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Abstract 

Background: The yield and quality of soybean oil are determined by seed oil‑related traits, and metabolites/lipids act 
as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or 
traits, studies on multi‑dimensional genetic network (MDGN) are limited.

Results: In this study, six seed oil‑related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along 
with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait 
loci (QTLs), 36 QTL‑by‑environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, includ‑
ing 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respec‑
tively. Gene regulatory networks were constructed using co‑expression, protein–protein interaction, and transcription 
factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statis‑
tical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. 
Integrating these associations into the above networks, an MDGN was constructed, and 128 sub‑networks were 
extracted. Among these sub‑networks, the gene–trait or gene–metabolite relationships in 38 sub‑networks were in 
agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and 
metabolite in each of 64 sub‑networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d‑glu‑
cose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content.

Conclusions: This study showed the advantages of MGDN in dissecting the genetic relationships between complex 
traits and metabolites. Using sub‑networks in MGDN, 3D genetic sub‑networks including pyruvate/threonine/citric 
acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub‑networks 
including PLDs revealed the relationships between oil‑related traits and phospholipid metabolism likely influenced by 
the environment. This study will be helpful in soybean quality improvement and molecular biological research.

Keywords: Multi‑dimension genetic network, Lipid, Metabolite, miRNA, Seed oil‑related trait, Recombinant inbred 
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Background
Seed oil-related traits in soybean (Glycine max) are 
important traits, because soybean is the largest source of 
plant oil food and feed for millions of humans and live-
stock [1]. Metabolites are essential to plants, affecting the 
diverse physiological and biochemical status of growth 
development in various environments [2]. It is widely 
known that metabolites act as bridges between genes 

Open Access

Biotechnology for Biofuels
and Bioproducts

*Correspondence:  soyzhang@mail.hzau.edu.cn

1 College of Plant Science and Technology, Huazhong Agricultural University, 
Wuhan 430070, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-022-02191-1&domain=pdf


Page 2 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92 

and traits [3]. However, little is known about the genetic 
bases of trait-metabolite/lipid associations in soybean, 
especially with respect to miRNAs.

In recent decades, many associations of genes with 
oil-related traits in oil crops have been reported. Some 
associations have been used to elucidate the regula-
tion of genes in carbon metabolism, such as oil content 
genes GhPEPC1 in transgenic cotton [4], GmSWEET10a 
in transgenic soybean [5], and AtPK in transgenic Arabi-
dopsis [6]. Meanwhile, lipids determine seed oil quality 
in dynamic metabolic pathways [7]. Thus, many associa-
tions of oil-related traits with genes in acyl-lipid path-
ways have been reported. Examples include stearic acid 
with FAB2 [8], and oil content with PDHC [9] in fatty acid 
biosynthesis; fatty acids with GmDGAT  [10], and oil con-
tent with AtLPAAT  [11] and GmPDAT [12] in Kennedy 
pathways; fatty acids with GmPLDα1 [13] and AtPDCT 
[14], oil content with BnNPC6 [15], and fatty acids and 
oil content with GmPLDγ [16] in phospholipids path-
ways; oil content with AtSEI1 [17] and GmOLEO1 [18] 
in lipid droplet biogenesis; and fatty acids with MDH2 
[19] in fatty acid β-oxidation. In addition, some associa-
tions of oil-related traits with transcription factors (TFs) 
have been identified [20], e.g., AtFUS3 [21], GmbZIP123 
[22], BnLEC1a [23], GmDREBL [24], GmZF351 [25], and 
GmDof11 [26]. However, these associations are limited as 
regards the genetic dissection of seed oil-related traits.

The genetic basis of metabolite–trait associations has 
attracted much attention in plant trait studies, e.g., phos-
phatidylinositol and phosphatidylinositol monophos-
phate with fiber growth in cotton [27], β-alanine with 
starch-related trait in potato tubers [28], and pyru-
vate and asparagine with oil content in soybean [29, 
30]. Metabolic quantitative trait loci (mQTL) mapping 
and genome-wide association studies also aid research 
on metabolite–gene associations [31]. Up to now, 
many genetic bases of primary and secondary metabo-
lites have been reported, such as histidine with CAT4 
in Arabidopsis [32], and apigenin di-C-hexoside with 
GRMZM2G063550 in maize [33]. In addition, the data-
base ARALIP (http:// aralip. plant biolo gy. msu. edu/) in 
Arabidopsis thaliana provides many advantages for 
investigating lipid–gene associations [34]. Owing to a 
huge number of metabolites and intricate metabolic 
pathways, it is time and effort consuming to validate their 
candidate genes, a consideration that reduces the further 
use of the metabolite data to dissect the genetic founda-
tion of these oil-related traits and improve them in soy-
bean breeding.

miRNAs control plant development and regulate 
important traits through post-transcriptional gene regu-
lation [35]. There are many experimental biology stud-
ies on the associations of miRNA with genes and their 

regulation mechanisms, e.g., GmNINa–miR172c–NNC1, 
and miR167–GmARF8 in soybean nodulation [36, 37], 
miR828–GhMYB2 and miR858–GhMYB2 in cotton 
fiber trait [38], and OsmiR397–LAC in rice grain yield 
trait [39]. In lipid studies, high-throughput sequencing 
was used to identify the miRNAs related to both lipid 
metabolism and oil-related traits in Brassica napus [40], 
Hippophae rhamnoides [41], and Camellia oleifera [42]. 
Zhang et al. [43] predicted that bna-miR169 determined 
the oil content difference between Glycine max and Bras-
sica napus, while bna-miR156, along with SPL, affected 
seed oil content by influencing early embryo develop-
ment [40, 44]. In Camelina sativa, miR167a–CsARF8 
mediates LAFL regulation network for CsFAD3 suppres-
sion and decreases seed linolenic acid content [45]. Thus, 
there exists great potential to dissect the genetic basis of 
oil-related traits through miRNA regulation.

In this study, one MDGN was constructed using the 
associations among genes, TFs, miRNAs, metabolites/
lipids, and seed oil-related traits (Fig. 1). In the oil-related 
trait and metabolite/lipid layer, the associations of seed 
oil-related traits with metabolites/lipids were obtained 
by modern statistical methods. In the genome layer, 
the associations of genes with seed oil-related traits or 
metabolites were obtained by quantitative trait locus 
(QTL) mapping. In the gene regulatory network (GRN) 
layer, the GRN among genes, TFs, and miRNAs was con-
structed using co-expression, protein–protein interac-
tion (PPI), and TF binding site (TFBS) and miRNA target 

Fig. 1 Overview of soybean multi‑dimensional genetic network 
among genes, TFs, miRNAs, metabolites, lipids, and oil‑related traits. 
This network includes three layers, namely, oil‑related traits and 
metabolites/lipids layer, genome layer, and gene regulatory network 
layer

http://aralip.plantbiology.msu.edu/
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predictions. The first two associations were integrated 
into the GRN to construct the MDGN. Among the net-
works, hub nodes were mined. Thus, some important 
sub-networks containing hub nodes related to oil bio-
synthesis were identified. These findings will be useful 
for soybean oil quality improvement and identification of 
lipid metabolism regulation.

Results
Distribution of six seed oil‑related traits, 59 metabolites, 
and 107 lipids in 398 soybean RILs
In 398 recombinant inbred lines (RILs) of soybean, five 
seed oil constituents, including palmitic acid, stearic acid, 
oleic acid, linoleic acid, and linolenic acid, were measured 
in three environments (WH2014, EZ2015, and NJ2015; 
Fig.  2A–E), and seed oil content was measured in two 
environments (WH2014 and EZ2015; Fig. 2F). Frequency 
distributions of six seed oil-related traits in 398 RILs 
showed that they were typical quantitative traits with 

large variation, indicating the existence of large-effect 
genes for most traits other than stearic and linoleic acid 
content (Table 1; Additional file 1: Table S1; Fig. 2A–F). 

Fifty-five primary and four secondary metabolites were 
measured with two biological replicates in NJ2016 using 
the GC–TOF–MS method, and were classified into 19 
organic acids, 15 amino acids, 17 lipids (2 sphingolipids 
and 15 fatty acids), and 8 carbohydrates (see Additional 
file  1: Table  S2 for detail). Frequency distributions of 
coefficients of variation (CV), skewness, and kurtosis for 
59 metabolites showed that they were typical quantita-
tive traits with large variation, indicating the existence 
of large-effect genes for most metabolites (Table 1; Addi-
tional file 1: Table S2; Fig. 2G–I).

A total of 107 lipids were measured with two biologi-
cal replicates in NJ2016 using the Q Exactive Orbit-
rap method. These lipids belong to 15 lipid sub-classes 
of four categories: fatty acids (10; CV: 104.94–165.28), 
glycerolipids (50; 24.00–123.48), glycerophospholipids 

Fig. 2 Frequency distributions for seed oil‑related traits and variation characteristics of metabolites/lipids in 398 soybean RILs. A–E Seed fatty acid 
constituents. F Seed oil content. G, J Coefficients of variation. H, K Skewness. I, L Kurtosis. WH2014: Wuhan in 2014 (green); EZ2015: Ezhou in 2015 
(orange); NJ2015: Nanjing in 2015 (red); BLUP: best linear unbiased prediction (yellow). The mean phenotypes of two parents for oil‑related traits in 
each environment are indicated by arrows with different colors. LSD was used to test the significance of differences between various environments, 
and the significance was marked by different characters. All the data are indicated by mean ± standard deviation
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(44; 50.90–122.92), and sphingolipids (3; 57.22–63.84) 
(Fig.  2J–L; Additional file  1: Table  S3). Frequency dis-
tributions of CV, skewness, and kurtosis for 107 lipids 
showed that they were typical quantitative traits with 
large variation, indicating the existence of large-effect 
genes for most lipids (Table 1; Additional file 1: Table S3; 
Fig.  2J–L). Interestingly, in every lipid sub-class, each 
compound pair was highly correlated (Fig. 3A).

Genetic relationships among six seed oil‑related traits, 59 
metabolites, and 107 lipids in 398 soybean RILs
To investigate the trait–metabolite and trait–lipid asso-
ciations, the average/BLUP for each seed oil-related 
trait across various environments was used to identify 
the associations with 59 metabolites and 107 lipids in 
each biological replicate using minimax concave pen-
alty (MCP) [46] and smoothly clipped absolute devia-
tion penalty (SCAD) [47], as well as t test. As a result, 62 
trait–metabolite associations in 36 metabolites and 89 
trait–lipid associations in 54 lipids were found to be sig-
nificant (Additional file  1: Tables S4, S5). To investigate 
the metabolite–metabolite, lipid–lipid, and metabolite–
lipid associations, conditional pairwise Pearson correla-
tion coefficients were calculated via Gaussian graphical 
modeling (GGM) [48]. As a result, 24 metabolite–lipid, 
91 metabolite–metabolite, and 348 lipid–lipid associa-
tions were identified to be significant (Fig. 3B; Additional 
file 1: Table S6).

By connecting all the above associations among oil-
related traits, metabolites, and lipids, a complex network 
was constructed. By extracting cliques from this network, 
60 oil-related trait cliques were found, including 19 seed 
oil content, 12 palmitic acid, 1 stearic acid, 12 oleic acid, 
7 linoleic acid, and 9 linolenic acid cliques. These cliques 
revealed the significant correlations between seed–oil-
related traits and metabolites/lipids (Fig. 3C, D), e.g., “oil 
content, 1-Hexadecanol, and TG(18:1/18:1/18:2)” and 
“oil content, TG(18:1/18:1/18:3), TG(18:1/18:1/18:2), and 
TG(16:0/18:1/18:2)”.

Mapping QTLs and QTL‑by‑environment interactions 
and predicting their candidate genes for seed oil‑related 
traits in 398 soybean RILs
Detection of QTLs and their candidate genes for oil‑related 
traits
To identify QTLs for seed oil-related traits, the pheno-
types in each environment and their BLUP values across 
all the environments were used to associate with 11,846 
molecular markers in 398 RILs using the software pro-
grams QTL.gCIMapping (GCIM) [49, 50], IciMapping 
(ICIM) [51], and mrMLM [52]. As a result, among 1222 
QTLs for oil-related traits (Additional file  2: Table  S7), 
175 were identified by at least two approaches and/or 
in at least two environments (Additional file 1: Table S8; 
Fig.  4A), including 32 for palmitic acid, 21 for stearic 

Table 1 Overview of phenotypic characteristics and the numbers of QTLs/mQTLs for oil‑related traits, metabolites, and lipids

Traits No. of species Phenotypic characteristics Quantitative trait locus mapping

Coefficients of 
variation (%)

Skewness Kurtosis No. of QTL/
mQTL

No. of 
candidate 
genes

No. of 
candidate 
miRNAs

Seed oil‑related traits

 Stearic acid 1 4.06 0.1777 0.2377 32 16 0

 Palmitic acid 1 7.15 1.9696 30.8676 22 5 0

 Oleic acid 1 11.48 0.3230 1.8591 22 9 2

 Linoleic acid 1 4.69 − 0.4509 0.8151 40 16 4

 Linolenic acid 1 8.13 − 0.6409 4.3260 38 14 7

 Oil content 1 4.79 0.4022 2.1282 21 8 4

Metabolites

 Carbohydrates 8 78.34 ± 25.26 1.9570 7.4024 11 9 3

 Lipids 17 106. 03 ± 43.87 1.3740 4.2657 27 20 4

 Organic acids 19 91.40 ± 34.23 1.9186 6.3696 31 26 6

 Amino acids 15 90.89 ± 33.05 1.2199 2.1678 27 24 2

Lipids

 Fatty acids 10 121.01 ± 17.98 2.5373 8.1187 43 29 7

 Glycerolipids 50 68.19 ± 26.30 2.0662 13.0418 123 83 7

 Glycerolphospholipids 44 80.11 ± 20.09 1.7128 5.5052 64 39 6

 Sphingolipids 3 60.11 ± 3.39 1.5809 3.2449 3 3 0



Page 5 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92  

acid, 23 for oleic acid, 40 for linoleic acid, 38 for linolenic 
acid, 21 for oil content, and 32 for pleiotropy.

To determine candidate genes for oil-related traits 
around the 175 above-mentioned QTLs, all the 
genes specifically expressed in seed were identi-
fied [53]. Furthermore, 1,390 differentially expressed 
genes (DEGs) between high- and low-oil accessions 
were used to prioritize candidate genes [54]. Finally, 
according to the annotations described in Liu et  al. 

[55], along with Arabidopsis homologous informa-
tion in ARALIP and soybean pathway annotation in 
SFGD, 70 candidate genes were mined (Additional 
file 1: Table S8). Among these genes, 9 soybean genes 
were confirmed by transgenic experiments in soybean 
(Table  2), i.e., GmLEC1-b [56], GmFAB2 [9], GmFatA 
and GmFatB1a [57], GmPLDα1 [13], GmABI3b [56], 
GmDGAT1a [10], GmPDAT1 [12], and GmSEI [17]. 14 
genes are homologs to those in Arabidopsis, which are 

Fig. 3 Statistical associations among six seed–oil‑related traits, 59 metabolites, and 107 lipids in 398 soybean RILs. A Heatmap of genetic correlation 
for lipids. B Networks between metabolites/lipids and oil‑related traits were constructed using the Gaussian graphical model, minimax concave 
penalty, and smoothly clipped absolute deviation methods. The sizes of nodes indicate their degrees in the network. C, D Cliques around seed oil 
content and seed fatty acids were extracted from the networks in B. The transparency of each label represents the connectivity of each node. Circle 
node: metabolite; diamond node: lipid; octagon node: seed oil‑related trait; orange node: carbohydrate; red node: fatty acids and triglyceride; blue 
node: lipids measured by GC–TOF–MS; purple node: diglyceride; light green node: glycerolipid; brown: organic acid; pink node: amino acid; dark 
blue node: phospholipid; dark green node: sphingolipid; the color of line: the size of correlation coefficient
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confirmed by transgenic experiments, e.g., Atα-PDHC 
[58], AtPLDζ [59], AtFAX1 [60], and AtPDCT [14]; 
32 genes or their homologs in Arabidopsis have been 
predicted to participate in oil biosynthesis and lipid 
metabolism; and 15 genes were newly found in this 
study (Additional file 1: Table S8).

Detection of QTL‑by‑environment interactions (QEIs) 
and their candidate genes for oil‑related traits
The above-mentioned multi-environment data sets were 
used to detect QEIs for oil-related traits using the ICIM 
method. As a result, a total of 36 significant QEIs were 
identified, including 7 for palmitic acid, 6 for stearic acid, 
7 for oleic acid, 5 for linoleic acid, 9 for linolenic acid, 

Fig. 4 Genomic distribution of QTLs and primary metabolic pathways for metabolites/lipids and oil‑related traits. A QTLs. Meta‑QTLs were derived 
from Qi et al. [102]. In each circle, the dots with larger LOD score are closer to outer margin. B Glycolysis, citrate cycle, and amino acid metabolism. C 
Fatty acid biosynthesis. D TAG biosynthesis and eukaryotic phospholipid synthesis. blue: candidate genes for oil‑related traits; red: candidate genes 
for metabolites/lipids; purple: candidate genes commonly for oil‑related traits and metabolites/lipids; grey: genes derived from other studies. Four 
small blocks close to each gene represent log2 (Fold Change) transcript levels between high‑ and low‑oil accessions at four stages (15, 25, 35, and 
55 days after flowering). All the abbreviations can be found in Additional file 1: Table S15



Page 7 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92  

Ta
bl

e 
2 

Fi
ve

 n
ew

 a
nd

 te
n 

kn
ow

n 
ca

nd
id

at
e 

ge
ne

s 
ar

ou
nd

 s
ta

bl
e 

Q
TL

s 
fo

r o
il‑

re
la

te
d 

tr
ai

ts
 in

 s
oy

be
an

Ca
nd

id
at

e 
ge

ne
s 

fo
r o

il‑
re

la
te

d 
tr

ai
ts

Q
ua

nt
ita

tiv
e 

tr
ai

t l
oc

us
 m

ap
pi

ng
 a

nd
 g

en
om

e‑
w

id
e 

as
so

ci
at

io
n 

st
ud

ie
s

Co
m

pa
ra

tiv
e 

ge
no

m
ic

s 
an

al
ys

is

Ch
r

M
ar

ke
rs

 a
ss

oc
ia

te
d

Eff
ec

t
LO

D
 s

co
re

r2  (%
)

Tr
ai

t
G

en
e 

ID
Ar

ab
id

op
si

s 
ho

m
ol

og
s

Pa
th

w
ay

Re
fe

re
nc

es

G
m

α-
PD

H
C

N
ew

3
M

ar
ke

r2
40

51
41

, 
M

ar
ke

r2
41

36
38

0.
07

~
0.

15
3.

12
~

7.
15

1.
83

~
6.

86
Pa

lm
iti

c 
ac

id
s

G
ly

m
a0

3g
42

19
0

At
1g

01
09

0
Fa

tt
y 

ac
id

 s
yn

th
es

is
D

em
ei

rle
ir 

et
 a

l. 
[5

7]

G
m

SE
I

N
ew

9
M

ar
ke

r5
01

87
4,

 
M

ar
ke

r4
11

80
0

−
 0

.1
1~

0.
08

2.
58

~
3.

64
1.

85
~

3.
02

Li
no

le
ni

c 
ac

id
G

ly
m

a0
9g

38
57

0
At

5g
16

46
0

Tr
ia

cy
lg

ly
ce

ro
l b

io
sy

n‑
th

es
is

Lu
nn

 e
t a

l. 
[1

7]

G
m

FA
X1

N
ew

19
M

ar
ke

r1
56

59
78

, 
M

ar
ke

r1
46

08
07

0~
0.

06
3.

64
~

38
.1

5
0~

5.
15

St
ea

ric
 a

ci
d;

G
ly

m
a1

9g
31

61
0

At
3g

57
28

0
Fa

tt
y 

ac
id

 tr
an

sp
or

t
Ti

an
 e

t a
l. 

[6
0]

G
m

PL
D

ζ2
N

ew
15

M
ar

ke
r1

35
45

7,
 

M
ar

ke
r9

36
80

−
 0

.2
2~

0.
12

2.
60

~
6.

11
0.

64
~

3.
17

O
il 

co
nt

en
t

G
ly

m
a1

5g
16

27
0

At
3g

16
78

5
Ph

os
ph

ol
ip

id
 sy

nt
he

si
s

Ya
ng

 e
t a

l. 
[5

9]

G
m

PD
CT

N
ew

7
M

ar
ke

r3
64

97
3,

 
M

ar
ke

r3
52

63
2

−
 0

.7
9~

 0
.4

6
3.

43
~

10
.0

8
2.

24
~

5.
67

O
le

ic
 a

ci
d;

 L
in

ol
ei

c 
ac

id
; l

in
ol

ei
c 

ac
id

G
ly

m
a0

7g
03

35
0

At
3g

15
82

0
Tr

ia
cy

lg
ly

ce
ro

l b
io

sy
n‑

th
es

is
Lu

 e
t a

l. 
[1

4]

G
m

LE
C1

-b
Kn

ow
n

17
M

ar
ke

r2
26

71
1,

 
M

ar
ke

r1
69

90
4

−
 0

.1
5~

0.
07

3.
13

~
3.

59
3.

06
~

6.
12

St
ea

ric
 a

ci
d

G
ly

m
a1

7g
00

95
0

At
5g

47
67

0
Tr

an
sc

rip
tio

n 
fa

ct
or

Zh
an

g 
et

 a
l. 

[5
6]

,

G
m

FA
B2

Kn
ow

n
2

M
ar

ke
r1

16
10

43
, 

M
ar

ke
r1

19
22

62
−

 0
.0

7~
 0

.1
2

5.
59

~
8.

85
2.

36
~

4.
97

Pa
lm

iti
c 

ac
id

s
G

ly
m

a0
2g

15
60

0
At

2g
43

71
0

Fa
tt

y 
ac

id
 s

yn
th

es
is

Ca
rr

er
o‑

Co
ló

ne
t a

l. 
[8

]

G
m

Fa
tB

1b
Kn

ow
n

4
M

ar
ke

r2
23

02
22

, 
M

ar
ke

r2
23

02
22

0.
25

~
0.

52
2.

75
~

5.
90

1.
26

~
1.

90
Li

no
le

ic
 a

ci
d

G
ly

m
a0

4g
37

42
0

At
1g

08
51

0
Fa

tt
y 

ac
id

 s
yn

th
es

is
Zh

ou
 e

t a
l. 

[5
7]

G
m

Fa
tB

1a
Kn

ow
n

5
M

ar
ke

r2
10

01
53

, 
M

ar
ke

r2
20

49
80

0.
07

~
0.

16
3.

45
~

5.
00

1.
66

~
7.

47
Li

no
le

ni
c 

ac
id

; l
in

ol
ei

c 
ac

id
G

ly
m

a0
5g

08
06

0
At

1g
08

51
0

Fa
tt

y 
ac

id
 s

yn
th

es
is

Zh
ou

 e
t a

l. 
[5

7]

G
m

Fa
tA

Kn
ow

n
8

M
ar

ke
r6

73
68

7,
 

M
ar

ke
r6

74
65

4
−

 0
.1

0~
0.

09
2.

58
~

3.
93

4.
52

~
6.

78
St

ea
ric

 a
ci

d
G

ly
m

a0
8g

46
36

0
At

3g
25

11
0

Fa
tt

y 
ac

id
 s

yn
th

es
is

Zh
ou

 e
t a

l. 
[5

7]

G
m

PL
D

α1
Kn

ow
n

6
M

ar
ke

r2
02

94
09

, 
M

ar
ke

r1
94

93
00

0.
09

~
0.

16
3.

28
~

6.
51

2.
07

~
4.

24
Li

no
le

ni
c 

ac
id

G
ly

m
a0

6g
07

23
0

At
3g

15
73

0
Ph

os
ph

ol
ip

id
 sy

nt
he

si
s

Zh
an

g 
et

 a
l. 

[1
3]

G
m

AB
I3

Kn
ow

n
8

M
ar

ke
r6

73
68

7,
 

M
ar

ke
r6

74
65

4
−

 0
.1

0~
0.

09
2.

58
~

3.
93

4.
52

~
6.

78
St

ea
ric

 a
ci

d
G

ly
m

a0
8g

47
24

0
At

3g
24

65
0

Tr
an

sc
rip

tio
n 

fa
ct

or
Zh

an
g 

et
 a

l. 
[5

6]

G
m

D
G

AT
1a

Kn
ow

n
13

M
ar

ke
r2

79
80

86
, 

M
ar

ke
r2

79
07

48
0.

09
~

0.
12

3.
26

~
19

.9
4

5.
29

~
9.

33
St

ea
ric

 a
ci

d;
 li

no
le

ic
 

ac
id

G
ly

m
a1

3g
16

56
0

At
2g

19
45

0
Tr

ia
cy

lg
ly

ce
ro

l b
io

sy
n‑

th
es

is
To

ra
bi

 e
t a

l. 
[1

0]

G
m

PD
AT

1
Kn

ow
n

13
M

ar
ke

r2
85

02
21

, 
M

ar
ke

r2
85

02
21

−
 0

.5
0~

−
 0

.4
3

2.
84

~
4.

03
1.

83
~

1.
97

St
ea

ric
 a

ci
d;

 li
no

le
ic

 
ac

id
G

ly
m

a1
3g

16
79

0
At

5g
13

64
0

Tr
ia

cy
lg

ly
ce

ro
l b

io
sy

n‑
th

es
is

Li
u 

et
 a

l. 
[1

2]

G
m

G
A2

0O
X

Kn
ow

n
7

M
ar

ke
r2

88
29

9,
 

M
ar

ke
r3

66
92

1
−

 0
.1

2~
−

 0
.1

3.
06

~
4.

81
3.

07
~

3.
96

Li
no

le
ni

c 
ac

id
G

ly
m

a0
7g

08
95

0
At

5g
51

81
0

Tr
an

sc
rip

tio
n 

fa
ct

or
Lu

 e
t a

l. 
[1

08
]



Page 8 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92 

and 2 for oil content (Fig. 4A; Additional file 1: Table S9). 
Using the same method as described above, 32 candidate 
genes were identified, including 10 genes in the phos-
pholipid metabolism; for example, GmPI3P for palmitic 
acid, and GmPIPK-IB and GmSac-PIP for linolenic acid 
in lipid phosphatidylinositol signaling pathways [61]; 
GmPLDβ4 for linoleic acid, GmPLDα6 for palmitic acid, 
and GmPLDζ3 for linolenic acid in PLDs [62]; GmLPP-ε2 
for linoleic acid, GmPAH1 for oil content, GmPAH2 for 
oleic acid, and GmPAP for palmitic acid in PPs, which 
was reported to control the proportions of its substrate 
phosphatidic acid and diacylglycerol to respond to envi-
ronmental stress in plants [63].

Prediction of candidate miRNAs for oil‑related traits
Among 756 mature miRNAs in miRbase (version 22.1), 
109 were found to be around the above 175 QTLs. Merg-
ing the results from at least two miRNA target prediction 
methods (psRNAtarget, Target Finder, and psRobot) and 
co-expression validation, four miRNAs were predicted 
to directly regulate four candidate oil-related trait genes 
(Additional file 1: Tables S10, S11). Based on the FIMO 
results of putative TFBS, 16 miRNAs were predicted to 
indirectly regulate 37 candidate oil-related trait genes 
through 10 TFs (Additional file  1: Tables S10–S12). 
Among these miRNA families, some were reported to 
be associated with lipid metabolism, e.g., gma-miR156t, 
gma-miR156i, gma-miR156l, and gma-miR156q in the 
miR156 family [40], and gma-miR167b in the miR167 
family [37, 45]. Among 10 TFs, Glyma13g29160 
(GmTCP) was located around oil-related trait QTLs 
(Additional file  1: Table  S8), ARF has been reported to 
be regulated by miR167 in some crops [37, 45], and SPL 
has been reported to be under the regulation of miR156 
in soybean [64].

To further validate the regulation of miRNAs and their 
candidate genes at different seed development stages 
(early and middle maturity stages, and dry seed), expres-
sion patterns were inspected in four chromosome seg-
ment substitution lines (CSSL) with high or low seed 
oil content [65]. Between high and low seed oil lines, 
miR167b and miR167d were found to have negative 
expression patterns with Glyma02g40650 (GmARF8a) 
at early seed maturity stages (Fig.  5A), miR159a and 
miR159e were found to have opposite expression pat-
terns with Glyma13g25716 (GmGAMYB1) in dry seed, 
and miR319l was found to have negative expression pat-
terns with GmGAMYB1 in early maturity and dry seed 
stages (Fig. 5A, B). However, no negative regulations were 
found in middle maturity stage. As shown in Fig. 5C, four 
CSSL lines were compared with control lines to exhibit 
dynamic regulations during seed development.

Identification of mQTLs and their candidate genes for 59 
metabolites and 107 lipids
Detection of mQTLs and their candidate genes 
for metabolites and lipids
To identify mQTLs for seed metabolites and lipids in 
soybean, their measurements in 2016 were used to asso-
ciate with SNP markers in 398 RILs using the software 
programs QTL.gCIMapping [49, 50], IciMapping [51], 
and mrMLM [52]. As a result, 470 mQTLs were found to 
be associated with 59 metabolites, including 52 for car-
bohydrates, 120 for lipids (10 for sphingolipids and 110 
for fatty acids), 148 for organic acids, and 150 for amino 
acids, while 1,306 mQTLs were found to be associated 
with 107 lipids, including six for sphingolipids, 108 for 
fatty acids, 370 for glycerophospholipids, and 822 for 
glycerolipids (Fig. 4A; Additional file 3: Table S13; Addi-
tional file  4: Table  S14). Moreover, mQTLs found using 
at least two methods to be associated with metabolites/
lipids in the same compound categories were merged 
into mQTL clusters. As a result, 302 mQTL clusters were 
identified, including 11 for carbohydrates, 27 for amino 
acids, 31 for organic acids, three for sphingolipids, 43 for 
fatty acids, 64 for glycerophospholipids, and 123 for glyc-
erolipids (Additional file 1: Table S15).

Around 302 mQTL clusters, gene annotations and 
expression levels at 55 DAF were used to mine candidate 
genes. As a result, 9, 24, 27, 3, 28, 84, and 39 candidate 
genes were found to be around carbohydrate, amino 
acid, organic acid, sphingolipid, fatty acid, glycerophos-
pholipid, and glycerolipid QTLs, respectively (Additional 
file  1: Table  S15), while 5, 6, 4, 1, 10, 28, and 16 candi-
date genes, along with their corresponding metabolites, 
were predicted to be in the same pathways (Fig. 4B–D). 
Among the 181 candidate genes, more importantly, 16 
candidate genes were confirmed in previous studies, e.g., 
Glyma06g12010 (GmALDH2) was found to be associ-
ated with β-alanine (gmx00260), and Glyma13g16440 
(GmMDH1) was found to be associated with isocit-
ric, oxalic, succinic, and citric acids (gmx00020 and 
gmx00620; Table 3).

Co‑located QTLs and their candidate genes for oil‑related 
traits and metabolites/lipids
To investigate the genetic basis of correlation between 
traits and metabolites/lipids, some co-located QTLs were 
found to be associated with both oil-related traits and 
metabolites/lipids. As a result, there were 47 common 
QTLs and 18 common QEIs (Additional file 1: Table S16). 
Among these common loci, 11 QTLs and 7 QEIs were 
further identified via MCP and SCAD (Fig. 3B). Around 
these common loci, 36 and 33 candidate genes were 
further identified using seed-specific and differential/
high expression analyses, respectively (Additional file  1: 
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Table S16). These results were used to construct 3D net-
works among traits, metabolites/lipids, and their candi-
date genes.

Prediction of candidate miRNAs for metabolites and lipids
Among 756 mature miRNAs in miRbase (version 22.1), 
214 were found to be around 302 mQTL clusters. As 
described in the prediction of candidate miRNAs for 
oil-related traits, 12 out of 214 miRNAs were predicted 
to directly regulate 10 candidate genes (Additional 
file  1: Tables S11, S17, S18), and the Glyma04g04060 
(GmPAH)–miR172j and Glyma17g13120 (GmOBO)–
miR5036 regulations were consistent with the pre-
diction of Ye et  al. [66]. Meanwhile, 46 out of 
214 miRNAs were predicted to indirectly regu-
late 46 candidate genes via 17 TFs (Additional 

file  1: Tables S11, S17, S18), in which three TFs 
(Glyma12g04440/GmbZIP44, Glyma02g42960/GmERF, 
and Glyma04g04060/GmPAH2) were found to be 
located around mQTL clusters (Additional file  1: 
Table  S15). Among the above 214 miRNA families, 
22 were reported to be associated with lipid metab-
olism, e.g., 16 miRNAs in the miR156 family [40], 
gma-miR167b, gma-miR167d, gma-miR167k, and 
gma-miR167l in the miR167 family [37, 45], and gma-
miR172j, and gma-miR172f in the miR172 family [40]. 
Between high and low oil lines, miR167 (miR167b 
and miR167d) and miR160 (miR160b and miR160d) 
were found to have opposite expression patterns with 
Glyma02g40650 (GmARF8a) and Glyma10g06080 
(GmARF16), respectively, at early seed maturity stage 
(Fig.  5A). miR166i was identified to have negative 

Fig. 5 Opposite expression patterns of candidate miRNAs and their target genes in high‑ and low‑oil CSSLs. The log2 (Fold Change) transcript 
levels between high‑ and low‑oil CSSLs for candidate miRNAs and their target genes at different development stages were shown. A Early seed 
maturity stage. B Middle seed maturity stage. Each dot represents the regulation of miRNA and its target gene. The miRNAs are denoted by the 
arrow, and their target genes are denoted by the color of the dot. C Heatmap of expression patterns of CSSLs in different seed development stages. 
HPHO: log2 (Fold Change) transcript levels between high protein and oil CSSL and control line; HPLO: log2 (Fold Change) transcript levels between 
high‑ and low‑oil CSSL and control line; LPHO: log2 (Fold Change) transcript levels between low protein and high oil CSSL and control line; LPLO: 
log2 (Fold Change) transcript levels between low protein and low oil CSSL and control line



Page 10 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92 

Ta
bl

e 
3 

Tw
el

ve
 n

ew
 a

nd
 s

ix
te

en
 k

no
w

n 
ca

nd
id

at
e 

ge
ne

s 
ar

ou
nd

 m
Q

TL
s 

cl
us

te
rs

 fo
r m

et
ab

ol
ite

s 
an

d 
lip

id
s 

in
 s

oy
be

an

Ca
nd

id
at

e 
ge

ne
 fo

r 
m

et
ab

ol
ite

s 
an

d 
lip

id
s

Q
ua

nt
ita

tiv
e 

tr
ai

t l
oc

us
 m

ap
pi

ng
Co

m
pa

ra
tiv

e 
ge

no
m

ic
s 

an
al

ys
is

m
Q

TL
 c

lu
st

er
Ch

r
M

ar
ke

rs
 

as
so

ci
at

ed
Eff

ec
t

LO
D

 s
co

re
r2  (%

)
M

et
ab

ol
ite

 
cl

as
s

M
et

ab
ol

ite
s 

an
d 

lip
id

s
G

en
e‑

na
m

e 
1.

1
Ar

ab
id

op
si

s 
ho

m
ol

og
s

KE
G

G
 

pa
th

w
ay

Re
fe

re
nc

es

G
m

PH
S

Kn
ow

n
m

Q
TL

‑C
6

8
M

ar
ke

r7
06

15
8,

 
M

ar
ke

r7
50

70
3

−
 0

.9
7~

 0
.5

2
3.

14
~

3.
63

2.
48

~
8.

16
Ca

rb
oh

y‑
dr

at
es

d
‑G

lu
co

se
G

ly
m

a0
8g

45
21

0
AT

3G
46

97
0

gm
x0

05
00

Sa
to

h 
et

 a
l. 

[6
9]

G
m

FP
BP

N
ew

m
Q

TL
‑C

4
7

M
ar

ke
r3

99
01

6,
 

M
ar

ke
r3

84
91

8
−

 0
.7

2~
0.

69
2.

60
~

2.
82

7.
33

~
7.

40
M

an
no

se
G

ly
m

a0
7g

17
18

0
AT

3G
54

05
0

gm
x0

00
51

St
ra

nd
 e

t a
l. 

[1
09

]

G
m

FB
A

Kn
ow

n
m

Q
TL

‑C
11

13
M

ar
ke

r2
84

97
46

, 
M

ar
ke

r2
76

76
59

0.
45

~
 0

.7
6

2.
56

~
2.

74
3.

06
~

3.
14

M
an

no
se

, 
d

‑fr
uc

to
se

 2
,6

‑b
is

‑
ph

os
ph

at
e

G
ly

m
a1

3g
21

54
0

AT
2G

36
46

0
gm

x0
00

51
Ca

rr
er

a 
et

 a
l. 

[1
10

]

G
m

ZF
35

1
Kn

ow
n

m
Q

TL
‑F

17
6

M
ar

ke
r1

99
64

57
, 

M
ar

ke
r2

04
41

43
0.

27
~

 0
.3

5
2.

59
~

3.
25

3.
47

~
4.

34
Fa

tt
y 

ac
id

s
FA

(1
8:

0)
, F

A
(2

0:
0)

, 
FA

(2
2:

1)
G

ly
m

a0
6g

44
44

0
AT

1G
03

79
0

Li
 e

t a
l. 

[2
5]

G
m

PL
D

γ
Kn

ow
n

m
Q

TL
‑G

11
5

1
M

ar
ke

r1
80

11
42

, 
M

ar
ke

r1
82

26
92

−
 0

.4
4~

 0
.4

6
2.

62
~

4.
71

5.
92

~
10

.8
7

G
ly

ce
ro

lip
‑

id
s

D
G

(1
6:

0/
16

:0
), 

D
G

(2
0:

0/
18

:2
), 

D
G

(2
0:

0/
18

:3
), 

TG
(1

8:
1/

18
:2

/1
8:

3)
, 

D
G

(1
8:

0/
16

:0
), 

D
G

(1
8:

0/
18

:0
), 

D
G

(1
8:

1/
18

:1
)

G
ly

m
a0

1g
42

42
0

AT
2G

42
01

0
gm

x0
41

44
Ba

i e
t a

l. 
[1

6]

G
m

PL
D

ε1
Kn

ow
n

m
Q

TL
‑G

10
9

15
M

ar
ke

r2
94

46
, 

M
ar

ke
r5

03
5

−
 0

.2
7~

 0
.2

6
2.

56
~

5.
36

0.
24

~
5.

73
D

G
(1

6:
0/

16
:0

), 
D

G
(1

8:
0/

16
:0

), 
D

G
(1

8:
0/

18
:0

), 
D

G
(1

8:
3/

18
:3

)

G
ly

m
a1

5g
02

71
0

AT
1G

55
18

0
gm

x0
41

44
Ya

ng
 e

t a
l. 

[5
9]

G
m

PE
CT

1
Kn

ow
n

m
Q

TL
‑G

21
18

M
ar

ke
r9

20
73

3,
 

M
ar

ke
r9

26
62

7
−

 0
.4

5~
 0

.4
1

2.
72

~
4.

45
5.

97
~

11
.3

9
D

G
(1

8:
0/

18
:1

), 
D

G
(1

6:
0/

18
:1

), 
D

G
(1

8:
1/

18
:1

), 
D

G
(1

8:
0/

18
:0

), 
D

G
(1

6:
0/

16
:0

)

G
ly

m
a1

8g
45

21
0

AT
2G

38
67

0
gm

x0
05

64
M

iz
oi

 e
t a

l. 
[1

11
]

G
m

ns
PL

C
N

ew
m

Q
TL

‑G
40

3
M

ar
ke

r2
48

57
79

, 
M

ar
ke

r2
40

66
10

−
 0

.2
1~

 1
.4

4
3.

24
~

31
.9

2
3.

49
~

10
.2

2
D

G
D

G
(1

6:
0/

18
:2

)
G

ly
m

a0
3g

22
86

0
AT

3G
03

52
0

gm
x0

05
64

Ca
i e

t a
l.[

15
]

G
m

D
RE

BL
N

ew
m

Q
TL

‑G
94

12
M

ar
ke

r2
66

80
97

, 
M

ar
ke

r2
70

52
84

−
 0

.1
2~

 0
.0

5
3.

07
~

4.
57

0.
46

~
3.

16
D

G
(2

0:
1/

18
:2

), 
TG

(1
8:

0/
16

:0
/1

8:
1)

, 
D

G
(1

8:
3/

18
:3

), 
LP

C
(1

6:
0)

, L
PC

(1
8:

0)

G
ly

m
a1

2g
11

15
0

AT
2G

40
34

0
Zh

an
g 

et
 a

l. 
[2

4]

G
m

LP
AA

T4
Kn

ow
n

m
Q

TL
‑G

9
17

M
ar

ke
r1

82
10

6,
 

M
ar

ke
r1

81
45

2
−

 0
.2

3~
 0

.2
2

2.
51

~
5.

41
0.

10
~

11
.0

1
TG

(1
6:

0/
16

:0
/1

8:
2)

, 
D

G
(1

8:
2/

18
:2

), 
TG

(1
6:

0/
18

:2
/1

8:
3)

, 
TG

(1
6:

0/
16

:0
/1

8:
1)

, 
TG

(1
6:

0/
18

:1
/1

8:
1)

, 
TG

(1
8:

3/
18

:2
/1

8:
2)

, 
TG

(1
8:

1/
18

:2
/1

8:
2)

, 
TG

(1
8:

0/
16

:0
/1

8:
1)

, 
TG

(2
0:

0/
18

:1
/1

8:
2)

, 
TG

(1
6:

0/
16

:0
/1

8:
3)

G
ly

m
a1

7g
36

67
0

AT
1G

75
02

0
gm

x0
05

61
Ki

m
 e

t a
l. 

[1
12

]



Page 11 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92  

Ta
bl

e 
3 

(c
on

tin
ue

d)

Ca
nd

id
at

e 
ge

ne
 fo

r 
m

et
ab

ol
ite

s 
an

d 
lip

id
s

Q
ua

nt
ita

tiv
e 

tr
ai

t l
oc

us
 m

ap
pi

ng
Co

m
pa

ra
tiv

e 
ge

no
m

ic
s 

an
al

ys
is

m
Q

TL
 c

lu
st

er
Ch

r
M

ar
ke

rs
 

as
so

ci
at

ed
Eff

ec
t

LO
D

 s
co

re
r2  (%

)
M

et
ab

ol
ite

 
cl

as
s

M
et

ab
ol

ite
s 

an
d 

lip
id

s
G

en
e‑

na
m

e 
1.

1
Ar

ab
id

op
si

s 
ho

m
ol

og
s

KE
G

G
 

pa
th

w
ay

Re
fe

re
nc

es

G
m

D
G

AT
1a

Kn
ow

n
m

Q
TL

‑G
10

0
13

M
ar

ke
r2

79
07

48
, 

M
ar

ke
r2

85
02

21
−

 0
.3

9~
 0

.3
2

2.
83

~
5.

40
0.

02
~

10
.0

8
TG

(1
6:

0/
18

:2
/1

8:
3)

, 
TG

(2
0:

1/
18

:3
/1

8:
3)

, 
TG

(1
8:

3/
18

:3
/1

8:
3)

, 
TG

(2
0:

2/
18

:2
/1

8:
2)

G
ly

m
a1

3g
16

56
0

AT
2G

19
45

0
gm

x0
05

61
To

ra
bi

 e
t a

l. 
[1

0]

G
m

bZ
IP

12
3

Kn
ow

n
m

Q
TL

‑G
51

6
M

ar
ke

r1
99

19
01

, 
M

ar
ke

r1
96

92
92

−
 0

.3
3~

 0
.2

2
2.

62
~

4.
27

1.
46

~
8.

53
TG

(1
8:

1/
18

:1
/1

8:
2)

, 
TG

(2
0:

1/
18

:1
/1

8:
2)

, 
TG

(1
6:

0/
18

:1
/1

8:
2)

, 
SQ

D
G

(1
6:

0/
18

:2
)

G
ly

m
a0

6g
01

24
0

AT
4G

34
59

0
So

ng
 e

t a
l. 

[2
2]

G
m

SW
EE

T1
0a

Kn
ow

n
m

Q
TL

‑G
11

2
15

M
ar

ke
r1

07
79

9,
 

M
ar

ke
r2

37
66

−
 0

.1
9~

 0
.3

9
2.

81
~

17
.3

2
0.

10
~

6.
87

D
G

(1
6:

0/
18

:1
), 

D
G

(1
6:

0/
18

:2
), 

D
G

(1
8:

1/
18

:2
), 

D
G

(2
0:

1/
18

:2
), 

TG
(1

8:
1/

18
:2

/1
8:

3)

G
ly

m
a1

5g
05

47
0

AT
5G

13
17

0
gm

x0
05

00
W

an
g 

et
 a

l. 
[5

]

G
m

CK
Kn

ow
n

m
Q

TL
‑G

33
20

M
ar

ke
r1

37
40

27
, 

M
ar

ke
r1

40
65

81
−

 2
.9

6~
 1

.1
6

2.
58

~
7.

15
1.

44
~

7.
58

G
ly

ce
r‑

op
ho

sp
ho

‑
lip

id
s

PC
(1

6:
0/

18
:3

), 
PE

(1
6:

0/
18

:3
), 

PE
(1

8:
3/

18
:2

), 
PE

(1
8:

3/
18

:3
), 

PE
(2

0:
0/

18
:3

)

G
ly

m
a2

0g
31

03
0

AT
1G

74
32

0
gm

x0
05

64
Li

n 
et

 a
l. 

[1
13

]

G
m

D
of

11
Kn

ow
n

m
Q

TL
‑G

P5
4

13
M

ar
ke

r2
81

89
91

, 
M

ar
ke

r2
82

74
81

−
 1

.0
8~

1.
02

2.
53

~
3.

34
0.

22
~

10
.2

6
PE

(1
6:

0/
18

:1
), 

PE
(1

6:
0/

18
:2

), 
PE

(1
6:

0/
18

:3
), 

PE
(1

8:
3/

18
:2

)

G
ly

m
a1

3g
40

42
0

AT
5G

60
20

0
W

an
g 

et
 a

l. 
[2

6]

G
m

FB
A

N
ew

m
Q

TL
‑O

25
14

M
ar

ke
r1

73
87

41
, 

M
ar

ke
r1

76
31

28
−

 0
.4

3~
0.

45
2.

82
~

4.
05

2.
70

~
3.

80
O

rg
an

ic
 

ac
id

d
‑G

ly
ce

ric
 a

ci
d

G
ly

m
a1

4g
36

85
0

AT
2G

36
46

0
gm

x0
12

30
Ca

rr
er

a 
et

 a
l. 

[1
10

]

G
m

M
D

H
1

Kn
ow

n
m

Q
TL

‑O
19

13
M

ar
ke

r2
84

27
00

, 
M

ar
ke

r2
75

91
37

−
 0

.9
0~

0.
94

2.
57

~
3.

68
4.

93
~

9.
05

Is
oc

itr
ic

 a
ci

d,
 o

xa
lic

 
ac

id
, s

uc
ci

ni
c 

ac
id

, 
ci

tr
ic

 a
ci

d

G
ly

m
a1

3g
16

44
0

AT
1G

04
41

0
gm

x0
00

20
Ko

ng
 e

t a
l. 

[1
9]

G
m

G
LY

K
N

ew
m

Q
TL

‑O
26

15
M

ar
ke

r1
14

11
6,

 
M

ar
ke

r1
14

11
6

0.
36

3.
17

1.
35

l‑
M

al
ic

 a
ci

d
G

ly
m

a1
5g

01
54

0
AT

1G
80

38
0

gm
x0

02
60

U
su

da
 a

nd
 

Ed
w

ar
ds

 [1
14

]

G
m

H
XK

N
ew

m
Q

TL
‑O

30
17

M
ar

ke
r1

69
30

6,
 

M
ar

ke
r1

69
30

6
1.

34
2.

58
6.

82
O

xa
la

ce
tic

 a
ci

d
G

ly
m

a1
7g

37
72

0
AT

1G
47

84
0

gm
x0

05
00

Tr
on

co
so

‑P
on

ce
 

et
 a

l. 
[1

15
]

G
m

AA
PT

N
ew

m
Q

TL
‑O

2
2

M
ar

ke
r1

19
37

92
, 

M
ar

ke
r1

19
37

92
−

 0
.9

1~
 

−
 0

.7
0

4.
32

~
6.

56
4.

85
~

7.
30

Py
ru

va
te

G
ly

m
a0

2g
14

21
1

AT
1G

13
56

0
gm

x0
05

64
Ba

i e
t a

l. 
[1

6]

G
m

FU
M

Kn
ow

n
m

Q
TL

‑O
14

9
M

ar
ke

r4
29

14
2,

 
M

ar
ke

r4
82

97
5

−
 0

.5
4~

 
−

 0
.3

7
2.

88
~

3.
94

1.
74

~
3.

17
Py

ru
va

te
G

ly
m

a1
0g

02
04

0
AT

2G
47

51
0

gm
x0

00
20

Be
ha

l a
nd

 O
liv

er
 

[1
16

]

G
m

G
AD

N
ew

m
Q

TL
‑O

5
5

M
ar

ke
r2

18
70

77
, 

M
ar

ke
r2

17
88

18
−

 0
.6

2~
 0

.5
4

2.
58

~
5.

18
2.

49
~

4.
45

Su
cc

in
ic

 a
ci

d
G

ly
m

a0
5g

26
66

0
AT

2G
02

01
0

gm
x0

02
50

M
at

su
ya

m
a 

et
 a

l. 
[1

17
]



Page 12 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92 

Ta
bl

e 
3 

(c
on

tin
ue

d)

Ca
nd

id
at

e 
ge

ne
 fo

r 
m

et
ab

ol
ite

s 
an

d 
lip

id
s

Q
ua

nt
ita

tiv
e 

tr
ai

t l
oc

us
 m

ap
pi

ng
Co

m
pa

ra
tiv

e 
ge

no
m

ic
s 

an
al

ys
is

m
Q

TL
 c

lu
st

er
Ch

r
M

ar
ke

rs
 

as
so

ci
at

ed
Eff

ec
t

LO
D

 s
co

re
r2  (%

)
M

et
ab

ol
ite

 
cl

as
s

M
et

ab
ol

ite
s 

an
d 

lip
id

s
G

en
e‑

na
m

e 
1.

1
Ar

ab
id

op
si

s 
ho

m
ol

og
s

KE
G

G
 

pa
th

w
ay

Re
fe

re
nc

es

G
m

AL
D

H
2

N
ew

m
Q

TL
‑P

8
6

M
ar

ke
r1

99
37

33
, 

M
ar

ke
r2

00
07

97
−

 0
.5

5~
 

−
 0

.3
2

2.
87

~
4.

51
3.

06
~

5.
77

A
m

in
o 

ac
id

be
ta

‑A
la

ni
ne

G
ly

m
a0

6g
12

01
0

AT
1G

44
17

0
gm

x0
04

10
Sh

in
 e

t a
l. 

[1
18

]

G
m

SD
Kn

ow
n

m
Q

TL
‑P

21
15

M
ar

ke
r1

25
70

, 
M

ar
ke

r1
25

70
−

 0
.7

7~
0.

68
2.

87
~

4.
55

2.
24

~
4.

15
Et

ha
no

la
m

in
e

G
ly

m
a1

5g
05

63
0

AT
1G

43
71

0
gm

x0
03

40
Yu

nu
s 

et
 a

l. 
[1

19
]

G
m

FU
S3

N
ew

m
Q

TL
‑P

22
16

M
ar

ke
r2

52
88

93
, 

M
ar

ke
r2

58
95

80
−

 0
.7

7~
 

−
 0

.5
0

3.
97

~
4.

10
1.

94
~

8.
71

Et
ha

no
la

m
in

e,
 

is
ol

eu
ci

ne
G

ly
m

a1
6g

05
48

0
AT

3G
26

79
0

Zh
an

g 
et

 a
l. 

[2
4]

G
m

PK
N

ew
m

Q
TL

‑P
26

20
M

ar
ke

r1
32

44
57

, 
M

ar
ke

r1
32

44
57

−
 0

.4
0~

 
−

 0
.3

9
3.

14
~

3.
14

1.
21

~
1.

29
Le

uc
in

e
G

ly
m

a2
0g

02
98

0
AT

5G
56

35
0

gm
x0

06
20

A
nd

re
 e

t a
l. 

[6
]

G
m

G
CL

N
ew

m
Q

TL
‑P

1
1

M
ar

ke
r1

89
89

99
, 

M
ar

ke
r1

89
89

99
−

 0
.7

4~
 0

.7
0

4.
05

~
6.

02
2.

62
~

4.
38

Se
rin

e
G

ly
m

a0
1g

42
90

0
AT

4G
23

10
0

gm
x0

02
70

Fr
an

kl
in

 e
t a

l. 
[1

20
]

G
m

ST
YK

Kn
ow

n
m

Q
TL

‑P
3

2
M

ar
ke

r1
18

85
45

, 
M

ar
ke

r1
24

38
16

−
 1

.1
5~

−
 0

.7
0

2.
67

~
2.

81
3.

08
~

9.
01

Th
re

on
in

e
G

ly
m

a0
2g

43
65

0
AT

4G
08

85
0

Ra
m

ac
ha

nd
ira

n 
et

 a
l. 

[7
6]



Page 13 of 26Han et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:92  

expression patterns with Glyma08g21610 (GmHD-ZIP-
III-10) in dry seed (Fig. 5B).

Construction of GRN and multi‑dimensional genetic 
networks with metabolites, lipids, oil‑related traits, 
candidate genes, and miRNAs
GRN for candidate genes, TFs, and miRNAs
Seed storage accumulation is synchronized through a 
complex GRN in which TFs act as master regulators. To 
construct a GRN including candidate genes, TFs, and 
miRNAs, PPI, TFBS, and miRNA targets were predicted. 

As a result, the GRN nodes included 56 miRNAs, 25 
TFs, and 123 genes, while the edges included 88 miRNA-
genes (Fig.  6A; Additional file  1: Tables S10, S17), 241 
TF-genes (Additional file  1: Tables S12, S18), and 147 
PPIs (Additional file 1: Table S19), which were validated 
by co-expression analysis (rpcc > 0.8; Additional file  1: 
Table S11).

In this GRN network, some regulations are in agree-
ment with previous studies (Fig.  6B), e.g., miR167 with 
ARF8a [45], miR166 with HD-ZIPIII10 [67], miR156 
with SPL9 [64], and the regulation through LAFL 

Fig. 6 Gene regulatory network and 3D and 4D sub‑networks in multi‑dimensional genetic network. A Gene regulatory network. B TF regulatory 
module. C Multi‑dimensional genetic network. D Examples for 3D and 4D sub‑networks among candidate genes (green), TFs (blue), miRNAs 
(red), metabolites (pink)/lipids (purple), and oil‑related traits (orange). Black line: associations between miRNAs and genes; green line: associations 
between TFs and genes; blue line: associations between a pair of genes; orange line: associations between metabolites/lipids and traits; red line: 
associations between miRNA/gene/TF and trait/metabolite/lipid
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transcriptional regulators (GmLEC1-b, GmABI3b, 
and GmFUS3) [68]. Some regulations were consistent 
with the predictions of Ye et al. [66], e.g., GmOBO with 
miR5036, and GmPAH2 with miR172j. More importantly, 
some regulations were newly identified, e.g., GmARF16 
with miR160b, GmGAMYB1 with miR159e, GmARF16 
with GmLEC1-b, GmHD-ZIPIII10 with GmZF351, and 
GmHD-ZIPIII10 with GmbZIP123.

Construction and validation of the multi‑dimensional genetic 
networks
The metabolite–gene–trait associations obtained in 
the above genetic analyses, such as metabolite (or lipid) 
with gene, trait with gene, and trait with metabolite (or 
lipid), were integrated in the above GRNs to construct 
an MDGN. As a result, 6 oil-related traits, 30 metabo-
lites, 89 lipids, 56 miRNAs in 17 miRNA families, 25 TFs, 
and 122 candidate genes were included in the MDGN 
(Fig. 6C).

In this MDGN, the MCC score of each node along 
with its topologic characteristics was calculated by Cyto-
Hubba (Additional file 1: Table S20). Thus, the hub nodes 
could be determined, and the sub-networks around the 
cliques and circuits of these hub nodes caught our atten-
tion. As a result, 47 three-dimensional (3D) circulating 
sub-networks were extracted. In each sub-network, there 
were three or four nodes that include an oil-related trait, 
a metabolite/lipid, and a gene (Fig.  6D; Table  3; Addi-
tional file  1: Table  S21). Some sub-networks were con-
structed by a commonly associated gene, and significant 
trait–metabolite/lipid or trait–gene associations, such as 
oleic acid (Trait)–GmPLDε1–DG(18:0/18:0), oleic acid 
(T)–GmPHS–d-glucose, stearic acid (T)–GmMDH1–cit-
ric acid–GmDGAT1a, and linolenic acid (T)–GmKASI–
TG(18:1/18:2/18:3)–GmKAR. Some sub-networks were 
constructed by PPIs and significant trait–metabolite/
lipid associations, such as oil content (T)–GmDHLAT–
GmFUM–pyruvate, and stearic acid (T)–GmLEC1-
b–GmDGAT1a–TG(18:3/18:3/18:3). Among these 3D 
sub-networks, 35 trait–gene and metabolite/lipid–gene 
associations were reported in previous studies, such 
as GmFAB2–stearic acid [8], and GmPHS–D-glucose 
[69], and 24 metabolites/lipids–genes were predicted 
to be in the same pathways, such as GmFUM–Pyru-
vate, GmPLDε1–DG(16:0/16:0), and GmLPAAT5–
TG(18:0/16:0/18:1) (Additional file 1: Table S21).

More importantly, 81 four-dimensional (4D) circulating 
sub-networks were extracted. In each sub-network, there 
were four or five nodes that included an oil-related trait, 
a metabolite/lipid, a miRNA, and a gene (Fig. 6D; Table 4; 
Additional file 1: Table S21). In these sub-networks, some 
miRNAs directly regulated candidate genes, such as lin-
oleic acid (T)–GmABI4–miR530d–TG(18:1/18:1/18:1), 

and serine–GmGH–miR172j–linolenic acid (T). Some 
miRNAs targeted TFs that regulated candidate genes, 
such as FA(18:0)–GmABI4–GmARF8a–miR167b–oil 
content (T), and stearic acid (T)–GmLEC1-b–GmHD-
ZIPIII-10–miR166j–FA(18:0). Among these 4D genetic 
networks, 62 trait–gene and metabolite/lipid–gene 
associations were reported in previous studies, such as 
Glyma06g01240 (GmbZIP123)–oil content [22], and 
Glyma18g50580 (GmKASI)–oil content [70], and 40 
metabolites/lipids–genes were predicted to be in the 
same pathways, such as GmTAGL–TG(18:1/18:1/18:3), 
and GmLPEAT–PI(16:0/18:2) (Additional file  1: 
Table S21).

Validation of sub‑networks corresponding to the oil 
content and linolenic acid traits
To provide useful information for soybean breeding for 
oil content and fatty acid composition, we validated the 
sub-network in this study by combining the metabolites, 
oil-related traits, and expression profiling data in natural 
population of Liu et al. [55]. We found that 26 trait–gene 
associations in 133 3D sub-networks of Liu et  al. [55] 
were also observed in this study. 11 metabolite nodes in 
sub-networks of this study were found to be significant 
in the hypothesis tests between five high-oil and five low-
oil soybean accessions [55] (Additional file 1: Table S22). 
All the candidate gene expression profiling in seeds was 
found to be significant between domesticated and wild 
soybeans at four stages (15, 25, 35, and 55 days after flow-
ering) (Fig.  4B–D). We found two 3D sub-networks, oil 
content (T)–GmDHLAT–GmFUM–pyruvate and oil 
content (T)–GmACX1–GmSTYK–threonine (Fig.  7A–
C), and 4D sub-network DG(16:0/16:0)/DG(18:0/16:0)/
DG(18:0/18:0)–GmPLDγ–GmARF16–miR160b–lino-
lenic acid (T) (Fig.  7C–F), in which the metabolite and 
gene nodes were significant between domesticated and 
wild soybeans.

Discussion
In this study, 175 QTLs for oil-related traits, 302 mQTL 
clusters for metabolites/lipids, and 62 trait–metabolite, 
89 trait–lipid, 24 metabolite–lipid, 91 metabolite–metab-
olite, and 348 lipid–lipid associations were identified. 
Around these QTLs and mQTL clusters, 70 and 181 can-
didate genes, and 20 and 58 miRNAs, were, respectively, 
mined. Homologs of 46 and 70 genes for oil-related traits 
and metabolites were validated in previous molecular 
experiments. Using bioinformatics predictions, candidate 
genes, TFs, and miRNAs were used to construct a GRN. 
The above results of genetic analyses were integrated with 
the GRN to construct an MDGN. In this network, 47 3D 
and 81 4D circulating sub-networks were relatively reli-
able. The reasons are as follows. First, genes, metabolites, 
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and lipids in 64 circulating sub-networks were found 
to participate in common pathways (Additional file  1: 
Table S21). In other words, these sub-networks are sup-
ported by prior knowledge. Then, 26 trait–gene asso-
ciations in 133 3D sub-networks of Liu et  al. [55] were 
obtained in this study (Additional file 1: Table S22). More 
importantly, this study is novel in three aspects. First, 
more metabolites/lipids (166) were measured in 398 RILs 
in this study than those (52) in 214 accessions in Liu et al. 
[55], e.g., glucose, fucose, ethanolamine, DAG, and TAG. 
Second, miRNAs and new regulations were included 
in MDGN in this study that were not in Liu et  al. [55], 
e.g., miR167d–GmARF8a, miR160b–GmARF16, and 
miR166s–GmHD-ZIPIII-10. Finally, all the 47 3D and 81 
4D circular sub-networks were more reliable, because all 
the edges in sub-networks were found to be significant.

Candidate genes newly discovered for metabolites/lipids 
and oil‑related traits
To address the genetic basis of metabolites/lipids in 
soybean, 5, 6, 4, 10, 28, and 16 candidate genes for car-
bohydrate, amino acid, organic acid, fatty acid, glycer-
ophospholipid, and glycerolipid were found to participate 
in common metabolic pathways using mQTL mapping, 
seed-specific expression profiling, high/low oil differ-
ential expression, and information from the model spe-
cies Arabidopsis (Table  3). Using the co-located QTLs 
via modern statistical methods, some metabolite/lipid 
candidate genes were found to be associated with oil bio-
synthesis, such as GmSWEET10a [5], GmPLDγ [16], and 
GmPDAT1 [12], and some homologs were also found to 
be associated with oil biosynthesis, such as GmMDH1 
[19], GmPK [6], and GmnsPLC [15].

Fig. 7 3D and 4D sub‑networks of significant nodes of metabolites and genes in six soybean accessions. A, B, and D–F Pearson correlation analysis 
between one metabolite and one oil‑related trait. C Heatmap of average RPKM values of six genes expressed in four domesticated soybeans with 
high seed oil content and two wild soybeans with low seed oil content at four seed development stages
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Key regulations associated with oil‑related traits and lipid 
metabolism
According to molecular biology research, genes are reg-
ulated by other genes, TFs, and miRNAs. In this study, 
candidate genes of both oil-related traits and metabo-
lites/lipids and predicted TFs and miRNAs were used to 
construct a GRN (Fig. 6A). In the GRN, some TFs were 
identified in previous studies, e.g., GmLEC1-b, GmABI4, 
GmABI3b [56], and GmFUS3 [21] in the LAFL network 
of Lepiniec et al. [68]. More known oil-biosynthesis TFs 
were found in mQTL mapping of metabolites/lipids than 
in QTL mapping of oil-related traits, e.g., GmZF351, 
GmDREBL, GmDof11, and GmbZIP123 [22, 24–26]. 
More importantly, some new TFs which were validated to 
regulate development were predicted to regulate oil-bio-
synthesis in this study, e.g., GmHD–ZIPIII10, GmARF16, 
GmARF8a, and GmGAMYB1, in which some inter-
acted with LAFL and other known oil synthesis genes, 
e.g., GmHD–ZIPIII10 interacted with GmFatB1 and 
GmPLDζ2, and GmARF16 interacted with GmbZIP123, 
GmZF351, GmPLDα1, and GmLEC1-b (Fig.  6B; Addi-
tional file 1: Table S21).

In the GRN, some miRNAs and their regulations were 
identified in previous studies, e.g., miR166 targeted 
GmHD–ZIPIII-10 [67], miR167 targeted GmARF8a [37, 
45], and miR156 targeted GmSPL9 [64]. Meanwhile, 
mR156, miR166, and miR167, along with their tar-
geted genes, have been proved to regulate the accumu-
lation of storage compounds during seed maturation in 
the miRNA–LAFL mediated network of Tang et al. [71] 
and Lepiniec et  al. [68]. Moreover, some new miRNAs 
and their regulations were predicted in this study, e.g., 
miR160b and miR160d targeted GmARF16, which sub-
sequently regulated GmLEC1-b, GmABI3b, and GmFUS3 
that are involved in the LAFL network (Fig.  6B), and 
miR319h targeted GmTCP, which subsequently regulated 
GmDREBL, GmLEC1-b, and GmbZIP123 (Fig.  6A). Of 
course, these regulations should be further validated via 
molecular biology experiments, because the transcrip-
tional levels for these candidate genes, predicted TFs, 
and miRNAs are dynamic and tissue-specific.

The above results are frequently found in the sin-
gle dimensional genetic analyses and molecular biol-
ogy research of both oil-related traits and metabolites. 
However, studies on the network analysis of oil-related 
traits, metabolites, genes, TFs, and miRNAs are limited. 
To address this issue, we constructed the MDGN in this 
study.

Dissection of genetic basis for oil‑related traits using 
multi‑dimension genetic network
Metabolites bridge genes and complex traits [2]. Recently, 
Shi et al. [72] reported the genetic relationships between 

4-indolecarbaldehyde/tryptophan and the number of 
grains per spike in wheat, and Liu et al. [55] constructed 
3D genetic networks, revealing the genetic relationships 
between oil-related traits and acyl-lipid-related metabo-
lites. In this study, we extended 3D genetic network into 
MDGN and found two types of sub-networks, which are 
used to reveal the potential genetic basis for both oil-
related traits and metabolites/lipids. One was 3D sub-
networks based on candidate genes that were commonly 
identified to be associated with both oil-related traits and 
metabolites/lipids, while another was 4D sub-networks 
based on indirect interactions of candidate genes, TFs, 
and miRNAs (Additional file 1: Table S21). Two examples 
are described below.

3D genetic sub‑networks revealed genetic relationships 
between seed carbohydrates, oil, and protein content
Soybean is not only one of the largest sources of oil for 
food and feed but also the protein source of the animal 
feed in which the level of essential amino acids in feed 
rations can impact meat qualities. Genetic engineering 
of genes encoding enzymes related to the flow of car-
bon into seed oil has led to significant increases in seed 
oil and protein content [4–6]. In our MDGN, there are 
three 3D circulating sub-networks, including oil con-
tent (T)–GmDHLAT–GmFUM–pyruvate, oil content 
(T)–GmACX1–GmSTYK–threonine, and stearic acid 
(T)–GmMDH1–succinic acid/citric acid–GmDGAT1a 
(Table 4). There has been some evidence to validate these 
sub-networks. In metabolites, first, pyruvate, oxaloac-
etate, succinic acid, and citric acid are involved in the 
citrate cycle (gmx00020). The phosphoenolpyruvate–
pyruvate–oxaloacetate node is known as the switch point 
for carbon flux distribution [73], and pyruvate is the 
main precursor in fatty acid synthesis [74]. Threonine is 
considered as the most limiting essential amino acid in 
the aspartate family pathway with regulatory metabolic 
link of TCA cycle [75]. In oil synthesis-related genes, sec-
ond, GmDHLAT, GmMDH, and GmFUM participated 
in the citrate cycle to catalyze pyruvate, oxaloacetate, 
and malate, respectively [9], and these genes were found 
to have higher expression at middle seed maturity stage 
than at other stages (Fig. 4B). The MDH activity in iso-
lated embryos was reported to correlate with embryo 
oil and knocking out the peroxisome-located MDH2 
in Chlamydomonas results in alterations in fatty acid 
metabolism [19]. STYK can phosphorylate oil body pro-
teins and regulate the oil content in Arabidopsis seeds 
[76]. Based on the above information, we deduce that 
threonine, pyruvate, oxaloacetate, and malate may play 
important roles in the flow of carbon into seed storage 
oil and protein content through the action of GmMDH, 
GmFUM, GmDHLAT, and GmSTYK.
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4D genetic sub‑networks around PLDs revealed the effect 
of phospholipid metabolism on oil‑related traits
Recent studies showed that acyl editing and phospho-
lipid turnover influenced storage lipid production and 
oil-related traits [13, 16, 59]. In previous studies, PLD 
enzymes were found not only to determine seed viability 
and respond to environments but also to alter oil qual-
ity [13, 16, 62]. However, the regulations behind phos-
pholipid metabolism are still unclear [15]. In this study, 
three 4D sub-networks with three PLDs may be helpful 
to solve this problem, i.e., DG(16:0/16:0)/DG(18:0/16:0)/
D G(18:0/18:0)–GmPLDγ–GmARF16–miR160b–
linolenic acid (T), palmitic acid (T)–GmPLDα6–
GmGAMYB1–miR319l–PE(18:3/18:3), and oleic acid 
(T)–GmPLDα1–GmARF8a–miR167d–PI(16:0/18:2) 
(Table  4). These sub-networks are reliable. First, the 
nodes in each sub-network were found in this study to be 
significantly associated with their adjacent node to form 
a circulating sub-network. Interestingly, GmPLDα6 was 
found to be significantly associated with palmitic acid in 
QEI detections (Additional file  1: Table  S9), which may 
indicate the influence of environmental factors. Second, 
all the metabolites and genes in the above nodes par-
ticipate in phospholipid metabolism (Additional file  1: 
Table  S21). The DG pool is a key branch point in acyl 
editing, while PE is one of the substrates of the PLD 
enzyme [62]. Finally, some relationships in these sub-
networks are consistent with previous studies. PLDα1-
knockdown soybean seeds increased TAG unsaturation 
and modified PE content [13]; GmPLDγ influenced seed 
oil content and fatty acid composition in transgenic 
Arabidopsis [16]; miR167a mediated LAFL module 
through CsARF8 in Camelina sativa seed [45]. Interest-
ingly, miR167 and GmARF8a exhibit opposite expression 
patterns during early seed development stage (Fig.  5A, 
C), while miR160b and GmARF16 exhibit more dynamic 
expression during seed development (Fig.  5A, C). Thus, 
these 4D sub-networks can aid to guide molecular exper-
iments in the future to unveil the regulation mechanisms 
between oil-related traits and phospholipid metabolism.

In this study, not only linkage analysis (GCIM [50, 51] 
and ICIM [52]) but also genome-wide association studies 
(mrMLM [53]) were used to identify QTNs for oil-related 
traits and metabolites/lipids in 398 RILs. Although 
GCIM can detect more small-effect and linked QTNs 
than ICIM [50, 77], and genome-wide association studies 
can detect more small-effect QTNs than linkage analysis 
[78], especially, each method can identify some method-
specific QTNs. In other words, these methods are com-
plementary to each other. Thus, these methods were 
simultaneously adopted in our study.

In this study, three various data sets were used to con-
struct microRNA/gene expression networks. Ideally, all 

the three data sets should be the same as regards varie-
ties, sampling times, and environments. However, various 
data sets are also used to construct networks in previ-
ous studies. For example, Yang et  al. [79] constructed a 
metabolic regulatory network using metabolome and 
transcriptome data sets, which were collected from dif-
ferent environments and years [79, 80]. Chen et  al. [81] 
constructed a GRN controlling flower development in 
Arabidopsis thaliana using 85 data sets from 15 previous 
studies. In this study, all the relationships in the MGDNs 
were obtained using commonly used approaches. First, 
the relationships between oil-related traits and metabo-
lites/lipids were obtained from MCP [46], SCAD [47], 
and GGM [48]. Candidate genes for oil-related traits in 
linkage and association analyses were related to lipid-
metabolism [34], highly expressed in seed, and differen-
tially expressed between high- and low-oil accessions. 
Candidate genes for lipids/metabolites in linkage and 
association analyses were obtained from lipid/metabolite 
metabolism pathways (https:// www. kegg. jp/ kegg/ pathw 
ay. html). Then, the relationships between candidate genes 
and TFs were obtained from co-expression analysis, PPI 
(https:// string- db. org/ cgi/ input. pl), and TFBS predic-
tions [82]. Here 8 out of 17 TFs were previously reported 
to be associated with oil biosynthesis (Additional file  1: 
Table  S15). Finally, the relationships between candidate 
genes and miRNAs were obtained from three miRNA 
target predictions [83–85] and expression pattern analy-
ses of Yu et al. [65]. Here 12 out of 26 relationships were 
supported by the literature in Additional file 1: Table S21. 
Therefore, the results in this study are relatively reliable. 
More importantly, we proposed a novel method of con-
structing 4D networks in this study. In this sense, the 
present study is valuable.

Conclusions
In this study, 70 candidate genes around 175 trait QTLs, 
32 candidate genes around 36 QEIs, and 181 candi-
date genes around 326 mQTLs clusters were identified, 
including 46 and 70 known homologs identified to be 
associated with the traits and metabolites, respectively. 
Among these candidate genes, 15 trait genes and 27 
metabolite/lipid genes were previously reported. Based 
on all the candidate genes, the PPI, co-expression analy-
sis, and TFBS and miRNA target predictions were used 
to construct GRNs, in which some TFs and miRNAs 
were newly identified, e.g., GmHD–ZIPIII10, GmARF16, 
GmARF8a, GmGAMYB1, mR156, miR166, and miR167. 
All the genetic analysis results were integrated with GRNs 
to construct MDGNs, in which 47 3D and 81 4D circulat-
ing sub-networks might reveal the genetic relationships 
between metabolites/lipids and oil-related traits. Among 

https://www.kegg.jp/kegg/pathway.html
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the 128 sub-networks, 64 were consistent with previous 
studies, such as oil content (T)–GmDHLAT–GmFUM–
pyruvate, and the others were newly identified, such as 
FA(18:0)–GmABI4–GmARF8a–miR167b–oil content. 
This study provides an example of system network analy-
ses, and the genetic foundations of metabolites/lipids and 
oil-related traits.

Materials and methods
Recombinant inbred lines (RILs) for trait and metabolic QTL 
mapping
As described in Zuo et  al. [86], 398 RILs derived from 
orthogonal (171, OC) and reciprocal crosses (227, RC) 
between two parents LSZZH (P1) and NN4931 (P2) 
in soybean (Glycine max) were planted at Jiangpu (E 
118° 22′, N 31° 14′) experimental station of Nanjing Agri-
cultural University in 2015 (NJ2015) and 2016 (NJ2016), 
and Wuhan (E 114° 21′, N 30° 29′) and Ezhou (E 114° 54′, 
N 30°  23′) experimental stations of Huazhong Agricul-
tural University, respectively, in 2014 (WH2014) and 
2015 (EZ2015). Detailed information was described in 
previous reports [54, 86]. Seeds for five plants in the mid-
dle row for each RIL were randomly harvested at 55 days 
after flowering (DAF), and the mixture with at least three 
pods each from different plants was stored at − 80  °C 
before extraction for the measurements of metabolites 
and lipids. The mixture of dry seeds for each RIL was 
used for the measurements of six seed oil-related traits.

Measurements for six oil‑related traits in 398 RILs
As described in Zhou et  al. [54], the method of Bay-
dar and Akkurt [87] was used to measure seed oil con-
tent, palmitic acid, stearic acid, oleic acid, linoleic acid, 
and linolenic acid. 10  g of seeds collected from each 
RIL were ground, and the seed powder was filtered. 
30 mg seed powder was used to measure six oil-related 
traits by gas chromatography with a flame ionization 
detector and a Permabond FFAP stainless steel col-
umn (50  m × 0.2  mm × 0.33  µm, Thermo Fisher Scien-
tific, Waltham, MA) at the Wuhan Research Branch of 
the National Rapeseed Genetic Improvement Center in 
2014 and 2015, and at the State Key Laboratory of Crop 
Genetics and Germplasm Enhancement of Nanjing Agri-
cultural University in 2015.

Metabolites and lipids extraction
Metabolites and lipids were extracted from seeds planted 
in Nanjing (NJ2016) according to a protocol adapted 
from Bligh and Dyer [88] and Lisec et  al. [89]. Seed 
powder was used to measure the metabolites and lipids 
at Biotree Biotech Co., Ltd (Shanghai, China, http:// 
www. biotr ee. cn/). 200  mg ± 1  mg seed powder for each 

sample was placed in 2 mL EP tubes, and 0.4 mL dH2O 
and 0.96  mL extraction liquid (VMTBE:Vmethanol = 5:1, 
methyl tertbutyl ether) were added. Subsequently, the 
samples were homogenized in a ball mill for 4  min at 
45 Hz and ultrasound treated for 5 min (incubated in ice 
water). Then, centrifugation was conducted for 15  min 
at 16,200   g−1 at 4  °C, followed by incubation for 1  h at 
− 20 °C. Pooling the organic phase from the two parallel 
samples, the extraction was dried at room temperature 
under a gentle stream of nitrogen gas. The dry extraction 
was reconstituted with 900  μL MTBE (methyl tertbutyl 
ether). The lipid profiling and gas chromatography tan-
dem time-of-flight mass spectrometry (GC–TOF–MS) 
profiling was conducted by transferring 200 μL samples 
into 1.5 mL EP tube vials, respectively. A QC sample was 
pooled by taking 100 μL MTBE reconstitution from each 
sample, which was divided into 30 aliquots for lipid pro-
filing and 80 aliquots for GC–TOF–MS profiling, with 
an average volume of 200 μL. The reconstitution of lipid 
profiling and GC–TOF–MS profiling was conducted with 
200 μL extraction liquid (Vdichloromethane:Vmethanol = 2:1).

Measurement for metabolites using GC–TOF–MS
The metabolites in each sample were measured by GC–
TOF–MS. Metabolite derivatization was conducted as 
follows: first, samples were dried in a vacuum concen-
trator without heating, then 30  μL of methoxy amine 
hydrochloride (20  mg/mL in pyridine) was added into 
the metabolite samples by incubating for 30  min at 
80  °C. Subsequently, 40 μL of N,O-Bis(trimethylsilyl)tri-
fluoroacetamide (BSTFA) regent was added to the sam-
ple aliquots by incubating for 1.5 h at 70 °C. 5 μL FAMEs 
(standard mixture of fatty acid methyl esters, C8–
C16:1 mg/mL, C18–C24:0.5 mg/mL in chloroform) was 
added to the QC sample. For the GC–TOF–MS pipeline, 
analysis was performed using an Agilent 7890 gas chro-
matograph system coupled with a Pegasus HT time-of-
flight mass spectrometer. The system utilized a DB-5MS 
capillary column coated with 5% diphenyl cross-linked 
with 95% dimethylpolysiloxane (30  m × 250  μm inner 
diameter, 0.25 μm film thickness; J&W Scientific, Folsom, 
CA, USA). A 1 μL aliquot of the analyte was injected in 
a splitless mode. Helium was used as the carrier gas, the 
front inlet purge flow was 3 mL  min−1, and the gas flow 
rate through the column was 1  mL   min−1. The initial 
temperature was kept at 50  °C for 1 min, then raised to 
310  °C at a rate of 10  °C   min−1, then kept for 5  min at 
310  °C. The injection, transfer line, and ion source tem-
peratures were 280, 270, and 220  °C, respectively. The 
energy was 70  eV in electron impact mode. The mass 
spectrometry data were acquired in full-scan mode with 

http://www.biotree.cn/
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the m/z range of 50–500 at a rate of 20 spectra per sec-
ond after a solvent delay of 6.1 min.

Chroma TOF 4.3X software of LECO Corporation and 
LECO-Fiehn Rtx5 database was used for the exacting of 
raw peaks, filtering, and calibration of the data baselines, 
peak alignment, deconvolution analysis, peak identifica-
tion, and integration of the peak area [90]. Metabolic fea-
tures detected < 50% of QC samples were removed [91]. 
The number of biological replicates for each line was two.

Measurement for lipids using Q Exactive Orbitrap LC–MS/
MS
Lipidomic data were obtained using a Q Exactive Orbit-
rap LC–MS/MS (Thermo Fisher Scientific, USA) sys-
tem. The extracted lipid was redissolved by chloroform 
just before analysis. The experimental procedures were 
carried out according to Tang et  al. [92]. In the HPLC 
(High-Performance Liquid Chromatography) methods, 
reverse phase chromatography Cortecs C18 column 
(2.1 × 100  mm, Waters) was connected to a Thermo 
Fisher Scientific Autosampler and to a UPLC pump. 1 μL 
supernatant was loaded on a normal phase chromatog-
raphy column, then the sample was eluted to an orbit-
rap mass spectrometer with IPA:CAN = 90:10 as eluent. 
Positive–negative ion switching mode was performed for 
sample data acquisition. The QC data were acquired at 
positive ion and negative ion mode separately using data 
dependent MS/MS acquisition. The full scan and frag-
ment spectra were collected with a resolution of 70,000 
and 17,500, respectively. The source parameters were 
as follows: spray voltage: 3000  V; capillary temperature: 
320  °C; heater temperature: 300  °C; sheath gas flow rate 
(Arb): 35; auxiliary gas flow rate (Arb): 10.

Lipidomics identification was performed using the ana-
lytical software LipidSearch (Thermo Fisher, CA). Mass 
tolerance for precursor and fragment was set to 8  ppm 
and 15  ppm, respectively. Adducts of H+, NH4+ were 
applied for positive mode search, and H−, CH3COO+ 
were selected for negative mode, since ammonium ace-
tate was used in the mobile phases [93]. The number of 
biological replicates for each line was two. As such, tri-
glycerides (TG), diglycerides (DG), ceramide (Cer), and 
galactosylcerebroside (CerG) displayed better responses 
under positive ion mode, whereas lysophosphatidyle-
thanolamine (LPE), lysophosphatidylcholine (LPC), fatty 
acids (FA) ω-hydroxy fatty acid (OAHFA), digalactosyl-
diacylglycerol (DGDG), sulfoquinovosyldiacylglycerols 
(SQDG), phosphatidylcholines (PC), phosphatidyletha-
nolamine (PE), phosphatidylinositol (PI), phosphatidylg-
lycerols (PG), and cardiolipin (CL) were detected under 
negative ion mode.

Statistical analysis and variable selection among oil‑related 
traits and metabolites
The metabolites and lipids data were  log2-transformed 
for statistical analysis as usual [94]. MCP [46] and 
SCAD [47] along with t test were used to determine 
the genetic associations of oil traits with metabolites 
(or lipids). Statistical significance was computed using 
F test for the total regression of each oil-related trait 
on several metabolites (or lipids) and t test for the 
regression of each oil-related trait on each metabolite. 
The ‘ncvreg’ R package (from the CRAN, http:// www. 
cran.r- proje ct. org/) was used to implement the SCAD 
and MCP methods [95].

The genetic correlation coefficients ( rG(i,j) ) were calcu-
lated by

where COVG(i,j) is the covariance between metabolites i 
and j, and σ 2

G(i) is the variance for metabolite i. Two-way 
ANOVA was conducted in R.

GGM is an undirected probabilistic graphical model 
based on pairwise Pearson correlation coefficients condi-
tioned against the correlation with all other metabolites 
[48]. GGM and the Bonferroni correction were used to 
identify the associations between metabolites and lipids. 
The ‘GeneNet’ package 1.2.8 [96] (from the CRAN, 
http:// www. cran.r- proje ct. org/) was used to estimate the 
Pearson correlation. A significant P value < 4.19E−07 
(0.05/119,316) was applied to filter the results. The 
BLUPs of all the RILs for each seed oil-related trait across 
various environments were calculated by R with ‘lme4’ 
package.

QTL mapping for oil‑related traits, metabolites, and lipids
Using the high-density genetic maps constructed in 398 
RILs by Zuo et al. [86], GCIM [50] (genome-wide com-
posite interval mapping) and ICIM [51] (inclusive CIM) 
were used to detect QTLs for oil-related traits, metabo-
lites, and lipids, implemented by the QTL.gCIMap-
ping (https:// cran.r- proje ct. org/ web/ packa ges/ QTL. 
gCIMa pping. GUI/ index. html) and QTL IciMapping 
V4.1 (http:// www. isbre eding. net) software packages. In 
the OC and RC joint analysis, RC and OC were viewed 
as covariate. The walk speed for genome-wide scanning 
was set at 1  cM, and the threshold for significant QTL 
was set as LOD ≥ 2.5 [51]. The trait, metabolite, and lipid 
data sets from all the lines were reanalyzed by multi-
locus GWAS methods using the mrMLM v4.0.2 software 
[53] (https:// cran.r- proje ct. org/ web/ packa ges/ mrMLM. 

rG(i,j) = COVG(i,j)

/
√

σ 2
G(i)σ

2
G(j)
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GUI/ index. html). In the software, there are six meth-
ods: mrMLM [97], ISIS EM-BLASSO [98], pKWmEB 
[99], pLARmEB [100], FASTmrMLM [52], and FASTm-
rEMMA [101]. The threshold for significant QTL was set 
as LOD ≥ 3.0 [97]. All the mQTLs were obtained from 
each biological replicate. QTL-by-environment interac-
tions (QEIs) for oil-related traits were identified using the 
QTL IciMapping V4.1 software with ‘ICIM-EPI’ param-
eter, and the significant LOD thresholds for QEIs were 
set as 5.0 [51]. Here, stable QTLs were defined as those 
identified by at least two approaches and/or in at least 
two environments.

Identification of candidate genes and target miRNAs 
and analysis of gene expression levels
Molecular markers in the overlapped region of QTLs 
were used to identify the genomic sequence by the 
assembly of soybean genome available at Soybase (release 
Wm82.a1.v1; https:// www. soyba se. org/). Known QTLs 
for oil-related traits were compared with metaQTLs 
identified in Qi et  al. [102]. Candidate genes for each 
oil-related trait, metabolites, and lipids were mined 
according to the below rules: (i) genes were extracted 
between the 200  kb upstream and downstream regions 
for each significant QTL or QTL cluster [103]; (ii) candi-
date oil-related genes were chosen the genes specifically 
expressed in seed and differential expressed between 
high- and low-oil soybean accessions, and candidate 
metabolites/lipids genes were chosen the genes specifi-
cally expressed in seed and high expression genes at 55 
DAF; (iii) based on the annotations from SFGD (http:// 
bioin forma tics. cau. edu. cn/ SFGD/) and of Arabidopsis 
homologs from ARALIP (http:// aralip. plant biolo gy. msu. 
edu/). Here candidate genes truly associated with traits 
or lipids/metabolites were defined as ones previously 
reported via their biological function identification.

Candidate miRNAs were extracted between the 200 kb 
upstream and downstream regions for each signifi-
cant QTL or QTL cluster, according to soybean mature 
miRNA and miRNA hairpin sequences downloaded from 
miRBase (Release 22.1, http:// www. mirba se. org/). Candi-
date miRNAs were further chosen the miRNAs targeted 
the candidate genes or any TFs. The reference annota-
tions of miRNAs were transformed from Wm82.a2.v1 to 
Wm82.a1.v1 using Assembly Converter (http:// plants. 
ensem bl. org/ Glyci ne_ max/ Tools/ Assem blyCo nvert er? 
db= core). The miRNA target predictions were conducted 
by psRNATarget [83] (http:// plant grn. noble. org/ psRNA-
Target), Target Finder [84], and psRobot [85] with default 
parameters. The sequencing data of small RNA for four 
CSSLs with high/low oil content were collected from Yu 
et al. [65].

Two RNA-seq data sets were used in this study. Seed-
specific expressed genes were detected using data set I, 
downloaded from RNA Seq-Atlas in Soybase (https:// 
www. soyba se. org/ soyseq), including young leaf, flower, 
pod, pod shell, root, nodule, and seed tissues [53]. 
DEGs were detected using data set II in Zhou et al. [54]. 
DEGs between high- (four domesticated soybeans: No. 
101, 236, 257, and 276) and low-oil (two wild soybeans: 
No. 265 and 272) accessions [55] were detected using R 
with ‘DEGseq’ package at a 0.05 significant level [104]. 
Genes with at least a one-time expression level in 55 
DAF than average expression level were viewed as high 
expression genes. Genes with FPKM value of expres-
sion level < 1 in all the tissues and with missing values 
exceeding 20% of the total number of samples were dis-
carded. Two RNA-seq data sets were used to conduct 
co-expression analyses for candidate genes and gene 
pairs with correlation coefficient greater than 0.8 were 
retained.

Construction and visualization of the GRN and MDGN
GRN was constructed by co-expression analysis, PPI, 
TFBS, and miRNA target predictions among candi-
date TFs, genes, and miRNAs. Significant PPIs were 
predicted (the predicted scores > 0.40) using STRING 
[105] (https:// string- db. org/ cgi/ input. pl). Significant 
co-expression interactions (rpcc > 0.8) were calculated at 
five stages during seed development using the data set 
of Zhou et al. [54]. TFBS predictions of candidate genes 
were conducted by FIMO software with the threshold 
of 1.0E−4 [82]. All the above relationships were used 
to construct MDGN, and this MDGN was classified 
as three layers (Fig.  1). In the first layer, the relation-
ships of seed oil-related traits with metabolites/lipids 
were constructed using modern statistical methods. 
In the second layer, seed oil-related traits and metabo-
lites/lipids were associated with SNP markers in the 
genome via QTL mapping approaches to identify QTLs 
and mQTLs, respectively. In third layer, all the TFs and 
miRNAs were targeted with all the candidate genes to 
construct the GRN. All the above relationships were 
integrated as one MDGN. In this MDGN, the circuit 
concept in graph theory was used to extract circular 
sub-networks. Regardless of the number of nodes, 3D 
sub-network was defined as ones that must contain 
one gene, one oil-related trait, and one metabolite/
lipid, while 4D sub-network was defined as ones that 
must contain one additional miRNA as compared as 3D 
sub-network.

Network visualization was implemented with the 
Cytoscape package [106]. The network centrality 
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parameters were detected using the Cytoscape plug-
in NetworkAnalyzer. MCC scores were calculated by 
Cytoscape plug-in CytoHubba [107] and the top 10% 
nodes in the MCC score distributions were defined as 
hub nodes.
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