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Abstract 

Background:  Construction of efficient microbial cell factories is one of the core steps for establishing green bio-
manufacturing processes. However, the complex metabolic regulation makes it challenging in driving the metabolic 
flux toward the product biosynthesis. Dynamically coupling the biosynthetic pathways with the cellular metabolism 
at spatial–temporal manner should be helpful for improving the production with alleviating the cellular stresses.

Results:  In this study, we observed the mismatch between fatty alcohol biosynthesis and cellular metabolism, which 
compromised the fatty alcohol production in Saccharomyces cerevisiae. To enhance the fatty alcohol production, 
we spatial-temporally regulated fatty alcohol biosynthetic pathway by peroxisomal compartmentalization (spatial) 
and dynamic regulation of gene expression (temporal). In particular, fatty acid/acyl-CoA responsive promoters were 
identified by comparative transcriptional analysis, which helped to dynamically regulate the expression of acyl-CoA 
reductase gene MaFAR1 and improved fatty alcohol biosynthesis by 1.62-fold. Furthermore, enhancing the peroxiso-
mal supply of acyl-CoA and NADPH further improved fatty alcohol production to 282 mg/L, 2.52 times higher than 
the starting strain.

Conclusions:  This spatial–temporal regulation strategy partially coordinated fatty alcohol biosynthesis with cellular 
metabolism including peroxisome biogenesis and precursor supply, which should be applied for production of other 
products in microbes.
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Introduction
Construction of cell factories is considered as a feasible 
approach for sustainable supply of a variety of products 
of interests [1]. However, the complex and tight meta-
bolic regulation makes it challenging in driving the meta-
bolic flux toward product biosynthesis [2]. In particular, 
eukaryotic cells have compartmentalized metabolism 
in different sub-organelles, which brings some barri-
ers for substrate channeling in supplying precursors and 
cofactors [3]. Furthermore, the cellular metabolism is 

dynamically controlled in response to cell state and extra-
cellular signal [4]. Thus, coupling the spatial–temporal 
metabolism with the biosynthesis pathways should be 
helpful for improving the chemical production.

As an example, we here tried to couple the spatial–tem-
poral fatty acid metabolism of Saccharomyces cerevisiae 
for producing fatty alcohol, an important oleo-chemical 
that can be used in detergents and personal care products 
with a global market of 6.8 billion USD [5]. Fatty alcohol 
can be bio-synthesized from free fatty acids (FFA) or acti-
vated fatty acids (fatty acyl-CoA and -ACP) through vari-
ous reductase [6]. In S. cerevisiae, fatty acids are mainly 
de novo synthesized by cytosolic type I fatty acid syn-
thase (FAS) as fatty acyl-CoAs, which can be transformed 
to functional or storage lipids. Under carbon-rich condi-
tions or cell growth phase, fatty acid biosynthesis is very 
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active and results in relatively high fatty acyl-CoA forma-
tion in cytosol. In the absence of the sufficient carbon 
sources, the storage lipids, such as triacylglycerols, will 
be broken down for energy supply through β-oxidation 
in peroxisomes [7]. This spatial–temporal regulation of 
fatty acid metabolism has been largely ignored for pro-
duction of fatty acid derived chemicals, though pathway 

optimization and enhancing the supply of precursors and 
cofactors have been extensively explored [8, 9].

We here designed a spatial–temporal regulation strat-
egy to couple fatty alcohol biosynthesis with the fatty 
acid metabolism through pathway compartmentaliza-
tion and dynamic regulation by screening fatty acid/acyl-
CoA responsive promoters (Fig.  1). A coordination of 
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Fig. 1  Engineering S. cerevisiae for enhanced fatty alcohol production via “spatial–temporal” regulation. In the early stage of fermentation (“the 
sun”), fatty acid biosynthesis was active for cell growth and a cytoplasmic fatty acyl-CoA reductase from Marinobacter sp. ES-1 (MaFAR1) was 
expressed under the control of strong constitutive promoters (orange arrow), coupled with a disrupted hexadecenal dehydrogenase (hfd1Δ). With 
the consumption of glucose (“the moon”), fatty acid/acyl-CoA was accumulated, which activated peroxisomal MaFAR1 by fatty acid/acyl-CoA 
responsive promoters (yellow arrow). The acyl-CoA transporter PXA1/PXA2 and a peroxisomal copy of acyl-CoA synthase FAA2 were overexpressed 
to increase peroxisomal acyl-CoA supply. The peroxisomal malate shuttling pathway (malic enzyme RtME, pyruvate carboxylase PYC1 and malate 
dehydrogenase MDH3), and isocitrate dehydrogenase (IDP2 and IDP3) were also targeted to peroxisomes to enhance the supply of peroxisomal 
NADPH. Peroxins (PEX7 and PEX28) were overexpressed and H2O2 was added in culture to promote peroxisome biogenesis. Overall, the coordination 
of fatty alcohol biosynthesis, precursor and cofactor supply, and peroxisome biogenesis was implemented for spatial–temporal regulation of fatty 
alcohol biosynthesis
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cytoplasmic and peroxisomal biosynthetic pathways was 
proved to be beneficial for improving fatty alcohol pro-
duction by 2.52-fold (Additional file 1: Figure S1), which 
could be applied for production of other target products.

Results
Coordination of fatty alcohol biosynthesis
We previously constructed a chimeric fatty alcohol 
pathway by expressing a carboxylic acid reductase gene 
MmCAR​ and a fatty acyl-CoA reductase gene FaCoAR, 
which used both FFAs and fatty acyl-CoA as substrates 
[10]. We targeted this chimeric pathway to cytosol and 

peroxisomes, respectively (Fig.  2A). We observed that 
the peroxisomal pathway had much lower fatty alco-
hol production compared with the cytosolic pathway 
when using constitutive promoters for gene expression 
(Fig. 2B). It has been reported that constitutive promot-
ers (PTEF1 for expressing FaCoAR and PTDH3 for express-
ing MmCAR​) reached the highest strength in log-phase, 
and are relatively weak in stationary phase using glu-
cose as the carbon source [11], while the number of per-
oxisomes shows the opposite pattern during cell growth 
[12]. This mismatch between fatty alcohol biosynthe-
sis and peroxisome biogenesis might compromise fatty 
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Fig. 2  Coordinated fatty alcohol biosynthesis by optimizing a fatty acyl-CoA derived pathway. A Scheme of fatty alcohol biosynthetic pathways 
derived from fatty acids (CAR​ pathway, blue arrow) and acyl-CoA (FaCoAR or FAR pathway, orange arrow). B Partial coordination of fatty alcohol 
biosynthesis with peroxisome biogenesis and precursor supply promoted fatty alcohol production. Fatty alcohol titer of peroxisomal fatty alcohol 
biosynthetic pathway driven by constitutive promoters (PTDH3, PTEF1) was relatively low. Consistently, using GAL promoters of galactose catabolism 
(with deletion of GAL80) to drive the peroxisomal biosynthetic pathway significantly improved fatty alcohol production by 3.25 folds. FA, fatty 
acids; FOH, fatty alcohols. C Overexpression of peroxins PEX7 and PEX28 promoted fatty alcohol production of peroxisomal CAR​ pathway (per-CAR​
). D Residual free fatty acids of fatty alcohol producing strains with per-CAR​ pathway. E Comparison of fatty alcohol titer between FAR pathway and 
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alcohol production. Consistently, using GAL promoters 
of galactose catabolism (with deletion of GAL80) to drive 
the peroxisomal biosynthetic pathway (strain YJ-FOH4) 
significantly improved fatty alcohol production by 3.25-
fold (82.3 mg/L), which was also much higher than that 
of cytosolic pathway (strain YJ-FOH3). PGAL promot-
ers were shown to be activated at glucose exhaustion 
(Additional file  1: Figure S2), and their expression was 
supposed to be partially coordinated with peroxisome 
biogenesis [13]. This result suggested that spatial-tempo-
rally balancing the metabolic pathways was beneficial for 
improving the product biosynthesis.

The enhanced expression levels of peroxin genes PEX7 
and PEX28 have been reported to increase the transport 
of peroxisomal matrix proteins [14] and peroxisome 
numbers [15] in S. cerevisiae, respectively, which was 
supposed to enhance fatty alcohol production in peroxi-
somes. Indeed, we found that overexpressing PEX7 or 
PEX28 promoted fatty alcohol production, and PEX28 
overexpression resulted in a 2.6-fold higher fatty alco-
hol titer (Fig. 2C). However, a large proportion of resid-
ual fatty acids was observed in fatty alcohol producing 
strains, and only up to 28% of fatty acids were utilized for 
fatty alcohol production (Fig. 2D), which might be attrib-
uted to the secreted fatty acids barely being re-utilized 
[16]. We thus tried to optimize and balance the fatty acyl-
CoA derived pathway, which could avoid the accumula-
tion of FFAs. Gene evaluation showed that MaFAR1 from 
Marinobacter sp. ES-1 (Accession No. WP_022988858.1) 
achieved the highest fatty alcohol titer (Additional file 1: 
Figure S3), which was 7.7-fold higher than that from CAR​ 
pathway (Fig. 2E).

Screening fatty acid/acyl‑CoA responsive promoters
Screening endogenous fatty acid/acyl-CoA respon-
sive promoters might be helpful for further improving 
fatty alcohol production by precisely balancing cellular 
fatty acid/acyl-CoA levels. We conducted comparative 
transcriptional analysis of wild-type, fatty acid produc-
ing strain YJZ121, and strain JV03 that was engineered 
for acyl-CoA accumulation [17] (Fig.  3A). The potential 
fatty acid/acyl-CoA responsive promoters were identified 
based on differentially expressed genes (DEGs) according 
to the following rules: RPKM (Reads Per Kilobase Mil-
lion) value > 1500, fold change > 5, common genes among 
different conditions and sampling points, and non-met-
abolic genes. Under this criteria, 20 candidate promot-
ers were supposed to be fatty acids (Additional file  1: 
Table  S1) and/or fatty acyl-CoA responsive (Additional 
file 1: Table S2).

These promoters were further characterized using 
an eGFP in wild-type, strain YJZ121, and strain JV03 
(Fig.  3B). Six promoters (PADH6, PARI1, POYE3, PRDR5, 

PHSP31, and PAAD6) showed strong responsive activities to 
exogenous fatty acids (Fig. 3C), though most promoters 
demonstrated weak activities in wild-type cultivated in 
media with 0.5% (v/v) oleic acid (Additional file  1: Fig-
ure S4A). In particular, the activity of PAAD6 (promoter 
of a putative aryl-alcohol dehydrogenase) was 2.7-fold 
higher than that of the common strong constitutive pro-
moter PeTDH3 in medium with 0.5% (v/v) oleic acid. Fur-
thermore, promoters PADH6 and PAAD6 were significantly 
induced by endogenous FFAs (wild-type strain CEN.PK 
113-11C vs FFA overproducing strain YJZ121, Additional 
file 1: Figure S5) with considerable strength.

Two acyl-CoA responsive promoters, PBDH2 (promoter 
of a putative 3-hydroxybutyrate dehydrogenase 2) and 
PSTE3 (promoter of receptor for a factor pheromone), 
were also characterized in both wild-type and JV03 
(Fig.  3D and Additional file  1: Figure S4B). Promoter 
PBDH2 possessed relatively high activity in JV03, espe-
cially at the later stage of fermentation. Promoter PSTE3 
possessed a favorable response to acyl-CoA, in spite of 
a relatively low activity, which might be also useful for 
dynamically regulating fatty alcohol biosynthesis.

Enhancing fatty alcohol production by dynamically 
regulating MaFAR1 expression
We then tried to enhance fatty alcohol production by 
dynamically regulating MaFAR1 expression with the 
identified fatty acid/acyl-CoA responsive promoters. 
To avoid unstable expression of biosynthetic pathways 
on plasmids [18], the fatty alcohol biosynthetic genes 
were integrated into genome. To enable sufficient sup-
ply of precursor fatty acyl-CoA and cofactor NADPH, 
we constructed the fatty alcohol biosynthetic pathway in 
the FFA overproduction strain Y&Z036 [19] by a meta-
bolic transforming strategy via knocking out gene tesA 
and restoring FAA1/4 genes [20]. Furthermore, the per-
oxisome biogenesis was enhanced by over-expressing 
PEX28, which resulted in the chassis strain GN33 (Addi-
tional file 1: Figure S1). Expressing MaFAR1 with PADH6 
and PBDH2 had higher fatty alcohol production than that 
of PAAD6, and PSTE3, which, however, was only 50% of that 
with PGAL1,10. As expected, fatty alcohol titers were posi-
tively correlated with the promoter strengths (Fig. 4).

We further combined PADH6 or PBDH2 with PGAL1,10 for 
expressing MaFAR1, which significantly improved fatty 
alcohol production compared with one-copy of PGAL1, 

10 and also slightly higher than that with two copies of 
PGAL1,10 (Fig. 4A). These results suggested that fatty acid/
acyl-CoA responsive promoters helped to synergisti-
cally promote fatty alcohol biosynthesis, especially the 
strength of PGAL1,10 was relatively low at the early stage 
of the cultivation, while PBDH2 was relatively higher 
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(Fig. 4B). The strength compensation might be helpful for 
MaFAR1 expression. Finally, expressing three copies of 
MaFAR1 under the control of PADH6, PBDH2 and PGAL1, 10 
had the highest fatty alcohol production of 194 mg/L in 
strain GNFOH97 (Fig. 4A).

Peroxisomal engineering for enhancing the supply 
of acyl‑CoA and NADPH
In spite of the sufficient supply of cytosolic acyl-CoA 
and NADPH [21], the background strain was further 

engineered to achieve high-level production of fatty 
alcohols by enhancing the supply of peroxisomal acyl-
CoA and NADPH. Firstly, the acyl-CoA transporter 
PXA1/PXA2 and a peroxisomal copy of acyl-CoA 
synthase FAA2 were overexpressed (Fig.  5A), which 
improved fatty alcohol titer by 12% and 19%, respectively 
(Fig.  5B). The combined overexpression of PXA1/PXA2 
and FAA2 had a decreased fatty alcohol titer (Fig.  5B), 
which might be due to the disturbance of metabolic 
balance.
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In addition, a peroxisomal malate shuttling pathway 
was constructed, including the essential genes of malic 
enzyme (RtME) [10], pyruvate carboxylase (PYC1) and 
malate dehydrogenase (MDH3) (Fig.  5A). Surprisingly, 
only the overexpression of RtME slightly increased 

fatty alcohol titer, and a combined overexpression of 
PYC1 and MDH3 had a negative effect (Fig. 5C). In par-
ticular, overexpression of PYC1 strongly hindered cell 
growth and introduction of MDH3 partially relieved the 
growth repression (comparing strains GNFOH105 with 
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GNFOH104), but did not improve fatty alcohol produc-
tion. Considering the specific fatty alcohol titer of strain 
GNFOH104 was higher than that of GNFOH103 and 
GNFOH105, a combined expression of RtME and PYC1 
was adopted to maintain the shuttling pathway.

It has been shown that overexpressing 
NADP+-dependent isocitrate dehydrogenase (IDH) was 
helpful for improving the production of FFAs [19]. We 
thus targeted the cytosolic NADP+-dependent Idp2 to 
peroxisome by adding the peroxisomal targeting signal 
per2 [22] and also overexpressed the peroxisomal iso-
form Idp3 (Fig.  5A). Overexpressing the encoding gene 
perIDP2 or IDP3 slightly improved fatty alcohol produc-
tion and the combined overexpression improved fatty 
alcohol titer by 18.5% compared with the control strain 
GNFOH97 (Fig.  5D). Implementing these engineering 
strategies in strain GNFOH111 further improved fatty 
alcohol production (Fig.  5E). Interestingly, the intro-
duction of malate shuttling pathway, coupled with the 
overexpressed isocitrate dehydrogenase, successfully 

improved fatty alcohol biosynthesis, which suggested 
that sufficient acyl-CoA supply required extra NADPH to 
drive a functional malate shuttling pathway. Combining 
all engineering strategies enabled fatty alcohol produc-
tion of 242 mg/L, a 10% improvement compared with the 
control strain GNFOH111 (Fig. 5E).

Peroxisomes are inferred to be induced by ROS trig-
gered chemicals like H2O2 [23], which might be helpful 
for enhancing fatty alcohol production in peroxisomes. 
Indeed, supplementing low concentrations of H2O2 
(< 1  mM) in cell culture, slightly increased fatty alcohol 
titers with no obviously negative effects on cell growth 
of strain GNFOH120 (Fig. 5F) and the highest 282 mg/L 
fatty alcohol was obtained with 1  mM H2O2. However, 
higher concentrations of H2O2 decreased both biomass 
and fatty alcohols, which could be due to cell damage 
caused by H2O2. Therefore, H2O2 addition could be used 
as a feasible strategy to boost the efficiency of peroxiso-
mal biosynthetic pathways.
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We further expressed a copy of cytosolic MaFAR1 
with constitutive promoters PTEF1 and PTDH3 for convert-
ing the cytosolic fatty acid/acyl-CoA at the early stage, 
which slightly improved fatty alcohol production by 6.6% 
(Additional file 1: Figure S6A). This result suggested the 
acyl-CoA was mainly used for cell components such as 
phospholipids at the early stage and there was excessive 
acyl-CoA for fatty alcohol biosynthesis at the late fermen-
tation stage. In addition, this spatial–temporal regulation 
via fatty acid/acyl-CoA responsive promoters and cellu-
lar compartmentalization did not significantly influence 
the composition of fatty alcohol (Additional file 1: Figure 
S6B), which resulted a partially coordinated of fatty alco-
hol biosynthesis and cellular metabolism in yeast.

Discussion
Construction of heterologous artificial biosynthetic path-
ways always brings perturbation to the cellular metabo-
lism, which, in turn, compromises the biosynthetic 
efficiency of target products. The cellular metabolism 
is spatial-temporally regulated to respond to extracel-
lular signals or cell function, and construction of stable 
biosynthetic pathways might result in un-coordinated 
metabolic network as well as insufficient supply of pre-
cursors and cofactors. We here showed that spatial–tem-
poral regulation of the fatty alcohol biosynthetic pathway 
significantly improved the production of fatty alcohols in 
model eukaryotic yeast S. cerevisiae.

It is well-recognized that the cellular metabolism is 
temporally regulated to respond to  the nutrient avail-
ability, cell cycle and else [24]. In the exponential growth 
phase, the metabolic flux is mainly redirected for the syn-
thesis of cellular components, and thus there is limited 
resources for biosynthesis of product of interest. Dynam-
ically engineering biosynthetic pathways to separate from 
cell growth was helpful for overproduction [25–28]. We 
here also showed that dynamically regulating pathways 
with GAL promoters that are activated at glucose deple-
tion, improved fatty alcohol production compared with 
that of constitutive promoters. In eukaryotes, cellular 
metabolism is distributed in sub-organelles for suitable 
physicochemical environments and condensed precur-
sors/enzymes to avoid unnecessary interference. Meta-
bolic compartmentalization has been extensively applied 
for improving the production of a variety of chemicals by 
targeting the biosynthetic pathways or specific enzymes 
into sub-organelles such as mitochondria [29, 30] and 
peroxisome [22, 31–33]. However, the temporal bio-
genesis of sub-organelle was largely ignored, and the 
mismatched biosynthetic pathways with sub-organelle 
biogenesis should largely compromise the engineering 
endeavor. For example, the peroxisomes mainly prolifer-
ate under the nutritional shortage or oxidative stress and 

are greatly repressed under the early growth stage with 
high-level of glucose [34, 35]. We actually observed that 
peroxisomal targeting the fatty alcohol biosynthesis path-
way that was driven by the glucose activating promoters 
resulted low fatty alcohol production, while the partial 
coordination of peroxisome biogenesis using GAL pro-
moters resulted much higher fatty alcohol production in 
peroxisomes. Further dynamically enhancing the supply 
of peroxisomal cofactors and precursor acyl-CoA signifi-
cantly improved fatty alcohol production. These results 
clearly showed that spatial-temporally regulating the 
biosynthetic pathways was beneficial for production by 
smartly coping the complex cellular metabolism.

Dynamic regulation of metabolic pathways can be 
realized for genetically encoded control systems, among 
which the promoter-based transcriptional regulation 
is a convenient approach for construction of dynamic 
pathways. Several artificial promoters have been con-
structed to sense specific metabolites and improve the 
biosynthetic efficiency in bacteria [36, 37]. However, the 
complex structure of eukaryotic promoters makes it chal-
lenging to construct sensitive promoters for dynamic 
regulation. We here showed that transcriptomic analysis 
identified several promoters that respond to fatty acids/
acyl-CoA, which helped to drive fatty alcohol produc-
tion. Furthermore, these promoters significantly drove 
the production of 3-hydroxypropionic acid (3-HP), an 
important platform chemical (Additional file  1: Figure 
S7).

Conclusions
This study proposed the spatial–temporal regulation of 
biosynthetic pathways to significantly improve the pro-
duction of fatty alcohols and other acetyl-CoA derived 
chemicals, such as 3-HP. A coordination of cytoplasmic 
and peroxisomal biosynthetic pathways via pathway com-
partmentalization and dynamic regulation by screening 
fatty acid/acyl-CoA responsive promoters increased the 
product titer by up to 2.52-fold. We can image this strat-
egy should be helpful for further improving fatty alcohol 
production in previously described cell factories such as 
oleaginous yeasts [9, 38] and S. cerevisiae [8], and may be 
used as an universal strategy for construction of efficient 
microbial cell factories.

Materials and methods
Strains and plasmids
Strains used in this study were listed in Additional file 1: 
Table  S3 and Figure S1. Plasmids and primers were 
listed in Additional file 1: Table S4 and Table S5. Guide 
RNAs (gRNAs) sequences were listed in Additional 
file 1: Table S4. Fatty alcohol biosynthetic pathways were 
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assembled on yeast chromosome, or plasmids pESC or 
pYX212 [39]. All S. cerevisiae strains used in this study 
were derived from CEN.PK113-11C (MATa; SUC2; 
MAL2-8c; his3Δ1; ura3-52;).

Media and cultivation conditions
S. cerevisiae was generally cultivated at 30  °C in YPD 
medium consisting of 20  g/L glucose, 20  g/L peptone 
and 10  g/L yeast extract. Strains containing URA3/
HIS3-based plasmids or gene expression cassettes were 
selected on synthetic dextrose media without uracil (SD-
URA) or histidine (SD-HIS), which consisted of 20  g/L 
glucose and 6.7  g/L yeast nitrogen base (YNB, with-
out amino acids). The SD + URA + HIS + 5-FOA plates 
consisting of 20 g/L glucose, 6.7 g/L yeast nitrogen base 
(YNB, without amino acids), 20 mg/L uracil, 20 mg/L his-
tidine and 2 g/L 5-fluoroorotic acid were used to remove 
URA3 maker. Fatty alcohol production was conducted in 
Delft minimal medium consisting of 14.4  g/L KH2PO4, 
2.5 g/L (NH4)2SO4, 0.5 g/L MgSO4•7H2O, trace metal and 
vitamin solutions according to previous report [40], and 
20 g/L glucose was added as carbon source, 60 mg/L ura-
cil and 40 mg/L histidine were added if needed. Escheri-
chia coli was cultivated at 37 °C in LB media (5 g/L yeast 
extract, 10 g/L tryptone and 10 g/L NaCl).

Commonly used reagents and primers were purchased 
from Sangon Biotech, Shanghai, China, unless otherwise 
specified. All codon optimized genes based on S. cer-
evisiae codon preference were synthesized by Exsyn-bio 
Technology Co., Ltd (Shanghai, China) and GENEWIZ 
(Suzhou, China).

Genetic manipulation
The genetic manipulation was performed using CRISPR/
Cas9 system as described previously [41]. CAS9 gene 
was integrated into the genomic XI-5 site [42]. Seamless 
gene deletion was performed using corresponding guide 
RNA (gRNA) expressing plasmids and donor DNA. The 
donor DNA was constructed by overlap extension PCR 
(OE-PCR), of which homologous arms (HA, 200–500 bp) 
were amplified from the upstream and downstream of 
the target site. For gene integration, expression cassettes 
were constructed by OE-PCR to fuse the upstream HA, 
promoter, open reading frame (ORF), terminator and 
downstream HA [39], as shown in Figure S8. The inte-
gration modular was integrated at different neutral sites 
[43]. The proteins were targeted to peroxisome by adding 
the peroxisomal targeting signal (per1 and per2) at the 
C-terminal of the specific genes [22]. The gene expres-
sion cassettes or plasmids were transformed to S. cerevi-
siae according to previous report [44]. The mutants were 
verified by colony PCR. Transformants with successful 

integration were plated on SD + URA + HIS + 5-FOA 
plates to remove gRNA expressing plasmids that contain 
URA3 maker. All codon-optimized genes were listed in 
Additional file 1: Table S6.

Batch fermentation and metabolites quantification
Batch fermentations in shake flask were carried out as 
follows: three to four biological replicates were each 
inoculated into 2  mL YPD medium and incubated for 
about 24 h. Cell cultures were then inoculated again into 
2 mL Delft minimal medium and cultivated for 24 h. The 
24 h cultures were inoculate into 15 mL minimal medium 
to an optical density (OD600) of 0.1 in 100  mL-baffled 
flask, and cultivated at 30 °C, 220 rpm, for 72 h or 96 h. 
The OD600 of the culture was measured to evaluate cell 
growth.

For fatty alcohol, after 96 h cultivation, 1 mL cell cul-
ture was used to extract fatty alcohols as previously 
described [45]. Samples were analyzed by GC (Thermo 
fisher) as previously described [46]. Free fatty acids 
were extracted from 72  h cultivations and quantified as 
described in our previous study [10]. For quantification 
of 3-hydroxypropionic acid (3-HP), the samples were 
analyzed using high-performance liquid chromatography 
(Shimadzu LC-2030, Japan) as previously described [18].

Screening of fatty acids/acyl‑CoA‑responsive promoters
To identify endogenous promoters that respond to fatty 
acids/acyl-CoA, transcriptional analysis was conducted 
in wild-type strain CEN.PK-113C, free fatty acid (FFA) 
producing strain YJZ121, and acyl-CoA accumulating 
strain JV03 [17]. Strains were pre-cultivated in minimal 
medium with 20 g/L glucose for 24 h, and then batch fer-
mentation was carried out in 1.0  L bioreactors (Eppen-
dorf ) containing 0.3  L minimal medium with 20  g/L 
glucose. Wild-type strain was cultured in minimal media 
without, or with 0.3% (v/v) of oleic acid. Fatty acid pro-
ducing strain was cultivated in minimal media with-
out oleic acid. Acyl-CoA strain (JV03) was cultivated in 
minimal media without, or with 0.3% (v/v) of oleic acid. 
0.1% (v/v) Tween80 was supplemented to dissolve oleic 
acid. Samples were taken at the early log phase, late log 
phase, and stationary phase. Cells were collected and 
washed twice with sterile ddH2O before extracting total 
RNA using RNeasy® Mini Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. Three bio-
logically independent replicates were applied to mini-
mize errors.

Qualified total RNA was clustered by TruSeq PE Clus-
ter Kit v3-cBot-HS (Illumia), and sequenced on Illumina 
Novaseq platform (Novogene Bioinformatics Technol-
ogy Co. Ltd). Software Hisat2, FeatureCounts v1.5.0-p3, 
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and DESeq2 R package (1.20.0) were used for mapping, 
reads counting, and differential expression analysis, 
respectively. To identify fatty acid responsive promot-
ers, two group comparisons, CEN.PK 113-11C vs CEN.
PK 113-11C in oleate, and CEN.PK 113-11C vs YJZ121, 
were adopted, among which top 50 DEGs in all three 
sampling points were included, and the final 10 candi-
date promoters were selected from the intersection of 
these two groups (Additional file 1: Table S1). Similarly, 
10 candidate promoters that responded fatty acyl-CoA 
were derived from two group comparisons, CEN.PK 113-
11C vs JV03, and JV03 vs JV03 in oleate (Additional file 1: 
Table S2).

Characterization of fatty acid/acyl‑CoA responsive 
promoters
20 candidate promoters in Table  S1 and Table  S2 were 
characterized on episomal plasmid using eGFP as a 
reporter. The plasmids were constructed as illustrated in 
Figure S9. Briefly, the eGFP gene was first inserted into 
an empty plasmid pYX312 by enzymatic digestion with 
Hind III and Sal I and ligation and the strong constitutive 
promoter PUAS-TDH3 [47] was adopted as positive control, 
generating pSc01. Subsequently, pSc01 was digested by 
Kpn I and Hind III, and the promoter fragments were 
inserted to obtain a series of plasmids pSc02 ~ pSc21.

To characterize fatty acid responsive promoters, plas-
mids pSc01 ~ pSc21 were transformed into both wild-
type strain (CEN.PK-113C) and FFA producing strain 
(YJZ121). Wild-type derived strains were cultivated in 
minimal media with or without 0.5% (v/v) oleic acid to 
evaluate the responses to exogenous fatty acids. Samples 
were taken to measure OD600 and fluorescence intensity, 
and the promoter activities were represented by the fluo-
rescence intensity per OD600. To evaluate the responses to 
endogenous fatty acids, fluorescence intensity per OD600 
of each promoter were characterized in wild-type and 
YJZ121 background strains that cultivated in minimal 
medium. In particular, to test the effects of supplemented 
carbon sources on the promoter (PUAS-TDH3, PADH6, POYE3, 
PPDR5, PHSP31, PAAD6) responses to endogenous fatty 
acids, 20 g/L glucose, or galactose was supplemented to 
the medium at 16 h. Strains were cultured for 64 h, and 
samples were taken to measure the fluorescence intensity 
per OD600. Similarly, plasmids pSc01 ~ pSc21 were trans-
formed into acyl-CoA producing strain (JV03) for char-
acterizing acyl-CoA responsive promoters in minimal 
media using wild-type derived strains as the control.

Statistics analysis
Statistics analysis is performed in Office Excel Software 
using two-tailed t test method of variance ANOVA 

hypothesis. Significant differences are marked as n.s. 
p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001. All data are 
presented as mean ± s.e.m. The number of biologically 
independent samples for each panel is typically three 
unless otherwise stated in the figure legends.
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