a sugar mixture (glucose:x
ylose:arabinose = 6:3:1) in 350  mL Erlenmeyer flasks at 
an OD600 of 0.1. When the OD600 reached 1–2, cells were 
harvested and transferred into a 7 L bioreactor (Biotron 
Limited, State of New South Wales, Australia) contain-
ing 1 L of the medium at an OD600 of 0.5. Cultures were 
incubated at 37 °C and 800 rpm. The pH was maintained 
at 6.5–7.0, using a pH controller (Biotron Limited). Dur-
ing the aerobic culture phase, oxygen gas was supple-
mented at 4 L/min until an OD600 of 12–15 was achieved. 
Thereafter, the cells were grown anaerobically by provid-
ing nitrogen gas at a rate of 2 L/min. The sugar feeding 
stock solution (300  g/L glucose, 150  g/L xylose, 50  g/L 
arabinose, 5 g/L yeast extract, 10 g/L tryptone, and 10 μg/
mL chloramphenicol) was intermittently added when the 
total sugar concentration was below 10 g/L; each feeding 
increases the total sugar concentration by approximately 
20  g/L. At least three identical cultures were indepen-
dently performed to confirm the reproducibility.

Construction of strains and plasmids
Bacterial strains and plasmids are listed in Additional 
file  1: Table  S9 and the primers, synthesized by Cos-
mogenetech (Seoul, Korea), are listed in Additional 
file 1: Table S10. Detailed plasmid construction meth-
ods are organized in Additional file  1: Table  S11. 
Plasmid and genomic DNA were prepared using a 
GeneAllR Exprep™ Plasmid SV kit and Exgene™ Cell 
SV kit (GeneAll, Seoul, Korea), respectively. For puri-
fication of fragmented DNA, we used an Expin™ Gel 
SV kit (GeneAll, Seoul, Korea). For cloning, Q5 poly-
merase, a NEBuilderR HiFi DNA Assembly Cloning 
Kit, restriction enzymes, and Quick Ligation™ kit were 
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purchased from New England Biolabs (Ipswich, MA, 
United States). For routine colony PCR, EmeraldAmpR 
GT PCR Master Mix was used (Takara Bio Inc., 
Kusatsu, Japan).

The recombination was performed as the previ-
ous study [9] using pCDF_xylA_ins, pCDF_ptsG_
del, pCDF_frdABCD_del, pCDF_pflB_del plasmids. 
dsDNA fragment for the integration of xylA gene, 
which contains homology adjacent to dns gene, FRT_
cat_FRT, and xylA gene overexpression cassette was 
amplified using xylA_1K_F and xylA_1K_R primer 
with pCDF_xylA_ins as a template. dsDNA fragments 
for deletion of ptsG, frdABCD, and pflB gene, which 
contain homology adjacent to the target gene and 
FRT_cat_FRT was amplified using [gene name]_1K_F 
and [gene name] _1K_R primers with pCDF_[gene 
name]_del as a template. Recombination was con-
firmed by PCR with [gene name]_ch_F/R primers and 
sanger sequencing.

xylA gene was integrated into Vibrio sp. dhg wild-type 
strain to construct VXA0 strain. After ALE, VXA38C, 
VXA38Y, and VXA38D strains were constructed 
by transforming pACYC_Duet, pACYC_yrkL, and 
pACYC_deoR plasmids into VXA38 strain, respectively. 
VXW, VXM, VXWP1, VXMP1, VXWP2, and VXMP2 
strains were constructed by transforming pACYC_
xylAWT_Histag, pACYC_xylAMUT_Histag, pACYC_
PWT_xylAWT_sgfp, pACYC_PWT_xylAMUT_sgfp, 
pACYC_PMUT_xylAWT_sgfp, and pACYC_PMUT_
xylAMUT_sgfp plasmids into wild-type Vibrio sp. dhg 
strain, respectively. VXA38P strain was constructed by 
knockout of ptsG gene in VXA38 strain and VXA38PG 
strain was constructed by transformation of pACYC_
galP plasmid into VXA38P strain. VXA38PGL strain 
was constructed by knockout of frdABCD and pflB gene 
and transformation of pACYC_galP_ldhA plasmid in 
VXA38P strain.

Adaptive laboratory evolution in xylose sole carbon source 
condition
ALE was performed at the flask scale by growing cells 
in a xylose-supplemented minimal medium. A single 
colony of the VXA0 strain from an LBv2 agar plate 
was inoculated into 3 mL of LBv2 medium. After over-
night incubation, the culture was washed twice with a 
minimal buffered medium without any carbon sources. 
Then, cells were inoculated in 25  mL of the medium 
supplemented with 4 g/L xylose in 350 mL Erlenmeyer 
flasks at an OD600 of 0.1. When the OD600 was higher 
than 2, the cultures were passaged to the next flask at 
an OD600 of 0.1. The ALE was completed once a growth 
rate of 0.6 h−1 was achieved.

Whole‑genome sequencing and mutation identification
Genomic DNA was extracted from cells grown in LB 
medium using a GeneAll Exgene™ Cell SV kit (GeneAll 
Biotechnology, Seoul, Korea). Pair-end libraries were pre-
pared using the KAPA HyperPlus Kit (KAPA Biosystems, 
Wilmington, MA, USA). Raw reads were obtained using 
a MiniSeq 300-cycle Mid-Output kit on the MiniSeq 
system (Illumina, San Diego, CA, USA). Mutations were 
identified using the Breseq analysis software (version 
0.33.2) [70]. A new reference genome of the VXA0 strain 
was generated based on Vibrio sp. dhg (NCBI accession 
number: CP028943.1, CP028944.1, and CP028945.1) to 
include the introduced xylA and to identify mutations 
in this strain. All genomes were sequenced with at least 
25 × sequencing coverage. Raw sequencing files were 
deposited at SRA (Bioproject number: PRJNA720008). 
All discovered mutations were validated by Sanger 
sequencing.

Quantification of the xylB transcript levels
XylB transcripts were measured by quantitative PCR 
(qPCR) using rpoA as a reference. The total RNA of the 
VXA38D and VXA38C strains in the mid-log phase 
were extracted using a Ribospin II kit (GeneAll, Seoul, 
Korea). Complementary DNA of rpoA and xylB mRNA 
for each sample was synthesized using M-MLV Reverse 
Transcriptase (Elpis-Biotech, Daejeon, Korea) and rpoA_
RT_R and xylB_RT_R primers. qPCR was performed in 
technical triplicates using TOPreal™ qPCR 2 × PreMIX 
(SYBR Green with high ROX) (Enzynomics, Daejeon, 
Korea) and rpoA_RT_F/R and xylB_RT_F/R primer sets, 
designed to amplify 200 bp regions of each gene (Addi-
tional file  1: Table  S10). A StepOnePlus Real-time PCR 
system (Applied Biosystems, Foster City, CA, USA) was 
used for amplification and signal detection. To deter-
mine the relative transcript amount, the comparative CT 
method (2−ΔΔCT) was utilized [71].

Measurement of the specific activity of xylose isomerase
Specific activities of the purified xylose isomerases were 
determined using an enzymatic assay. Cells harboring 
6His-tagged XylA were grown in LBv2 medium and lysed 
at an OD600 of 0.8–1, by mixing with BugBuster Master 
Mix (Merck, Darmstadt, Germany). XylA was purified 
using a MagListo™ His-tagged protein purification kit 
(Bioneer, Daejeon, Korea) and concentrated using an 
Amicon Ultra Centrifugal Filter (Merck, Darmstadt, Ger-
many). The purified protein amount was quantified by 
following the Bradford assay with bovine serum albumin 
(BSA) as a reference [72]. The concentration was adjusted 
to 0.3  mg/mL by the addition of the buffered medium. 
Various xylose concentrations (0.5, 1, 2, and 5 g/L) were 
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used, and the reactions were performed at 37 °C in trip-
licate. The initial reaction rate of xylose isomerase was 
calculated as the slope of the linear regression line of the 
change in the amount of xylulose over time. Km and kcat 
were calculated using the Lineweaver–Burk equation 
[73].

Measurement of synthetic promoter strengths
Cells grown in the LBv2 medium were inoculated into 
3 mL of fresh medium in a 15 mL test tube at an OD600 
of 0.1. When the OD600 reached 0.8–1, the culture was 
transferred to 3 mL of fresh medium at an OD600 of 0.1. 
After 16  h, cells were harvested, and their fluorescence 
was measured using a Hidex Sense microplate reader 
(Hidex, Turku, Finland). Specific fluorescence was deter-
mined by dividing the measured fluorescence by the 
OD600. Each specific fluorescence was normalized to the 
value of the VXWP1 strain as a control.

Sugar and metabolite quantification
Sugars (glucose, xylose, xylulose, and arabinose) and 
metabolites (lactate, pyruvate, and acetate) were quan-
tified using an UltiMate™ 3000 analytical high-per-
formance liquid chromatography system (Dionex, 
Sunnyvale, CA, USA) equipped with an Aminex HPX-
87H column (Bio-Rad Laboratories). As a mobile phase, 
we used 5 mM sulfuric acid at a flow rate of 0.6 mL/min 
and 30  °C. The refractive index signal was monitored 
using a Shodex RI-101 detector (Shodex, Klokkerfaldet, 
Denmark).

The overall scheme of this study Vibrio sp. dhg was 
engineered for efficient conversion of lignocellulosic bio-
mass sugars. The VXA0 strain was constructed by heter-
ologous expression of xylose isomerase in Vibrio sp. dhg. 
This heterologous pathway was optimized via the Adap-
tive Laboratory Evolution (ALE) strategy to construct the 
VXA38 strain. After enhancing xylose catabolism, CCR 
was removed for the simultaneous utilization of glucose, 
xylose, and arabinose to construct the VXA38PG strain. 
Then, it was further engineered for lactate production 
to construct the VXA38PGL strain. The resulting strain 
achieved efficient biochemical production via the rapid 
and simultaneous utilization of lignocellulose-derived 
sugars.
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